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On geodesics of phyllotaxis

Roland Bacher

January 30, 2013

Abstract1: Seeds of sunflowers are often modelled by the map n 7−→
ϕθ(n) =

√
ne2iπnθ leading to a roughly uniform repartition with two con-

secutive seeds separated by the divergence angle 2πθ for θ the golden ra-

tio. We associate to an arbitrary real divergence angle 2πθ a geodesic path

γθ : R>0 −→ PSL2(Z)\H of the modular curve and use it for local descrip-

tions of the image ϕθ(N) of the phyllotactic map ϕθ.

Given a real parameter θ, we call the map ϕθ : N −→ C defined by

ϕθ(n) =
√
ne2iπθn

the phyllotactic map of divergence angle 2πθ (measured in radians). The
image ϕθ(N) of a phyllotactic map is the phyllotactic set (of parameter θ or
divergence angle 2πθ). A phyllotactic set ϕθ(N) is uniformly discrete (i.e.
two distinct elements of ϕθ(N) are at distance at least ǫ for some strictly
positive ǫ) with uniform density if

θ = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2+...

is irrational with bounded coefficients a0, a1, a2, . . . in its continued fraction
expansion.

Among all possible parameters, the value given by the golden ratio
1+

√
5

2 = [1; 1, 1, 1, . . . ] (or closely related numbers) stands out and gives
a particularly nice configuration. Figure 1 displays a few hundred small
points of ϕ(1+

√
5)/2(N).

Finite approximations of ϕ(1+
√
5)/2(N) can be observed in capitula (heads)

of sunflowers or daisies (the map ϕ(1+
√
5)/2, sometimes also called the sun-

flower-map, has been proposed in [13] as a model for heads of sunflowers).
Joining close points of ϕ(1+

√
5)/2(N) we get parastichy spirals appearing in

pairs of crisscrossing families enumerated by two consecutive elements of the
Fibonacci sequence 1, 2, 3, 5, 8, 13, 21, . . . . Explaining the occurence of the

1Keywords: Lattice, hyperbolic geometry, phyllotaxis, sunflower-map. Math. class:

11H31, 52C15 Primary: 92B99
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Figure 1: All points of ϕ(1+
√
5)/2(N) in the disc {z ∈ C | |z| ≤ 20}.

golden ratio and of Fibonacci numbers in Botanics is the goal of Phyllotaxis,
see for example Chapter XIV of [12] or [6] for more recent developments.
The aim of this paper is to describe an elegant framework involving hy-

perbolic geometry. The emergence of the golden ratio 1+
√
5

2 (or of closely
related numbers) and of Fibonacci numbers enumerating families of paras-
tichy spirals is then a consequence of natural constraints.

Reasons for Phyllotaxis should be separated from the mechanisms which
are involved. How Phyllotaxis works is surely best adressed by biologists,
biochimists or biophysicists. The reason for Phyllotaxis is efficiency of some
sort (a precise definition is perhaps not so easy) which can take several
forms. It is perhaps a physical notion like energetic efficiency or it involves
geometric quantities like isoperimetry (which leads probably ultimately also
to some kind of energetic efficiency). The link between the two aspects is
natural selection. To say it in a nutshell, ubiquity of phyllotaxis involves
mathematics: A few geometric configurations optimize some natural quanti-
ties. Thus they are favoured by living organisms through natural selection.

Interestingly, the two aspects are spatially separated: Reasons for Phyl-
lotaxy, due to a globally optimized quantity, are of an asymptotical nature.
They are best adressed by studying the large part of a plant which is rela-
tively far from the center consisting of the bud which is responsible for the
growth-process of a flower. Asymptotic arguments are thus not a weakness
but are relevant when trying to answer why phyllotaxis occurs (assuming
Darwin’s theory of evolution).
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An outline of the paper is as follows: We associate to a phyllotactic map
ϕθ with real parameter θ ∈ [0, 1) the curve

(0,+∞) ∋ t 7−→ γθ(t) =
4iπt

4iπθt+ 1
=

16π2θt2 + 4iπ(1 − θ)t

16π2θ2t2 + 1

of the Poincaré halfplane H = {z ∈ C | ℑ(z) > 0}. Since ϕθ = ϕθ+n for all
n ∈ Z, we extend the definition of γθ to θ ∈ R by setting

γθ(t) =
4iπt

4iπ{θ}t+ 1

where θ = ⌊θ⌋+ {θ} with ⌊θ⌋ ∈ Z and {θ} ∈ [0, 1) denoting the integral and
fractional part of θ. It is easy to check that γθ defines a geodesic with respect
to the usual hyperbolic metric of H. We call γθ the phyllotactic geodesic asso-
ciated to ϕθ. For large N ∈ N, the projection of γθ(N) (often identified with
γθ(N) in the sequel) onto the modular curve PSL2(Z)\H classifying complex
lattices up to similarity describes, up to an affine orientation-preserving sim-
ilarity, the affine lattice obtained by “linearizing” the phyllotactic map ϕθ

in a neighbourhood of ϕθ(N). Linearization is an asymptotical construction

involving an error of order O
(

1√
N

)

in a neighbourhood of a point ϕθ(N).

In particular, it breaks down for very small values of N . This failure should
have no serious consequences: Indeed, the most interesting phyllotactic sets
have obviously already good packing properties at their center. Moreover,
the center yields a very small contribution to interesting quantities like en-
ergy, mean isperimetric values of Voronoi domains etc..

The apparition of the golden ratio 1+
√
5

2 can now be explained by the
fact that the corresponding phyllotactic geodesic t 7−→ 4iπt

2iπ(−1+
√
5)t+1

avoids

the cusp of the modular curve PSL2(Z)\H. This ensures small excentricity
(or, equivalently, good isoperimetric constants) for Voronoi domains of the
phyllotactic set ϕ(1+

√
5)/2(N) where the Voronoi domain Vv of a point v ∈ S

with respect to a discrete set S in a metric space E is the subset Vv =
{x ∈ E | d(x, v) = miny∈S d(x, y)} of all points closest to v. Plants having
seed-areas with good isoperimetric constants should be favoured by natural
selection since they need less material for constructing seed coats around
seeds of given volume. Thus, Diophantine properties of the golden ratio

τ = 1+
√
5

2 ensure that ϕτ (N) (or ϕθ(N) for θ a close relative of the golden
ratio τ giving rise e.g. to the sequence 1, 3, 4, 7, 11, 18, . . . also observed in
Phyllotaxis) satisfies natural constraints in the class of all sets of the form
ϕθ(N).

