Contributions à la modélisation simplifiée de la mécanique des contacts roulants.

Contribution to Simplified Modelling of Rolling Contact Mechanics.

Résumé : La modélisation de l'usure superficielle nécessite la mise en place d'un outil numérique de calcul des puissances dissipées lors du roulement sous charge de galets sur des pistes de came [START_REF] Chevalier | Endommagement des pistes de roulement[END_REF]. Compte tenu des dispersions relatives aux défauts géométriques et aux paramètres mal connus comme le coefficient de frottement par exemple, l'étude s'oriente vers une approche probabiliste [START_REF] Chevalier | Probabilistic approach for wear modelling in steady state rolling contact[END_REF] où le nombre de cas simulés devient très grand (environ 1000 simulations pour une géométrie et un chargement) et hors d'atteinte en des temps de calcul CPU raisonnables par une approche exacte. L'utilisation d'une approche simplifiée est alors nécessaire pour le calcul de la puissance dissipée dans le cas non hertzien généré par l'usure. Pour quantifier la précision (ou l'incertitude) d'une telle approche, nous présentons et discutons les choix qui ont été réalisés ; en particulier, l'approche simplifiée proposée par Kalker [START_REF] Kalker | A Fast Algorithm for the Simplified Theory of Rolling Contact[END_REF] est comparée avec les solutions de l'approche exacte, puis nous proposons des améliorations aux approches semi-hertziennes déjà utilisées dans [START_REF] Ayasse | Determination of the Wheel Rail Contact Patch in Semi-Hertzian Conditions[END_REF].

Abstract: Numerical simulation of superficial wear requires the implementation of computational tools for calculation of dissipated power during loaded contacts of roller on track cam [START_REF] Chevalier | Endommagement des pistes de roulement[END_REF]. Uncertainties due to geometrical defects or to not well known parameters such as the friction ratio for example, yields to a probabilistic approach [START_REF] Chevalier | Probabilistic approach for wear modelling in steady state rolling contact[END_REF] of the contact problem. Number of simulated cases becomes very important (approximately 1000 cases for a single geometry and loading) and cannot reasonably be treated by the exact approach which leads to long CPU time.

A simplified approach was chosen to calculate the dissipated power for nonhertzian case generated by the wear. To quantify the precision of this approach, we present and discuss the choices which had been made. In particular, the simplified approach proposed by Kalker [START_REF] Kalker | A Fast Algorithm for the Simplified Theory of Rolling Contact[END_REF] is compared with the solutions of the exact approach, then we propose improvement of semi-hertzian approaches which are presented in [START_REF] Ayasse | Determination of the Wheel Rail Contact Patch in Semi-Hertzian Conditions[END_REF]. Ainsi en négligeant la contribution des forces volumiques le problème se met sous la forme donnée par l'Eq. ( 1) où u b , v b et w b sont des fonctions connues linéaires en X b , Y b , Z b , τ x et τ y sont les contraintes tangentielles suivant la direction x et suivant la direction
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Il convient donc de résoudre l'Éq. (1) pour chacun des solides avec de plus les conditions d'interface sur la zone de contact. Dans cette zone les forces surfaciques s'opposent et les déplacements normaux sont nuls. Par ailleurs, s'il y a du frottement entre les deux solides il convient d'introduire des lois de frottement. Dans la suite, nous utiliserons la loi de Coulomb avec μ le coefficient de frottement.

Chargement normal

Dans le cas où la charge appliquée est uniquement portée par z et où le frottement est négligé (c'est-à-dire τ x = τ y = 0), l'Éq. (1) permet le calcul du déplacement w(x,y) normal à l'aire de contact provenant de la déformation par l'Éq. (2) :
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Dans le cas d'un contact entre deux solides 1 et 2 avec l'axe z dirigé de 2 vers 1, la différence de déplacement due à la déformation est donc donnée par :
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Hertz propose une solution analytique de l'Eq. ( 3 

Lorsque les courbures des corps en contact ne sont pas constantes, la recherche du déplacement w(x,y) et de la pression de contact p(x,y) se fait en résolvant l'Éq. [START_REF] Archard | Contact and rubbing of flat surfaces[END_REF].
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L'écart e entre les deux solides après déformation est donné par l'écart h avant déformation, le rapprochement global δ loin de la zone de contact est une intégrale qui dépend de la pression p. Outre e et p qui sont inconnus, le premier à l'extérieur et le second à l'intérieur de la zone de contact, la zone de contact elle même n'est pas connue.

