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Abstract: A wireless communication system can be tested either in actual conditions or by using a hardware simulator 

reproducing actual conditions. With a hardware simulator it is possible to freely simulate a desired type of a radio channel. 

This paper presents new frequency domain and time domain architectures for the digital block of a hardware simulator of 

Multiple-Input Multiple-Output (MIMO) propagation channels. This simulator can be used for Wireless Local Area Net-

works (WLAN) 802.11ac applications. It characterizes an indoor scenario using TGn channel models. After the description of 

the general characteristics of the hardware simulator, the new architectures of the digital block are presented and designed on 

a Xilinx Virtex-IV Field Programmable Gate Array (FPGA). Their accuracy, occupation on the FPGA and latency are ana-

lyzed. 
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1. Introduction 

Multiple-Input Multiple-Output (MIMO) systems make 

use of antenna arrays simultaneously at both transmitter 

and receiver to improve the channel capacity and the sys-

tem performance. Because the transmitted electromagnetic 

waves interact with the propagation environment (in-

door/outdoor), it is necessary to take into account the main 

propagation parameters for the design of the future com-

munication systems. 

Hardware simulators of mobile radio channel are very 

useful for the test and verification of wireless communica-

tion systems. These simulators are standalone units that 

provide the fading signals in the form of analog or digital 

samples [1], [2]. 

The current communication standards indicate a clear 

trend in industry toward supporting MIMO functionality. A 

support for higher order of antenna arrays will be required 

to enable higher channel capacity and system performance. 

In fact, several studies published recently present systems 

that reach a MIMO order of 8×8 and higher [3]. This is 

made possible by advances at all levels of the communica-

tion platform as, for example, the monolithic integration of 

antennas [4] and the design of the simulator platforms [5]. 

With the continuous increase of field programmable gate 

array (FPGA) capacity, entire baseband systems can be 

efficiently mapped onto faster FPGAs for more efficient 

prototyping, testing and verification. As shown in [6], the 

FPGAs provide the greatest flexibility in algorithm design 

and visibility of resource utilization. Also, they are ideal for 

rapid prototyping and research use such as testbed [7]. 

The simulator is reconfigurable with standards band-

width not exceeding 100 MHz, which is the maximum for 

FPGA Virtex IV. However, in order to exceed 100 MHz 

bandwidth, more performing FPGA as Virtex VI can be 

used [5].  

The simulator is configured with the Long Term Evolu-

tion System (LTE) and Wireless Local Area Networks 

(WLAN) 802.11ac standards.  

The channel models used by the simulator can be ob-

tained from standard channel models, as the TGn 802.11n 

channel models [8] and LTE channel models [9], or from 

real measurements conducted with the MIMO channel 

sounder designed and realized at IETR [10]. Different ar-

chitectures of antenna arrays can be used for outdoor and 

indoor measurements [11]. 

At IETR, several architectures of the digital block of a 

hardware simulator have been studied, in both time and 

frequency domains [12], [13]. Moreover, [14] presents a 

new method based on determining the parameters of a 

channel simulator by fitting the space time-frequency 

cross-correlation matrix of the simulation model to the 
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estimated matrix of a real-world channel. This solution 

shows that the error obtained can be important.  

Typically, wireless channels are commonly simulated 

using finite impulse response (FIR) filters, as in [13], [15] 

and [16]. Nowadays, different approaches have been widely 

used in filtering, such as distributed arithmetic (DA) and 

canonical signed digits (CSDs).  

For a hardware implementation, it is easier to use the 

FFT (Fast Fourier Transform) module to obtain an algebra-

ic product. Thus, frequency architectures are presented, as 

in [13] and [15].  

The previous considered frequency architectures in [13] 

operate correctly only for signals with a number of samples 

not exceeding the size of the FFT. However, in this paper, a 

new frequency domain architecture avoiding this limitation, 

and a new time domain architecture are both tested for a 

scenario using TGn channel models. 

The main contributions of the paper are: 

• In general, the channel impulse responses can be pre-

sented in baseband with its complex values, or as real sig-

nals with limited bandwidth B between fc – B/2 and fc + B/2, 

where fc is the carrier frequency. In this paper, to eliminate 

the complex multiplication and the fc, the hardware simula-

tion operates between ǻ and B + ǻ, where ǻ depends on the 

band-pass filters (RF and IF). The value ǻ is introduced to 

prevent spectrum aliasing. In addition, the use of a real 

impulse response allows the reduction by 50% of the size 

of the FIR filters and by 4 the number of multipliers. Thus, 

within the same FPGA, larger MIMO channels can be sim-

ulated. 