We can either consider that the points of the sequence ϕθ(0), ϕθ(1), . . .
appear sequentially with constant divergence angle 2πθ between consecutive
points on the so-called ontogenetic spiral t 7−→

√
te2iπθt or, sticking perhaps

closer to biological reality, we can consider a sequence of paths [−n, 0] ∋
t 7−→ sn,θ(t) =

√
n+ te2iπnθ describing a situation where the n−th point
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has appeared at the origin at time −n in the past. It has then slowly moved
outwards on the halfray R≥0e

2iπnθ until reaching its present location ϕθ(n)
at the time t = 0.

The factor
√
n in the formula for ϕθ(n) ensures that there are R

2 points
(of roughly equal “importance”, measured for example by the area of Voronoi
domains) in a disc of large radius R. Areæ of Voronoi domains defined by
ϕθ(N) are asymptotically equal to π if θ is irrational.

Tools and part of the results of this paper can be adapted to a slightly
more general situation given by functions t 7−→ ρ(t)e2iπtα(t) where ρ(t) is a
suitable increasing function and where the local divergence angle 2πα(t) is
allowed to vary very slowly.

The sequel of the paper is organized as follows:
Section 1 states the main result.
Section 2 recalls a few well-known and useful facts concerning complex

lattices and hyperbolic geometry.
Section 3 contains identities involving continuous fraction expansions.
Linearizations of phyllotactic sets are described in Section 4.
We construct the phyllotactic geodesic γθ in Section 5. This leads to a

proof of Theorem 1.1.
Section 6 describes a construction of a slightly different geodesic.
Section 7 is devoted to metric properties of phyllotactic sets.
Parastichy spirals are defined and studied in Section 8.
Section 9 reviews briefly a few other models appearing in the literature.
Finally, Section 10 discusses a possible experimental verification (or refu-

tation) of the existence of a phyllotactic geodesic in real sunflower-capitula.

1 Main result

Let (E,dist) be a metric space, x an element of E and ǫ,R two strictly
positive real numbers. Two discrete subsets A,B of E are ǫ−close in the
open ball of radius R and center x if there exists a map ψ : A′ −→ B′ which
is one-to-one and onto between subsets A′ ⊂ A and B′ ⊂ B containing all
points in A, respectively B, at distance at most R from x and which moves
all points of A′ by less than ǫ, i.e., we have dist(a, ψ(a)) < ǫ for all a ∈ A′.
Intuitively, two discrete sets A,B are ǫ−close in the open ball of radius R
centered at x if A and B are “equal up to an error of ǫ” in (a neighbourhood
of) the ball of radius R centered at x.

Theorem 1.1. Given ǫ > 0 and R > 0, there exists an integer N = N(ǫ,R)
such that for every θ ∈ [0, 1) and for every n ≥ N , the set ϕθ(N) is ǫ−close
in the open disc of radius R centered at ϕθ(n) to an affine lattice in the
equivalence class (i.e. up to orientation-preserving affine similarities) of
Z+ Z 4iπn

1+4iπ{θ}n .

4



The map

(0,∞) ∋ t 7−→ γθ(t) =
4iπt

1 + 4iπ{θ}t =
16π2{θ}t2 + 4iπt

1 + (4π{θ}t)2

defines a geodesic of the hyperbolic Poincaré halfplane (endowed with the
hyperbolic metric ds

y at z = x + iy ∈ H), see for example Lemma 2.1. We
call γθ the phyllotactic geodesic of ϕθ. Notice that the curve t 7−→ γθ(t) has
(hyperbolic) speed 1

ℑ(γθ(t))
|γ′θ(t)| = 1

t inversely proportional to t.

Remark 1.2. (i) Theorem 1.1 holds for rational θ: In this case the phyl-
lotactic geodesic ends up in the cusp of the modular curve PSL2(Z)\H. The
associated affine lattices Λθ,n degenerate into discrete subgroups of rank 1
in the sense that they intersect a ball of fixed radius R centered at an affine
lattice point along a translated copy of a discrete subgroup having rank 1.

(ii) Denoting by V (n) the Voronoi domain of ϕθ(n) ∈ ϕθ(N) we have
limn→∞ volV (n) = π if θ is irrational.

For rational θ = p
q with with q ≥ 3 and p, q coprime integers, the union

of Voronoi domains (defined by ϕθ(N)) of all points at distance ≤ R from
the origin is essentially a regular polygon with q sides and inradius R. This

implies limn→∞ volV (n) = q tan π
q = π + π3

3q2
+O

(

1
q4

)

.

For θ ∈ 1
2Z, all Voronoi domains are unbounded and thus of infinite

volume.

The existence of phyllotactic geodesics gives a measure of “similarity”
of phyllotactic sets in neighbourhoods of ϕθ(n) and ϕθ′(m) by considering
the hyperbolic distance dH(γθ(n),PSL2(Z)γθ′(m)) between the two orbits
PSL2(Z)γθ(n) and PSL2(Z)γθ′(m). Statement (ii) of Remark 1.2 ensures
that a small distance dH(γθ(n),PSL2(Z)γθ′(m)) implies the existence of bi-
jections between ϕθ(N) and ϕθ′(N) which are almost isometries in neigh-
bourhoods of ϕθ(n) and ϕθ′(m) if θ and θ′ are irrational and have continued
fraction-expansions with bounded coefficients. More generally, this holds if
γθ(n) (and thus also γθ′(m)) is far from the cusp of PSL2(Z)\H.

2 Complex lattices and hyperbolic geometry

For the convenience of the reader, we recall a few elementary and well-known
facts first of the theory of lattices, following closely parts of Section 2.2 in
Chapter VII of [11], then of hyperbolic geometry, see for example [1].

2.1 Lattices of C

A lattice in C is a free additive subgroup generated by two R−linearly in-
dependent elements ω1, ω2 of C. In the sequel, we consider lattices only up
to orientation-preserving similarities. Two lattices Γ and Λ of C are thus
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equivalent if Λ = λΓ for some non-zero constant λ ∈ C∗. Given a basis
ω1, ω2 of a lattice Γ = Zω1 +Zω2, we consider z = ω1

ω2
. Up to replacing, say,

ω1 by −ω1, we can suppose that the imaginary part y = ℑ(z) of z = x+ iy
is strictly positive.

Thus, a lattice Zω1 + Zω2 =
(

Z+ Zω1

ω2

)

ω2 is equivalent to the lattice

Γ(z) = Z+Zz generated by 1 and by the element z = ω1

ω2
of the open upper

half-plane H = {z ∈ C | ℑ(z) > 0}.
Given an unimodular integral matrix g =

(

a b
c d

)

∈ SL2(Z), the quo-

tient

z′ =
ω′
1

ω′
2

=
aω1 + bω2

cω1 + dω2
=
aω1

ω2
+ b

cω1

ω2
+ d

associated to the basis ω′
1 = aω1+bω2, ω

′
2 = cω1+dω2 of a lattice Zω1+Zω2

is obtained from z = ω1

ω2
by the usual action g.z = az+b

cz+d of the modular group
PSL2(Z) = SL2(Z)/± Id on H.