La résolution du problème est numérique : l'aire potentielle de contact est découpée en 

N 1 éléments (Fig. 1) tel que N 1 = M x x M y avec M x et M y sont

Problème complet du contact roulant

Dans le cas où le frottement n'est pas négligeable, des cisaillements apparaissent. Ils sont liés aux déplacements relatifs. Le système d'équations ainsi obtenu est a priori couplé mais dans le cas particulier de deux solides de caractéristiques élastiques identiques, il se réduit au système de l' Éq. [START_REF] Johnson | Contact Mechanics[END_REF].
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Ces équations montrent un découplage du problème normal avec le problème tangent.

Réciproquement, bien que la pression n'intervient pas explicitement dans les deux premières équations, les cisaillements τ x et τ y ne sont pas indépendants de la pression puisqu'ils sont liés par l'inégalité de la loi de frottement de Coulomb (Éq. ( 7)) où μ est le coefficient de frottement et τ le module du cisaillement. Notons que le problème de roulement stationnaire décrit par les Éq. ( 6), ( 7) et ( 8 Dans les deux parties suivantes, nous allons discuter les méthodes approchées présentées en comparant leurs performances aux résultats de l'approche exacte.

Résolution approchée du contact roulant

Dans cette partie, nous présentons la résolution simplifiée proposée par Kalker et qui est à l'origine de l'algorithme FastSim. L'hypothèse simplificatrice de la mise en équations par FastSim est appelée « tapis de ressort ». Elle considère la proportionnalité entre les déplacements et les efforts de cisaillement de manière globale par les relations : Dans le cas où tous les pseudo glissements coexistent, B. Soua [START_REF] Soua | Étude de l'usure et de l'endommagement du roulement ferroviaire avec essieux non rigides[END_REF] propose une flexibilité moyenne par :
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En définitif, le système d'équations à résoudre par FastSim sera donc : Pour illustrer cette démarche de résolution, nous considérons à nouveau la géométrie de contact galet-rondin.
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Exemple d'illustration par FastSim : deux cas de répartition de pression

Le problème normal étant découplé du problème tangent, on considère dans un premier temps que la répartition normale de pression est elliptique (Fig. Cette comparaison milite pour le chargement elliptique dans l'approche simplifiée.

Hormis l'allure non physique de la vitesse de glissement, le cas elliptique donne des résultats plus proches du calcul exact. L'allure de la vitesse de glissement est qualitativement satisfaisante en parabolique, quantitativement, l'écart reste très important.

On définit la puissance linéique comme la somme des puissances surfaciques le long d'une ligne y = cste et la puissance totale comme la somme de ces puissances sur toute l'ellipse de contact. Une fois de plus, la comparaison montre que le cas parabolique dissipe légèrement plus que le cas elliptique comme montré dans la Fig. 9. En terme de puissance linéique, les deux cas de chargement surestiment cette variable par rapport à l'approche exacte.

Toutes ces constatations nous laissent privilégier le chargement elliptique dans le modèle simplifié FastSim. Dans la suite, seul ce type de chargement sera considéré.