• In this study, we related the number of bits used in the 

time domain architecture to the relative error of the output 

signals in order to identify the best trade-off between the 

occupation on the FPGA and the accuracy. Therefore, an 

improvement solution based on an Auto-Scale Factor (ASF) 

is presented. 

• Tests have been made for indoor [17-18], and outdoor 

[19] fixed environments using standard channel models. In 

this paper, which is an extension of [17], tests are made 

with scenario that switches between indoor environment 

and another and make it possible to simulate heterogeneous 

networks [20]. Moreover, tests are made with time-varying 

channels.  

• To decrease the number of multipliers on the FPGA and 

to switch from one environment to another, a solution is 

proposed to control the change of delays in architecture for 

time-varying channel. 

The rest of this paper is organized as follows. Section 2 

presents the channel models and the scenario proposed for 

the test. Section 3 describes the new architectures of the 

digital block of the hardware simulator in frequency and 

time domain respectively. The prototyping platform used to 

implement these architectures and their occupation on the 

FPGA are also described. Section 4 presents the accuracy 

of the Xilinx output signals. The output SNR for the entire 

scenario is provided. Lastly, Section 5 gives concluding 

remarks and prospects. 

2. Channel Description 

A MIMO propagation channel is composed of several 

time variant correlated SISO channels. For MIMO 2×2 

channel, the received signals yj(t,Ĳ) can be calculated using a 

time domain con o tionv lu ௝ݕ :  ߬ ߬ ሻሺݐǡ ሻ ൌ ଵሺݔ ሻ כ ݄ଵ௝ሺݐǡ ߬  ൅ݔଶሺ߬ሻ כ ݄ଶ௝ሺݐǡ ߬ሻ  ǡ ݆ ൌ ͳǡ ʹ           (1) 

The associated spectrum is calculated by the Fourier 

transform (using o FFT m dules): 

௝ܻ ሺ ǡݐሺݐ ݂ሻ ൌ ଵܺ ݂ሻǤ ଵ௝ሺܪ ǡ ݂ሻ ൅ܺଶሺ݂ሻǤ ǡݐଶ௝ሺܪ ݂ሻ ǡ ݆ ൌ ͳǡ ʹ            (2) 

According to the considered environment, Table 1 sum-

marizes some useful parameters. 

Table 1. Simulator parameters. 

 Type Cell size 
Wt eff 

(µs) 
NF 

WtF 

(µs) 
NT 

WtT 

(µs) 

LTE 

B=20 MHz 

Rural 2-20 km 20 2048 40.96 1000 20 

Urban 0.4-2 km 3.7 512 10.24 185 3.7 

Indoor 20-400 m 0.7 256 2.56 35 0.7 

802.11ac 

B=80 MHz 

Office 40 m 0.35 128 0.64 70 0.35 

Indoor 50-150 m 0.71 512 2.56 142 0.71 

Outdoor 50-150 m 1.16 1024 5.12 232 1.16 

Channel 

Sounder 

B=100 MHz

Ship-board 9 m 20.48 512 2.56 200 1 

Outdoor- 

to-Indoor 
100 m 20.48 512 2.56 200 1 

Wteff represents the time window of the MIMO impulse 

responses. The number of samples computed for the fre-

quency domain is given b  y:

ிܰ ൌ ௧ܹி Ǥ ௦݂                     (3) 

and for the time domain by: ்ܰ ൌ ௧்ܹ Ǥ ௦݂                  (4) 

where WtF is the closest value for Wteff which is imposed by 

the size NF = 2n of the FFT modules. 

2.1. Channel Models 

Two channel models are considered to cover indoor and 

outdoor environments: the TGn channel models (indoor) and 

the LTE channel models (outdoor). Moreover, using the 

channel sounder realized at IETR, measured impulse re-

sponses are obtained for specific environments: shipboard, 

outdoor-to-indoor. 