Hence the map Zω1 + Zω2 7−→ z = ω1

ω2
∈ H induces a one-to-one cor-

respondence between equivalence classes C∗Γ of lattices and points of the
modular curve PSL2(Z)\H, see Chapter VII, Proposition 2 and Proposi-
tion 3 of [11]. A fundamental domain for the action of the modular group
PSL2(Z) on H is given by the fundamental domain

M =

{

z ∈ C | |z| ≥ 1 and |ℜ(z)| ≤ 1

2

}

(1)

for PSL2(Z)\H. Two elements z1, z2 of M represent the same equivalence-
class of lattices if and only if either z2 = − 1

z1
or z2 = z1 ± 1. The modular

curve PSL2(Z)\H = M/ ∼ is a complex orbifold with two conical points

represented by −1+i
√
3

2 (of angle 2π
3 and corresponding to regular hexagonal

lattices) and by i (of angle π and corresponding to square lattices) and
with a cusp (corresponding to a neighbourhood of the degenerate case of an
additive subgroup of rank 1 in C).

An affine lattice is a coset α + Γ obtained by translating a complex
lattice Γ ⊂ C by some vector α ∈ C. We consider affine lattices only
up to orientation-preserving affine similarities. Equivalence classes of affine
lattices are also in one-to-one correspondence with elements of the modular
curve PSL2(Z)\H.

2.2 Hyperbolic geometry on the Poincaré half-plane

We recall a few facts concerning the hyperbolic Poincaré half-plane H, see
[1] for an elementary introduction to hyperbolic geometry.

The upper half-plane H = {z ∈ C |ℑ(z) > 0} can be turned into a real
hyperbolic simply connected Riemannian manifold of dimension 2 and of
constant curvature −1 by equipping it with the Riemannian metric (ds)2 =
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dx2+dy2

y2
at a point z = x+iy ∈ H. The Poincaré half-plane is the hyperbolic

manifold (still denoted by) H obtained in this way.
The group of all orientation-preserving isometries of the Poincaré half-

plane is given by the set of all Möbius transformations

z 7−→
(

a b
c d

)

z =
az + b

cz + d

defined by matrices

(

a b
c d

)

in SL2(R), respresenting elements in PSL2(R) =

SL2(R)/± Id.
The geodesics of H are half-circles (with respect to the usual Euclidean

metric of C) centered at the boundary R of H ⊂ C or halflines {a+ iy ∈ C |
y > 0} ⊂ H perpendicular to R.

An orientation-preserving isometry ι of the Poincaré half-plane is hyper-
bolic if it admits an invariant geodesic on which it acts by a translation. A

Möbius transformation associated to

(

a b
c d

)

∈ SL2(R) defines a hyper-

bolic isometry ι if and only if |a+d| > 2. The invariant geodesic of ι is given

by the halfcircle in H delimited by the two real points
a−d±

√
(d−a)2+4bc

2c if
c 6= 0 respectively by the halfline {b/(d − a) + iy | y > 0} otherwise.

Lemma 2.1. For

(

a b
c d

)

∈ GL2(R) with cd 6= 0 and positive determinant

ad− bc > 0, the image of the map from R>0 = (0,+∞) into C defined by

t 7−→ ait+ b

cit+ d

is an open half-circle of H centered on ad+bc
2cd with radius

∣

∣

ad−bc
2cd

∣

∣ (with respect

to the Euclidean norm ‖ z ‖=
√

x2 + y2 for z = x+ iy ∈ C).

Proof Möbius transformations preserve geodesics of H. Thus the Möbius

transformation defined by the matrix

(

a b
c d

)

sends the geodesic {ti | t >

0} ⊂ H onto a geodesic of H with finite boundary points given by b
d (corre-

sponding to t = 0) and a
c (corresponding to t = +∞). This geodesic is the

open halfcircle (for the usual Euclidean metric of C) of the upper halfplane
with center 1

2

(

b
d + a

c

)

= ad+bc
2cd and diameter

∣

∣

a
c − ad+bc

2cd

∣

∣ =
∣

∣

ad−bc
2cd

∣

∣. 2

Remark 2.2. Lemma 2.1 is equivalent to the identity

(

act2 + bd

c2t2 + d2
− ad+ bc

2cd

)2

+

(

ad− bc

c2t2 + d2

)2

t2 =

(

ad− bc

2cd

)2

.
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3 Continued fractions

We denote by [a0; a1, a2, . . . ] the continued fraction expansion

θ = a0 +
1

a1 +
1

a2+
. . .

,

of a real number θ. The coefficients a0, a1, . . . are recursively defined by
ai = ⌊θi⌋ where θ0 = θ and θn = 1

θn−1−an−1
= 1

{θn−1} if θn−1 6∈ Z, respectively
by θn = 0 if θn−1 ∈ Z. The coefficient a0 of a continued fraction expansion
can be an arbitrary integer (positive, zero or negative). a1, a2, . . . are either
all strictly positive or they start with a finite number of strictly positive in-
tegers followed by an infinite string of zeros. The last case arises if and only
if θ is rational. The sequence a0, a1, . . . is infinite and ultimately periodic
with non-zero period if and only if Q[θ] is a quadratic number field. Every
irrational number has a unique continued fraction expansion. Rational num-
bers have two expansions given by [a0; a1, . . . , am, 1] and [a0; a1, . . . , am +1]
for suitable integers m ≥ 0, a0 ∈ Z, a1, . . . , am ≥ 1.

We have the continued fraction expansions

θn = [an; an+1, an+2, an+3, . . . ] (2)

for all n ∈ N. Convergents for

θ = θ0 = a0 +
1

a1 +
1

a2+
. . .

are rational numbers of the form

p−2

q−2
=

0

1
,
p−1

q−1
=

1

0
,
pn
qn

=
pn−2 + anpn−1

qn−2 + anqn−1
= [a0; a1, . . . , an], n ≥ 0

and can also be define by pn
qn

= [a0; a1, . . . , an], see Theorem 149 in [4].
Intermediate convergents are given by

pn−2 + kpn−1

qn−2 + kqn−1
, k ∈ {0, . . . , an − 1} .

The easy identity

pn−1qn − pnqn−1 = (−1)n (3)

(see Theorem 150 in [4] or Theorem 2 in [7]), equivalent to pn−1

qn−1
− pn

qn
=

(−1)n

qn−1qn
, implies

p2n
q2n

<
p2n+2

q2n+2
< · · · < θ < · · · < p2n+1

q2n+1
<
p2n−1

q2n−1
.
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This shows
∣

∣

∣

∣

θ − pn
qn

∣

∣

∣

∣

<
1

an+1q2n
(4)

and ensures that convergents are excellent rational approximations of an
irrational number.

The following result is essentially identity 10.3.2 of [4]:

Proposition 3.1. We have

θ =
pn−2 + θnpn−1

qn−2 + θnqn−1

for all n ≥ 0.