Approche semi hertzienne

Principe de l'approche semi-hertzienne

FastSim est un outil de calcul rapide mais limité aux corps hertziens. Dès lors que les courbures ne sont plus constantes (après usure par exemple), il faut être capable de déterminer la zone de contact avant le calcul des efforts tangentiels. A partir des travaux de Kik et Piotrowski [START_REF] Kik | A fast approximative method to calculate normal load at contact between wheel and rail, and creep forces during rolling[END_REF], divers auteurs proposent une approche dite semi hertzienne analogue à Telliskivi [START_REF] Telliskivi | Simulation of wear in a rolling-sliding contact by a semi-Winkler model and the Archard's wear law[END_REF]. L'idée consiste à estimer la zone de contact en se basant sur la pénétration virtuelle des corps à l'état non déformés. L'intersection des surfaces des corps limite une forme de contact. Cependant dans le cas hertzien, cette approche donne une forme elliptique ayant un élancement différent que celui de Hertz. C'est ainsi qu'une correction est mise en place consistant à modifier la courbure initiale A.

Dans le cas semi hertzien, les deux corps sont de révolution mais de profils quelconques et le principe de correction doit se faire bande par bande.

Dans ce qui suit, nous présentons brièvement la démarche de résolution du problème semi hertzien :

-On choisit une interpénétration h 0 et on délimite la largeur de la zone intersection entre les deux profils non déformés.

-On découpe cette largeur en M y bandes de largeur Δy.

-Sur chaque bande autour de l'abscisse y = y i , on calcule les courbures A i et B i et on effectue la correction A ci de la courbure A i grâce aux relations :
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α et β sont des coefficients figurant dans l'interpolation en loi puissance de l'élancement hertzien k i (qui tient compte de la déformation) et l'élancement dû à l'interpénétration virtuelle des deux solides donné par :
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-On calcule sur chaque bande le rapprochement local h i par la relation:
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Cela permet de caractériser la géométrie locale de la zone de contact dans une bande d'abscisse y = y i :
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-En considérant une répartition elliptique de chargement, on peut calculer la contribution en effort de chaque bande ΔN i par la formule :
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On vérifie si la somme de ces charges sur toute l'aire de contact est égale à la charge normale globale F : c'est le critère de convergence de la méthode.

-Nous augmentons ou réduisons la valeur de l'interpénétration en fonction du résultat choisi jusqu'à vérifier le critère :
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La pertinence de la méthode est tout d'abord testée sur le cas assez sévère (fort élancement) du contact galet-rondin. Lorsque les courbures sont constantes, la méthode doit permettre de retrouver l'ellipse de Hertz.

Le résultat obtenu est évidemment excellent : les valeurs de a et b valent 0,24 et 2,8 mm, soit un ratio b/a de 11,48. Sur la Fig. 10, on représente : (a) la distribution ΔN i obtenue en superposition de l'expression analytique et (b) les dimensions a i de l'ellipse de contact en superposition de l'ellipse de Hertz (théorique).

La Fig. 11 présente la forme de la zone de contact pour des rayons de raccordement variables dans le cas du galet en biais décrit au paragraphe 1.2.3. Lorsque le rayon de raccordement est égal au rayon initial du galet (500 mm), nous retrouvons l'ellipse de Hertz. Pour des rayons de raccordement plus faibles, nous constatons l'apparition de pointes au niveau de la zone de transition entre les deux courbures. Ces pointes sont d'autant plus grandes que le rayon de raccordement est petit. Elles sont dûes à la variation brutale de la courbure.

Comparant les résultats du modèle semi hertzien aux résultats de l'approche exacte présentés au paragraphe 1.2.3, nous constatons que ces pointes sont plus marquées avec l'approche semi hertzienne. Néanmoins, les dimensions de l'aire de contact sont très voisines et varient de la même manière que pour l'approche exacte.

L'origine de ces pointes provient du découplage entre les caractéristiques élastiques des bandes. Nous proposons d'atténuer l'effet de ce découplage par une diffusion d'information entre les bandes.

Diffusion entre les bandes

Le principe de résolution de la méthode est toujours conservé. Néanmoins, pour contourner les effets du découplage nous allons régulariser l'allure du profil du galet dans le plan (yOz). Les méthodes de lissage sont assez nombreuses et nous adopterons une diffusion par la méthode des éléments diffus [START_REF] Costa | An Adaptative Method Applied to the Diffuse Element Approximation in Optimization Process[END_REF] et [START_REF] Nayroles | La méthode des éléments diffus[END_REF].