Proof The result holds for n = 0.
We have

pn−1 + θn+1pn
qn−1 + θn+1qn

=
pn−1 +

1
θn−an

(pn−2 + anpn−1)

qn−1 +
1

θn−an
(qn−2 + anqn−1)

=
pn−2 + θnpn−1

qn−2 + θnqn−1

which ends the proof by induction. 2

Lemma 3.2. We have

θn+1

qn−1 + θn+1qn
=

1

qn−2 + θnqn−1
.

Proof We have

θn+1

qn−1 + θn+1qn
=

1
1

θn+1
qn−1 + qn

=
1

(θn − an)qn−1 + qn

=
1

θnqn−1 − anqn−1 + qn−2 + anqn−1

where we have used the recursive definitions 1
θn+1

= θn − an and qn =
qn−2 + anqn−1 of θn+1 and of qn. 2

Proposition 3.3. We have

θ − pn−2 + xpn−1

qn−2 + xqn−1
=

(θn − x)(−1)n

(qn−2 + xqn−1)(qn−2 + θnqn−1)
. (5)

9



Proof Proposition 3.1 shows that the result holds for x = θn.
Since (5) is equivalent to the identity

(qn−2 + xqn−1)θ − (pn−2 + xpn−1) =
θn − x

qn−2 + θnqn−1
(−1)n (6)

involving affine functions of x, it is enough to show the equality

qn−1θ − pn−1 = − (−1)n

qn−2 + θnqn−1
. (7)

This holds for n = 0 since it boils down to −1 = −1. By induction, we have
for x = an the identity

θ − pn−2 + anpn−1

qn−2 + anqn−1
=

(θn − an)(−1)n

(qn−2 + anqn−1)(qn−2 + θnqn−1)

which can be rewritten as

θ − pn
qn

=
(−1)n

θn+1qn(qn−2 + θnqn−1)
(8)

using the recursive definitions of pn, qn and θn+1.
The identity

θn+1 (qn−2 + θnqn−1) = qn−1 + θn+1qn

equivalent to Lemma 3.2 yields now (7) for n+ 1. 2

Remark 3.4. Identity (8) (corresponding to the specialization x = an of
Proposition 3.3) strengthens inequality (4) since an+1 = ⌊θn+1⌋ ≤ θn+1 and
qn = qn−2 + anqn−1 ≤ qn−2 + θnqn−1.

Lemma 3.5. We have

1

qn−2 + θnqn−1
− an+1

qn−1 + θn+1qn
=

1

qn + θn+2qn+1
.

Proof Using the identities

qk = qk−2 + akqk−1,

θk+1 =
1

θk − ak
,
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for k = n and k = n+ 1 we have

1

qn−2 + θnqn−1
− an+1

qn−1 + θn+1qn

=
1

qn − anqn−1 + θnqn−1
− an+1

qn−1 + θn+1qn

=
1

qn + 1
θn+1

qn−1
− an+1

qn−1 + θn+1qn

=
θn+1 − an+1

qn−1 + θn+1qn

=
θn+1 − an+1

qn−1 + an+1qn + (θn+1 − an+1)qn

=
1

θn+2qn+1 + qn

which ends the proof. 2

4 Linearization

Proposition 4.1. We have

ϕθ(n+ aqj−1 + bqj)− ϕθ(n) = a

(

qj−1

2
√
n
− (−1)j2iπ

√
nθj+1

qj−1 + θj+1qj

)

e2iπnθ

+b

(

qj
2
√
n
+

(−1)j2iπ
√
nθj+2

qj + θj+2qj+1

)

e2iπnθ

+Ej(a, b)

where qk is the denominator of the k−th convergent pk
qk

= [a0; a1, . . . , ak] for
θ = [a0; a1, a2, . . . ], where θk = [ak; ak+1, ak+2, . . . ] is defined as in (2) and
where the error Ej(a, b) is asymptotically given by

(

−1
8n3/2 (aqj−1 + bqj)

2 + iπ√
n
(aqj−1 + bqj)δ − 2π2

√
nδ2

)

e2iπnθ

with

δ = −a (−1)jθj+1

qj−1 + θj+1qj
+ b

(−1)jθj+2

qj + θj+2qj+1

if |ϕθ(n+ aqj−1 + bqj)− ϕθ(n)| = O(1).

Corollary 4.2. If qj−1 and qj are denominators of two consecutive conver-
gents

pj−1

qj−1
and

pj
qj

of θ such that qj−1 ≤ √
n < qj , then the smallest points

of
(ϕθ(N)− ϕθ(n)) e

−2iπnθ

11



are close to the smallest points of the lattice

Z

(

qj−1

2
√
n
− (−1)j

2iπ
√
nθj+1

qj−1 + θj+1qj

)

+ Z

(

qj
2
√
n
+ (−1)j

2iπ
√
nθj+2

qj + θj+2qj+1

)

(9)

with an error of order O
(

1√
n

)

.

The lattice described by (9) contains always a non-zero element of abso-

lute value smaller than
√

1
4 + 4π2 < 3π.

Remark 4.3. Fundamental domains of the lattice Λ given by (9) have area
π as shown by the identities

(−1)j det





qj−1

2
√
n

− (−1)j2iπ
√
nθj+1

qj−1+θj+1qj
qj

2
√
n

+
(−1)j2iπ

√
nθj+2

qj+θj+2qj+1





=

(

qj−1
θj+2

qj + θj+2qj+1
+ qj

θj+1

qj−1 + θj+1qj

)

π

=

(

qj−1
1

qj−1 + θj+1qj
+ qj

θj+1

qj−1 + θj+1qj

)

π

= π

where the second equality is given by Lemma 3.2.
Since the regular hexagonal lattice has maximal density, the lattice Λ

contains always a non-zero element of absolute value at most
√

2π√
3
∼ 1.9046.

Proof of Proposition 4.1 Setting

F (s, γ) =
√
n+ s e2iπnθ+2iπγ

we want to approximate

F (aqj−1 + bqj, δ) − F (0, 0)

where δ = (aqj−1+ bqj)θ− c is the difference between (aqj−1+ bqj)θ and the
integer c closest to (aqj−1+bqj)θ. We do this in the usual way by considering
the linear approximation

L =
∂F

∂s
(0, 0)(aqj−1 + bqj) +

∂F

∂γ
(0, 0)δ

and by estimating the error using second-order derivatives. The necessary

12



partial derivatives of F are:

∂F

∂s
(0, 0) =

1

2
√
n
e2iπnθ,

∂F

∂γ
(0, 0) = 2iπ

√
ne2iπnθ,

∂2F

∂s2
(0, 0) =

−1

4n3/2
e2iπnθ,

∂2F

∂s∂γ
(0, 0) =

iπ√
n
e2iπnθ,

∂2F

∂γ2
(0, 0) = −4π2

√
ne2iπnθ.