La méthode des éléments diffus est utilisée dans la discrétisation des problèmes des milieux continus sans maillage. Elle consiste à trouver une approximation nodale d'une fonction définie par un nombre N fini de points d'abscisse y j . Elle donne ainsi accès, en ces points, aux K premières dérivées (K ordre de la méthode) de la fonction initialement discrète. Appliquée à la courbure B(y), cette approximation génère en un point une sommes amenés à rechercher le paramètre C optimal en fonction de la plus ou moins brutale variation de courbure.

Optimisation et comparaison avec la solution exacte

Cette démarche consiste à calculer pour chaque rayon de raccordement le coefficient C optimal qui réalise le minimum de l'erreur défini comme suit :

S ds dS C Erreur bandes ∑ - = ) ( (26) 
où :

dS: Aire de la bande i donnée par la théorie exacte.

ds : Aire de la bande i donnée par le modèle semi hertzien avec diffusion.

S : Aire de la zone de contact par la théorie exacte.

Cette démarche va nous permettre de trouver l'optimum des coefficients C en comparant à chaque calcul l'aire de la zone de contact obtenue par la méthode semi hertzienne avec l'aire exacte. Sur la Fig. 13, nous comparons quelques résultats de cet essai dans le cas extrême où le rapport Après diffusion, les résultats de l'approche semi hertzienne sont très analogues à ceux obtenus par l'approche exacte : les « pointes » sont fortement atténuées et les dimensions de la zone de contact correspondent mieux à la solution exacte (Fig. 17).

Au 

  ) dans le cas où les courbures sont constantes au niveau du contact. La zone de contact est alors elliptique (dimensions a et b) et la répartition de pression est ellipsoïdale. P 0 est donnée par l'Éq. (4). a et b sont déterminés à partir de coefficients m et n définis par des intégrales et généralement tabulés.

  La méthode est illustrée (Fig.2) sur le cas du contact normal entre un galet (g) et un rondin-éprouvette (e). Les deux solides sont de révolution en acier de caractéristiques géométriques : R xg = 20 mm, R yg = 500 mm, R xe = 25 mm et R ye qui tend vers l'infini. Les caractéristiques élastiques du matériau valent : module d'Young E = 2,1 10 11 Pa, coefficient de poisson υ = 0,28 et la charge appliquée est F = 1500 N. Les courbures constantes et les relations de Hertz donne la solution a = 0,23 mm et b = 2,63 mm.Numériquement, l'allure plus ou moins lisse de la pression de contact dépend du nombre de points N y servant à la description du profil du galet z g = f(y) dans le plan (yOz). La discrétisation adoptée pour le découpage de l'aire de contact influence elle aussi la finesse des résultats. Sur la Fig.3on observe les effets de ces deux discrétisations sur la répartition de pression et la forme de l'ellipse de contact. Pour un découpage assez fin M x x M y = 100 x 50 et une discrétisation des profils par plus de 10 points, les erreurs de géométrie entre la méthode numérique et le calcul analytique ne dépasse pas 1%. Notons que l'élancement est assez fort et que le découpage doit être plus fin suivant x que suivant y.L'approche numérique devient indispensable lorsque les courbures ne sont pas constantes au voisinage du point de contact. Dans le cas du galet-rondin, lorsque le point de contact se rapproche des flancs du galet, il y a un raccordement entre deux courbures très différentes. C'est un cas assez sévère (Fig.4) que nous appelons « galet en biais ». Pour comparer de manière un peu systématique avec l'approche simplifiée qui sera présentée plus loin, on étudie plusieurs valeurs du rayon de raccordement entre 1 et 500 mm.Les formes des zones de contact sont données sur la Fig.5. Lorsque le rayon de raccordement est faible, l'élancement de la zone de contact, située en y < 0, est plutôt dirigée suivant x puisque le rayon du galet dans le plan (xOz) est plus élevé (R yg = 20 mm). L'élancement suivant x diminue au fur et à mesure que le rayon de raccordement augmente pour redonner l'ellipse de Hertz pour R 1 = R 2 .