The contribution coming from ∂F
∂s (0, 0)(aqj−1 + bqj) to L is given by

1

2
√
n
e2iπnθ(aqj−1 + bqj) .

In order to compute ∂F
∂γ (0, 0)δ we split δ into δ = aδj−1 + bδj where δk for

k ∈ {j − 1, j} is the difference between qkθ and the integer closest to qkθ.
Since qk is a denominator of the convergent pk

qk
= [a0; a1, . . . , ak] of θ, this

integer is given by the numerator pk. We have

θ − pk
qk

=
pk + θk+2pk+1

qk + θk+2qk+1
− pk
qk

=
(pk+1qk − pkqk+1)θk+2

qk(qk + θk+2qk+1

= (−1)k
θk+2

qk(qk + θk+2qk+1)

where we have used Proposition 3.1 and identity (3). This yields

δk = (−1)k
θk+2

qk + θk+2qk+1

and shows

∂F

∂s
(0, 0)δ =

∂F

∂s
(0, 0)(aδj−1 + bδj)

=
∂F

∂s
(0, 0)

(

−a (−1)jθj+1

qj−1 + θj+1qj
+ b

(−1)jθj+2

qj + θj+2qj+1

)

.

The order of the error is given by

1

2

∂2F

∂s2
(0, 0)(aqj−1 + bqj)

2 +
∂2F

∂s∂γ
(0, 0)(aqj−1 + bqj)δ +

1

2

∂2F

∂γ2
(0, 0)δ2

and can be evaluated easily. 2
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5 The phyllotactic geodesic and proof of Theorem

1.1

Using (3.2) we can rewrite the lattice Λ given by formula (9) of Corollary
4.2 as

Z

(

qj−1

2
√
n
− (−1)j

2iπ
√
n

qj−2 + θjqj−1

)

+ Z

(

qj
2
√
n
+ (−1)j

2iπ
√
n

qj−1 + θj+1qj

)

.

In particular, the lattice Λ is similar to the lattice Z+ Zτj(n) where

τj(t) = −(−1)j
qj−1 − (−1)j 4iπt

qj−2+θjqj−1

qj + (−1)j 4iπt
qj−1+θj+1qj

. (10)

Remark 5.1. A straightforward computation shows that the imaginary part
of τj(t), given by

qj−1

qj−1+θj+1qj
+

qj
qj−2+θjqj−1

q2j +
16π2t2

(qj−1+θj+1qj)
2

4πt ,

is strictly positive if t is strictly positive.

Theorem 5.2. For all j ≥ 0 we have

(τj(t)− (−1)jaj+1)τj+1(t) = −1 .

Proof Theorem 5.2 boils down to the identity

qj−1 − (−1)j
4iπt

qj−2 + θjqj−1
+ aj+1qj + aj+1(−1)j

4iπt

qj−1 + θj+1qj

= qj+1 − (−1)j
4iπt

qj + θj+2qj+1
.

The identity qj+1 = qj−1+aj+1qj shows that the constant parts (with respect
to t) of both sides are equal. Linear coefficients of t are equal by Lemma
3.5. 2

Proof of Theorem 1.1 By Theorem 5.2, the two geodesics defined by τj
and τj+1 are related by the integral Möbius transformations

τj+1 =
−1

τj − (−1)jaj+1
=

(

0 1
−1 (−1)jaj+1

)

· τj (11)

and

τj =
(−1)jaj+1τj+1 − 1

τj+1
=

(

(−1)jaj+1 −1
1 0

)

· τj+1 . (12)
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Thus they project onto a unique geodesic on the modular curve PSL2(Z)\H
represented for example by

τ0(t) = −
q−1 − 4iπt

q−2+θ0q−1

q0 +
4iπt

q−1+θ1q0

=
4iπt

1 + 4iπt
θ1

=
4iπt

1 + 4iπ{θ}t (13)

(where q−2 = 1, q−1 = 0, q0 = 1 and θ1 =
1

θ−a0
= 1

{θ}).

This implies Theorem 1.1 since the linearization error is of order O
(

1√
n

)

for elements of ϕθ(N) at bounded distance from ϕθ(n). 2

Formula (13) defines a geodesic of the hyperbolic half-plane for every real
number θ. Indeed, (13) is a vertical half-line (and thus a geodesic) if θ is
integral and it defines a halfcircle of H orthogonal to R (and thus a geodesic)
with boundary points 0 corresponding to t = 0 and 1

{θ} corresponding to
t = ∞ otherwise.

Diophantine properties of θ are related to the dynamical behaviour of
the geodesic γθ projected onto PSL2(Z)\H as follows: after starting at the
cusp, (the projection of) γθ turns (slightly less) than a1 times around the
cusp before passing between the two conical points of the modular curve.
It turns then in the same sense (and slightly less than) a2 times around
the cusp before crossing again the shortest geodesic segment joining the two
conical points and so on. A large coefficient ak causes the (projection of the)
geodesic γθ to climb the modular curve up to a height given asymptotically
(in ak) by aki ∈ M. This gives rise to points of ϕθ(N) having Voronoi
domains with bad isoperimetric properties.

For a divergence angle 2πθ determined by the golden ratio θ = 1+
√
5

2 (or
close relatives of it) the continued fraction expansion involves only ones (or
only ones after perhaps a few initial “accidents”). This is the optimal situ-
ation leaving no possibility of improvement. In particular, the phyllotactic
geodesic γ(1+

√
5)/2 is asymptotically equal to the geodesic

t 7−→ γ̃(t) =
(−1 +

√
5)it− 1−

√
5

2(it+ 1)
=

−1−
√
5 + (−1 +

√
5)t2 + 2it

√
5

2(1 + t2)

with boundary points −1±
√
5

2 (and containing the points −1+i = γ̃
(

−1+
√
5

2

)

and i = γ̃
(

1+
√
5

2

)

of H). The equality

γ̃(θ4t) =
γ̃(t) + 1

γ̃(t) + 2

shows that γ̃ is invariant under the integral Möbius transformation defined

by the matrix

(

1 1
1 2

)

=

(

0 1
1 1

)2

. It projects onto the shortest closed

geodesic of the modular curve PSL2(Z)\H.
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Since d
dt γ̃(t) = −

√
5

(t−i)2
, the parametrized geodesic γ̃(t) has the same in-

stant speed 1
ℑ(γ̃(t)) |γ̃′(t)| = 1

t as the phyllotactic geodesic γθ(t). We have

thus asymptotically γθ(t) ∼ γθ
(

θ4t
)

. The phyllotactic set ϕθ(N) has thus
almost isometrical neighbourhoods around ϕθ(n) and ϕθ(m) if n is large and
m is close to θ4n.