  du roulement stationnaire, le système d'équations cinématiques du contact galet/rondin est donné par l'Éq. (8) w x et w y désignent les composantes de la vitesse de glissement entre les deux corps, V la vitesse de renouvellement de contact, ν x , ν y et φ sont respectivement les pseudo glissements longitudinal, transversal et de spin, u et v sont les composantes du déplacement relatif entre les deux solides provenant des déformations présentées dans le système (6). La démarche de résolution est itérative : on suppose un état initial pour lequel la zone d'adhérence est confondue avec la zone de contact. Le système (8) permet le calcul des déplacements u et v. Une fois l'aire potentielle de contact discrétisée, les deux premières équations du système (6) donnent un système linéaire qui permet de déterminer τ x et τ y par inversion. L'inégalité de l'Éq. (7) permet ensuite de distinguer les points où le cisaillement sature (zone de glissement) et ceux pour lesquels il y a adhérence. Cette partition permet d'affiner la zone où w x = w y = 0. On réitère la démarche jusqu'à stabilisation entre zone d'adhérence et de glissement. La Fig. 6 montre cette partition dans le cas du contact galet-rondin à courbures constantes. Les données supplémentaires par rapport à l'exemple du contact normal sont : coefficient de frottement 1 longitudinal ν x = 10 -3 , pseudo glissement transversal ν y = 0, pseudo glissement de spin φ = 0 et la vitesse de renouvellement du contact V = 2,6 m/s. La zone de contact est découpée en une zone d'adhérence et une zone de glissement. Les forces surfaciques tangentielles ont un aspect quasiment linéaire sur la zone d'adhérence puis une forme elliptique à la saturation. Les vitesses de glissement sont nulles sur la partie collante et augmentent linéairement dans la zone de glissement atteignant ainsi un maximum fini sur le bord de fuite de l'ellipse de contact.

  ) trouve une solution analytique presque exacte lorsqu'on fait l'hypothèse d'adhérence totale (ce qui correspond à un frottement très fort ou à des pseudo glissements très faibles). Dans ce cas le système de l'Éq. (8) donne u et v en fonction des pseudoglissements. Par identification de u et v avec les expressions du système (6) on peut en déduire les charges tangentielles résultantes T x et T y ainsi que le moment résultant M z qui s'oppose au pivotement : c'est un résultat de la théorie linéaire de Kalker (T.L.K) développé dans [10].

  [START_REF] Boussinesq | Application des potentiels à l'équilibre et du mouvement des solides élastiques[END_REF] où L est la flexibilité de contact.L'identification des résultantes T x et T y obtenues par résolution du système (9) et le système (8) avec celles de la théorie linéaire de Kalker n'est possible que si l'on considère trois coefficients de flexibilité distincts L 1 , L 2 et L 3 associés respectivement aux pseudo glissements ν x , ν y et φ qui sont de la forme :

2 1 R 1 R 1 R

 2111 R = 0,002 pour différentes valeurs de C. De toutes ces solutions, nous déterminons le coefficient C* vérifiant : Erreur (C*) = minimum (erreur (C)) grâce au critère (26). Le paramètre de diffusion retenu est C* = 3,5 avec erreur (C*) = 8,75% (Fig. 14). Sur la Fig. 15, on présente la variation de l'erreur en fonction du paramètre de diffusion où l'on voit clairement l'optimum qui correspond à une portion assez plate de la courbe. Il existe donc une plage assez large de valeur de C qui donne un résultat tout à fait satisfaisant. Pour chaque rapport 2 R donné, nous déterminons cette valeur C* . Sur la Fig. 16, on peut observer une large plage [0,2; 1] pour laquelle le paramètre C* est constant. Lorsque 2 R est inférieur à 0,2, le coefficient C* varie peu et reste inférieur à 5. Il semble donc qu'une valeur unique de C* convient de manière très satisfaisante (erreur < 9 %) à toutes les géométries de raccordement. Ce résultat n'est valable que pour une géométrie variant peu autour des dimensions de contact galet-cylindre (ces variations provenant de l'usure ou de dispersions autour d'une valeur moyenne). Dans la mise en place d'un outil de simulation d'usure, c'est bien le cas : l'usure génère des variations de dimensions assez faibles.
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1. Résolution du problème de contact