6 A geometric construction

We construct in this section a slightly different geodesic on the modular
domain PSL2(Z)\H which is asymptotically associated to linearizations of
ϕθ(N).

We denote by L = Lθ the line R(1,−θ) of slope −θ containing the
origin. A convergent

pj
qj

= [a0; a1, . . . , aj ] of θ = [a0; a1, a2, . . . ] yields an

integral point (qj ,−pj) close to L as follows: Denoting by πL(qj,−pj) the
orthogonal projection of (qj ,−pj) onto L we have

πL(qj ,−pj) = qj(1,−θ) +O

(

1

qj

)

(1,−θ)

for all j ≥ 0. The equality qjθ− pj = (−1)j
θj+2

qj+θj+2qj+1
corresponding to the

case n = j + 2 and x = 0 of Proposition 3.3 implies the identity

(qj ,−pj)− qj(1,−θ) =
(

0, (−1)j
θj+2

qj + θj+2qj+1

)

.

The orthogonal projection πL⊥(qj,−pj) of (qj,−pj) onto the line L⊥ =
R(θ, 1) orthogonal to L = R(1,−θ) is given by

πL⊥(qj,−pj) = πL⊥

(

(qj,−pj)− qj(1,−θ)
)

=
(−1)jθj+2

(qj + θj+2qj+1)

(θ, 1)

(1 + θ2)
.

Thus we can rewrite the right side of the obvious identity

(qj,−pj) = πL(qj ,−pj) + πL⊥(qj ,−pj)

as

qj(1,−θ) +
(−1)j4πnθj+2

(qj + θj+2qj+1)

(θ, 1)

4πn(1 + θ2)
+O

(

1

qj

)

(1,−θ) . (14)

We endow now R2 with an Euclidean metric dsθ,n turning the vectors

(1,−θ), (θ,1)
4πn(1+θ2)

into an orthogonal basis. Comparision of (14) with (9)
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shows that the lattice (Z2, dsθ,n) is asymptotically equivalent with the lin-
earization of ϕθ(N) at the point ϕθ(n). Since

(1, 0) =
1

1 + θ2
(1,−θ) + 4πnθ

(θ, 1)

4πn(1 + θ2)
,

(0, 1) = − θ

1 + θ2
(1,−θ) + 4πn

(θ, 1)

4πn(1 + θ2)
,

the Euclidean lattice (Z2, dsθ,n) corresponds to the point of PSL2(Z)\H rep-
resented by

1 + 4iπnθ(1 + θ2)

θ − 4iπn(1 + θ2)

=
θ − 16π2n2θ(1 + θ2)2 + 4iπn(1 + θ2)2

θ2 + 16π2n2(1 + θ2)2
.

All these points are elements of the hyperbolic geodesic with boundary points

1
θ (for n = 0) and −θ =

(

a0 1
−1 0

)

1
{θ} (for n = ∞).

Remark 6.1. Since we have

1 + 4iπtθ(1 + θ2)

θ − 4iπt(1 + θ2)
−

(

a0 1
−1 0

)

4iπt

4iπ{θ}t+ 1

=
1 + 4iπtθ(1 + θ2)

θ − 4iπt(1 + θ2)
+

4iπθt+ 1

4iπt

=
θ

4iπt(θ − 4iπt(1 + θ2))

=
1 + θ2

θ2 + 16π2t2(1 + θ2)2
− θ2

4πt (θ2 + 16π2t2(1 + θ2)2)
i ,

the hyperbolic distance between the two points

1 + 4iπtθ(1 + θ2)

θ − 4iπt(1 + θ2)
and

(

a0 1
−1 0

)

4iπt

4iπ{θ}t+ 1

of H is roughly given by

θ2 + 16π2t2(1 + θ2)2

4πt(1 + θ2)2

∣

∣

∣

∣

1 + θ2

θ2 + 16π2t2(1 + θ2)2
− θ2

4πt (θ2 + 16π2t2(1 + θ2)2)
i

∣

∣

∣

∣

which simplifies to
∣

∣

∣

∣

1

4πt(1 + θ2)
− θ2

16π2t2
i

∣

∣

∣

∣

.

Thus it is asymptotically equal to 1
4πt(1+θ2) which is asymptotically much

smaller than the error O
(

1√
n

)

due to linearization at a point ϕθ(n) =
√
ne2iπθn of order O(

√
t).
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7 Metric properties of phyllotactic sets

A subset S of a metric space E is uniformly discrete if there exists a strictly
positive real constant δ such that d(a, b) ≥ δ for every pair a, b of distinct
points in S. Equivalently, S is uniformly discrete if open balls of radius
δ/2 centered at all elements of E are disjoint (for a small strictly positive
constant δ).

A subset S of a metric space E is an ǫ−net if every point of E is at
distance at most ǫ from a point of S. Equivalently, E is covered by the set
of closed balls of radius ǫ centered at elements of S.

The following result is a straightforward consequence of the fact that
areæ of Voronoi domains defined by ϕθ(N) are asymptotically equal to π if
θ is irrational:

Proposition 7.1. The following assertions are equivalent:
(i) θ is irrational and has bounded coefficients a1, a2, . . . in its continued

fraction expansion θ = [a0; a1, a2, . . . ].
(ii) ϕθ(N) is uniformly discrete in C (identified with the Euclidean plane

in the obvious way).
(iii) ϕθ(N) is an ǫ−net of C.
(iv) All Voronoi domains of ϕθ(N) have bounded diameter.
(v) Discs of radius R (and arbitrary centers) in C contain R(R+O(1))

points of ϕθ(N).
(vi) The image γθ([1,∞)) of the phyllotactic “half-geodesic” is contained

in a compact subset of the modular curve PSL2(Z)\H.

We leave the proof to the reader. 2

Observe that ϕθ(N) is never uniformly discrete if θ is rational.

8 Parastichy spirals

We denote by ∂M the boundary in C of the fundamental domain M defined
by (1). The interior M\ ∂M corresponds to lattices having a unique pair
±u of opposite shortest non-zero vectors and a unique pair ±v of shortest
vectors which are R−linearly independent from ±u. More precisely, for
z ∈ M \ ∂M the unique pair ±u of non-zero shortest vectors in Z + Zz is
given by ±1 and the unique pair ±v of shortest vectors outside R coincides
with ±z. Notice that R−linear independency of v from u is necessary in
order to discard ±2u,±3u, . . . which might be smaller than v for lattices
associated to z ∈ M with large modulus.