  

	problème de contact entre deux solides élastiques 1 et 2. La mise en équation s'appuie
	sur la connaissance des composantes du champ de déplacement u b , v b et w b sous l'effet
	d'une charge ponctuelle de composante X b , Y b et Z b appliquée en un point d'un massif
	semi infini (Love [8], Boussinesq [9]). z est la normale au plan tangent du contact.
	L'intégration d'une distribution surfacique d'effort en chaque point de coordonnées
	(x',y') de l'aire de contact permet d'avoir accès à une distribution de contrainte dans le
	massif, plus réaliste que celle d'une charge ponctuelle.
	Afin de discuter la précision des approches simplifiées utilisées pour la simulation du
	contact roulant, nous allons brièvement rappeler les équations à résoudre dans un

  Tous les éléments pour lesquels l'écart e M est négatif sont déclarés appartenant à l'aire de contact et leur écart est mis à 0. Soit P le nombre d'éléments appartenant à l'aire de contact, on résout le nouveau système de P équations ainsi obtenu et on détermine les P valeurs de pression p M inconnues.2.Tous les éléments pour lesquels la pression p M est négative sont déclarés ne faisant pas partie du contact et leur pression est mise à 0. On recalcule les écarts e M avec les nouvelles valeurs de pression.

respectivement les découpages suivant x et y. Sur chaque élément la pression inconnue est constante et l'intégrale est donc remplacée par une somme sur tous les éléments. Une méthode itérative permet de déterminer e M et p M de proche en proche par la démarche suivante : pour une valeur imposée de δ, on initie les variables en considérant que tous les éléments sont extérieurs au contact, la pression est donc nulle partout et l'Éq. (
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) permet l'estimation des e M initiaux.

1.

On itère ainsi entre le point 1 et le point 2 jusqu'à ce que toutes les pressions soient positives ou nulles et tous les écarts soient positifs ou nuls. Ceci permet de délimiter la zone de contact dans l'aire potentielle. La méthode est d'autant plus précise que le découpage de l'aire est fin mais conduit à des temps de calcul assez importants.

  .2. Comparaison avec l'approche exacte et validation du chargement dans FastSimLe découpage de la zone de contact diffère entre l'approche exacte et les deux répartitions de pression de l'approche simplifiée. La saturation n'est pas atteinte au même endroit pour les trois modèles, ce qui résulte en une zone d'adhérence plus petite par la théorie exacte que celle par FastSim. Bien que la répartition parabolique donne une meilleure allure de saturation, le cas elliptique fournit des zones de saturation (S) et d'adhérence (A) d'aires plus voisines de l'approche exacte comme l'illustre la Fig.8.

	titre indicatif, nous donnons l'aire de la zone d'adhérence par les trois approches :
	-Approche exacte : 0,87 mm²
	-Fastsim elliptique : 1,12 mm²
	Dans le cas de la répartition parabolique, certaines bandes de l'ellipse sont totalement
	glissantes. Ces bandes, qui se situent aux extrémités latérales de l'ellipse, ne présentent
	pas de zone d'adhérence. Ce qui est en contradiction avec l'hypothèse d'un contact
	collant sur le bord d'attaque. La vitesse de glissement présente une discontinuité lors de
	la transition entre la zone collante et la zone glissante (comme dans le cas elliptique),

7. Colonne de gauche).

L'aire de contact est composée de 2 zones disjointes : adhérente et glissante. La zone d'adhérence part du bord d'attaque x = a i et limitée par une valeur de x S qui est proportionnelle à la largeur 2a i de la bande y i considérée. Au delà de cette zone, les cisaillements saturent suivant la loi de frottement de Coulomb et il y a glissement jusqu'au bord de fuite x = -a i . Dans cette zone, le système (12) donne la vitesse de glissement. On notera l'allure asymptotique au voisinage du bord de fuite. Néanmoins, la puissance surfacique dissipée au contact reste finie sur toute la zone de contact.

Comme alternative à cette singularité, Kalker propose une répartition parabolique de pression ne conduisant pas à une vitesse infinie (Fig.
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, colonne droite). mais on peut observer qu'elle reste finie et d'allure linéaire. 2-Fastsim parabolique : 1,27 mm² En terme de puissance dissipée au contact, nous obtenons des valeurs finies par les trois modèles. Le tableau 1 chiffre le maximum des puissances surfacique et linéique et quantifie l'écart par rapport à la résolution du problème exact.

  niveau du temps de calcul, nous avons constaté dans le cas R 1 = 500 mm (cas hertzien) qu'avec un découpage M x x M Le problème de la vitesse de glissement qui tend vers l'infini sur le bord de fuite, qui semble être l'argument principal pour le choix de la répartition parabolique, donne une puissance finie dissipée surfacique pour une répartition elliptique.Dans le cas des courbures non constantes, une approche semi hertzienne issue des travaux antérieurs de[START_REF] Ayasse | Determination of the Wheel Rail Contact Patch in Semi-Hertzian Conditions[END_REF] et[START_REF] Kik | A fast approximative method to calculate normal load at contact between wheel and rail, and creep forces during rolling[END_REF] a été mise en place. Elle nécessite une correction de la courbure mais aussi une procédure de diffusion permettant d'estomper les irrégularités de la zone de contact dues à la transition brutale des courbures pour bombé du « galet en biais » au rayon de raccordement. Cette méthode, environ 80 fois plus rapide que l'approche exacte, permet d'obtenir une bonne approximation de l'aire de contact sans introduire plus d'un seul coefficient C* de réglage dans la méthode. De plus, une optimisation de la méthode des éléments diffus montre qu'une valeur unique de C* convient à une large plage de rapport R 1 /R 2 ce qui rend l'approche assez générale.

	4. Conclusions
	Nous avons présenté quelques outils de résolution approchée du problème de contact.
	Une étude comparative de l'approche simplifiée FastSim avec le modèle exact nous
	permet de retenir le choix d'une répartition elliptique de la pression de contact. Les
	écarts constatés par rapport à l'approche exacte sur la puissance surfacique et la

y = 100 x 50, l'approche exacte met environ 80 fois plus du temps pour la convergence que l'approche semi hertzienne avec diffusion testé avec la même discrétisation en M x et M y sur un PC pentium III. Notons que le problème exact est programmé en Fortran alors que l'approche SHAD est implanté dans l'environnement Matlab® et n'est pas optimisé.

Nous chiffrons dans (Tableau 2) les dimensions de la zone de contact du galet en biais par l'approche semi hertzienne et l'approche exacte avec et sans diffusion. Il est clair que le modèle semi hertzien avec diffusion donne de très bonnes approximations. Nous désignons par L x la largeur de la zone de contact et par L y sa longueur. puissance linéique, paramètres déterminants dans la simulation d'une loi d'usure, sont plus élevés en répartition parabolique qu'en répartition elliptique.

Cette approche reste à tester sur des géométries plus critiques : conformité des contacts, existence de zone à courbure négative, influence du rapport des courbures B/A. Cet outil de détermination rapide de l'aire de contact va permettre la simulation numérique de l'usure de manière itérative avec réactualisation des profils au cours du temps est couplée à l'approche probabiliste pour la prise en compte des dispersions expérimentales dans la démarche d'identification.

estimation du développement de Taylor à l'ordre K de B en y de la forme