Lattices corresponding to elements z of norm 1 in M have (at least)
two pairs of shortest vectors given by ±1 and ±z in Z + Zz. The regular

hexagonal lattice corresponding to z = 1+i
√
3

2 is the unique lattice with three

pairs ±1,±1+i
√
3

2 ,±1−i
√
3

2 of shortest non-zero vectors. Lattices associated
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to z = 1+it
2 for t >

√
3 have a unique pair ±1 of shortest non-zero-vectors

and two non-real pairs ±z and ±(z − 1) of shortest non-real vectors.
Connecting points of a lattice Λ indexed by z ∈ M\∂M with their closest

neighbours we get a set of parallel lines. Joining closest lattice-points on two
such adjacent lines we obtain a second set of parallel lines. These two sets of
parallel lines cut the complex plane into fundamental domains for Λ given
by isometric rhombi.

Parastichy spirals are analogues of these lines in ϕθ(N). More pre-
cisely, we define (generically) the primary parastichy spirals of ϕθ(N) as the
piecewise-wise linear paths obtained by joining vertices of ϕθ(N) to their
two approximatively opposite nearest neighbours. Similarly, we construct
secondary parastichy spirals by joining vertices of ϕθ(N) to their nearest
neighbours on adjacent neighbouring primary parastichy spirals.

Primary parastichy spirals exist essentially at every point far from the
origin except where they become blurred with secondary parastichy spirals.
At such points (corresponding to crossings of the phyllotactic geodesic with
the image of the unit circle in PSL2(Z)\H), primary and secondary paras-
tichy spirals get exchanged. We call such a situation a parastichy transition
of type I.

Secondary parastichy spirals are however well-defined only if the local
situation corresponds to a lattice indexed by an element of M which is not
too close to the cusp. For example, the phyllotactic set ϕθ(N) associated to a
rational number θ = p

q is contained in q half-rays originating at 0. Far from
the origin, primary parastichies (and are no longer spirals) coincide with
these half-rays and secondary parastichies make no longer sense. Moreover,
for points z ∈ M with real part close to 1/2 (or −1/2) a family of secondary
parastichy spirals fades away and is replaced by a new family of secondary
parastichy spirals, giving rise to a parastichy transition of type II. A coeffi-
cient ai > 1 yields ai − 1 parastichy transitions of type II. The occurence of
parastichy transitions of type II is easy to detect visually: it leads to much
less uniform point distributions in ϕθ(N). Figure 4 displays two examples.

The geometric construction of Section 6 shows the well-known fact that
primary and secondary parastichies form two sets of spirals with different
orientations if θ is irrational. Indeed, primary, respectively secondary, paras-
tichies around ϕθ(n) are defined by ϕθ(n±qj), respectively by ϕθ(n±(qj−1+
kqj)) for suitable integers j, k, see Figure 2 where one has to think of (0, 0)
as the point ϕθ(n) and of L as the ray defined by R>0ϕθ(n). (As always,
qj−1 and qj are denominators of convergents for θ.) The same integers j, k
work for all n in some interval of large length compared to

√
n. The plane

R2 is increasingly squezed (for increasing n) in the direction of L and ex-
panded in the orthogonal direction L⊥ in the construction of Section 6. This
implies that parastichies of both kinds bend away from the rays issued by
the origin. Moreover, there is exactly one parastichy family of larger, re-
spectively of smaller slope than ϕθ(n) as can be seen by inspecting Figure
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2. This explains the apparition of crisscrossing spirals in Figure 1. Sec-
ondary parastichy families are however no longer discernible (to the eye)
for larger values of k, see Figure 4 where there are regions without obvious
secondary parastichies. For irrational θ, they can however always be drawn
“by continuity”, if we start in suitable regions where no problems occur and
if we push them forward using type II transition for (the projection of) γθ
crossing the infinite boundary segment of M.

8.1 Transitions for parastichy families

The number of “parallel” primary parastichy spirals forming a common fam-
ily is always a denominator qj of a convergent

pj
qj

= [a0; a1, . . . , aj ] of the di-

vergence angle 2πθ = 2π[a0, a1, a2, . . . ]. The number of secondary parastichy
spirals in a common family is a denominator qj + kqj+1, k ∈ {0, 1, . . . , aj+2}
of an intermediate convergent.

The exterior region of Figure 1 for example contains 55 primary paras-
tichy spirals turning clockwise and 34 secondary parastichy spirals turning
counterclockwise.

The evolution of the numbers of parastichy spirals (PS in the following
table) can be described by:

...
...

...

qj−1 prim. PS qj sec. PS

I |γθ(n)| ∼ 1
qj−1 sec. PS qj prim. PS

II qj−1 + qj sec. PS |ℜ(γθ(n)| ∼ 1
2 qj prim. PS

II qj−1 + 2qj sec. PS |ℜ(γθ(n)| ∼ 1
2 qj prim. PS

II
...

...
...

qj−1 + aj+1qj = qj+1 sec. PS qj prim. PS

I |γθ(n)| ∼ 1
qj+1 prim. PS qj sec. PS

II qj+1 prim. PS |ℜ(γθ(n)| ∼ 1
2 qj + qj+1 sec. PS

...
...

...

where γθ(n) denotes a representant of of γθ(n) in M.
Figure 2 attempts to illustrate the occurence of parastichy transitions

using the geometric construction.
Figure 3 shows the death and birth of a family of secondary parastichy

spirals corresponding to a value of n such that |ℜ(γθ(n)| ∼ 1
2 . The verti-

cal arrow represents a ray issued from the origin. Primary parastichies are
represented by fat segments, the dying family of secondary parastichies is
drawn with dotted segments and the newborn family of secondary paras-
tichies is given by ordinary segments. Turning around the origin on a circle
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(0, 0) B = (qj ,−pj)
3B

2B

L
IA = (qj−1,−pj−1)

A+ 2B

II II
II

II
II

A+B

(qj+1,−pj+1) = A+ aj+1B

Figure 2: Parastichy transitions

Figure 3: Death and birth of a family of secondary parastichy spirals

of constant radius ∼ √
n and counting the numbers a of primary parastichy

spirals, b of dying secondary parastichies and c of newborn secondary paras-
tichies, one gets the relation c = a+ b. More precisely, the piecewise linear
path involving only segments of primary and secondary dying parastichies
giving the best approximation of the circle with radius

√
n consists of b seg-

ments on primary parastichies and a segments on secondary parastichies. In
order to work with the family of newborn parastichies, one has to replace
every segment of the dying family by two segments, one from a primary
parastichy and one from a newborn secondary parastichy. The number of
segments on secondary parastichies (which is equal to the number of curves
in the primary family) remains thus constant (and equals a) and the number
c of segments on primary parastichies (which equals the number c of curves
in the newborn secondary parastichy family) increases by a to c = a+ b.

In order to prove that parastichy families are enumerated by denomi-
nators of (intermediate) convergents, it is now enough to remark that the
assertion holds for the final number of primary parastichies if θ is rational.
A continuity argument implies the result in general.

21



Figure 4: Small points of ϕθ(N) for θ = 1765−
√
5

2858 (left side) and θ = e−1

(right side).

The left half of Figure 4 shows all points of ϕθ(N) with real and imaginary

parts smaller than 30 for θ = 1765−
√
5

2858 and θ = e−1. We have 1765−
√
5

2858 =
[0; 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, . . . ] and the first convergents are

0

1
,
1

1
,
1

2
,
2

3
,
3

5
,
5

8
,
8

13
,
29

47
,
37

60
, . . . .

The 13 parastichy spirals corresponding to the denominator 13 are clearly
visible. This is of course due to the “large” coefficient 3 in the continued
fraction expansion of θ which leads to three parastichy transitions of type
II.

Similarly, we get for the parameter θ = e−1 = [0; 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8]
corresponding to the right half of Figure 4 the convergents

0

1
,
1

2
,
1

3
,
3

8
,
4

11
,
7

19
,
32

87
,
39

106
, . . .

with a clearly visible parastichy family corresponding to the denominator
19. This family is due to the large coefficient 4 (the family corresponding to
6 becomes visible at a larger scale) which causes four parastichy transitions
of type II.

8.2 Monodromy

One can consider two notions of monodromy for phyllotactic sets:
A first notion consists in moving a chosen basis for the local “lattice” by

comparing bases of close points in the obvious way. No monodromy arises
in this way: A closed loop gives rise to the identity.

A second, slightly more interesting feature is translational monodromy:
going counterclockwise around the origin on a piecewise linear path and
stitching the obtained lattice elements (with respect to “bases” which are
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“moved” continuously) together, we get at a point a+ ib ∈ ϕθ(N) a vector
close to 2π(−b + ia). More precisely, using a basis V1, V2 associated to
primary and secondary parastichy spirals, this vector is of the form (qj−1 +
kqj)V1 ± qjV2 (with signs depending on the sign conventions for V1 and V2)
if ϕθ(N) contains qj primary and (qj−1 + kqj) secondary parastichy families
at distance

√
a2 + b2 from the origin.

9 Other models

9.1 Cylindric and logarithmic models

In [3] Coxeter, following [2], models the structure of pineapples or pine-
cones by approximating their shape with a cylinder which he develops on
the plane thus getting an infinite strip of a lattice. The visible features
(scales) on pineapples are the Voronoi domains of this lattice. The obtained
lattice should stay close to the hexagonal lattice which has optimal packing
and covering properties. Working with a cylinder of circumference 2π, we
have thus to choose the optimal divergence angle 2πθ such that the complex
lattice Z + Z(θ + ǫi) is close to the hexagonal lattice for small ǫ. There is
no exact control over the value of ǫ since pineapples or pine cones are not
exact cylinders. We should thus choose the value of θ such that the geodesic
t 7−→ θ+ ti is overall optimal for small positive ǫ. For a fixed value of θ, the
map ǫ 7−→ θ + ǫi defines again a geodesic of the hyperbolic half-plane.

The best choice is of course again given by λ = 1+
√
5

2 2π (or by its neg-
ative) modulo 2π yielding a geodesic which is asymptotically close to the
shortest periodic geodesic

(0,∞) ∋ t 7−→ 1

2

(1 + it) + (−1 + it)
√
5

1 + it

of the modular curve PSL2(Z)\H.

Remark 9.1. Identifying an infinitely long cylinder of circumference 1 with
the quotient space of C under translations of the form 2iπZ, the usual
exponential function transforms the cylindric model into the logarithmic
model with points on a logarithmic ontogenetic spiral defined by N ∋ n 7−→
ρne2iπθn.

9.2 van Iterson’s disc-packing model

In [5] van Iterson considers periodic packings of equal discs on cylinders such
that every disc touches (at least) two pairs of adjacent discs.

Levitov in [8] observes that the associated lattices correspond to ele-
ments of norm 1 in the modular domain and that the corresponding Te-
ichmüller space (given by equivalence classes of lattices endowed with a
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positively-oriented basis) is a 3−regular tree with mid-edges given by the
PSL2(Z)−orbit of i (corresponding to the square-lattice) and vertices given

by the PSL2(Z)−orbit of 1+i
√
3

2 (corresponding to the hexagonal lattice).
The rooted subtree defined in the quarter-plane of C defined by all elements
of H with non-negative real parts is then in natural bijection with the so-
called Farey-tree. The optimal approximatively straight choice for a path on
this rooted tree corresponds of course again to the golden mean and is given
by alternating left- and right-turns at every bifurcation, as also observed by
Levitov who gives a physical explanation based on energy levels of this fact.

Remark 9.2. van Iterson’s model involves sphere packings which are “lo-
cally optimal” in the sense that every disc of the packing (almost) touches
four other discs. The associated Voronoi domains have however not asymp-
totically equal areæ.

The model determined by the phyllotactic map ϕθ gives Voronoi domains
with asymyptotically equal areæbut leads to discs in the corresponding sphere
packing which are almost all isolated. Exceptions are occuring at parastichy
transitions of type I (happening asymptotically at the square lattice if θ is
the golden ratio).

10 Testing the existence of phyllotactic geodesics

in real sunflowers

Phyllotactic geodesic are perhaps a mere mathematical artefact due to the
use of the model maps ϕθ. This Section sketches a test probing the reality
of the theory.

A first step is of course gathering real data, consisting of a fair num-
ber of pictures of large flawless sunflower-capitula. These pictures should
be enriched by adding as smoothly as possible (using perhaps splines or
trigonometric functions and a least square method) all visible parastichy
spirals. Intersections of transversal parastichy spirals should now be taken
as the centers of seeds. Points near the center can be neglected.

We can check adequacy of ϕθ(N) for sunflowers as follows: Determine
for each picture (endowed with a complex coordinate system) parameters
A ∈ C, C ∈ C∗, θ, γ ∈ R giving the best least square approximation of the
obtained seed-centers with a suitable set of points of the form

N ∋ n 7−→ A+ C
√
n+ γ e2iπθn,

supposing that the pictures have no distorsions (additional parameters are
necessary otherwise). If this approximation is nearly perfect, the sunflower
map is an accurate description of reality and the existence of phyllotactic
geodesics is confirmed. A failure or a bad match does however not contradict
the existence of phyllotactic geodesics but forces us to compute points of
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“hypothetical” geodesics using the real data-sets instead of the model set
ϕθ(N).

This can be achieved as follows: For each point P neither on the bound-
ary nor in the center of the sunflower, we determine pairs of points a,A
and b,B adjacent to P with a,A on one parastichy spiral through P and
b,B on the other, transversal parastichy spiral through P . The linearized
lattice at P is then approximatively given by ZA−a

2 + ZB−b
2 . This allows

the computation of the corresponding modular invariant by considering the
point of the modular curve represented by ±A−a

B−b (for the unique sign choice
leading to a strictly positive imaginary part). Suitable lifts of these points
to H should now lie close to a hyperbolic geodesic which can be guessed by
least square approximation.
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