2.1.1. TGn Channel Models 

TGn channel models [8] have a set of 6 profiles, labeled A 

to F, which cover all the scenarios. Each model has a number 

of clusters. For example, model E has four clusters. Each 
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cluster corresponds to specific tap delays, which overlaps 

each other in certain cases. Table 2 summaries the relative 

power of the impulse responses for TGn channel model E by 

taking the Line-Of-Sight (LOS) impulse response as refer-

ence [8]. The relative powers of all impulse responses for all 

TGn channel models are presented in [8]. According to the 

standard and the bandwidth, the sampling frequency is fs = 

180 MHz and the sampling period is Ts = 1/fs. 

Table 2. Simulator parameters. 

Tap 

 index 

Excess 

 delay [nTs] 

Relative  

Power [dB] 

Tap 

 index 

Excess  

delay [s] 

Relative  

Power [dB] 

1(Ref) 0 -2.6 10 41Ts -5.5 

2 2Ts -3.0 11 50Ts -7.6 

3 4Ts -3.5 12 59Ts -9.8 

4 5Ts -3.9 13 68Ts -12.0 

5 9Ts -0.06 14 77Ts -14.2 

6 14Ts -1.2 15 88Ts -15.3 

7 20Ts -2.5 16 101Ts -18.3 

8 25Ts -3.8 17 115Ts -20.7 

9 32Ts -3.3 18 131Ts -24.6 

The relative power of the first tap is different than zero 

because the impulse response is in Non-Line-Of-Sight 

(NLOS). 

2.1.2. LTE Channel Models 

LTE channel models are used for mobile wireless appli-

cations. A set of 3 channel models is used to simulate the 

multipath fading propagation conditions. A detailed de-

scription is presented in [9]. 

2.1.3. Measurement Data 

The channel models used by the simulator can also be 

obtained from measurements by using a time domain MIMO 

channel sounder designed and realized at the IETR [10] and 

shown in Fig. 1. 

The sounder uses a periodic pseudo binary sequence. It 

has 11.9 ns temporal resolution for 100 MHz bandwidth. 

The carrier frequencies are 2.2 GHz and 3.5 GHz. 

Two measurement campaigns were carried out: The first 

campaign concerns a shipboard environment, while the 

second one considers an outdoor-to-indoor environment. 

The measured MIMO impulse responses are used thereafter 

by the hardware simulator. 

For the shipboard measurement campaign [21] at 2.2 

GHz, a Uniform Linear antenna Array (ULA) and a Uniform 

Rectangular antenna Array (URA) were used for the trans-

mitter (Tx) and the receiver (Rx) respectively, to characterize 

the double directional channel on a 120
o beam width in the 

horizontal plan. 

For the outdoor-to-indoor measurements [22] at 3.5 GHz, 

it has been shown that the penetration of electromagnetic 

waves mainly occurs through openings like doors and 

windows. Thus, a receiver located inside a building receives 

signals coming from few main directions. Two UCA (Uni-

form Circular Array) were developed to characterize 360° 

azimuthal double directional channel at both link sides. 

 
Figure 1. MIMO channel sounder: receiver and transmitter.. 

2.2. Proposed Scenario 

The proposed scenario covers indoor environments at 

different environmental speeds. They consider the move-

ments from an environment to another using an 802.11ac 

signal which has a 180 MHz sampling frequency (fs) at a 

central frequency of 5 GHz.  

A person moves from an office environment to a large 

indoor environment, then to an outdoor environment. For 

this scenario, the TGn channel model B, C and E cover the 

entire channel. Thus, three environments in this scenario are 

considered.  

Fig. 2 and Table 3 present the scenario and the movement 

of the person in it. 

 

Figure 2. Proposed scenario. 

E3

E1

E2
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Table 3. Scenario descriptions 

 Model 
v  

(km/h) 

fd  

(Hz) 

fref  

(Hz) 

t  

(s) 

d  

(m) 
Np 

E1 B 2 9.25 20 10 5.5 200 

E2 C 4 18.5 40 30 133.3 1,200 

E3 E 4 18.5 40 60 266.6 2,400 

v is the mean environmental speed, fd is the Doppler fre-

quency, fref is the refresh frequency between two successive 

MIMO profiles, t is the time duration of movements in the 

considered environment, d is the distance traveled and Np = 

t×fref is the number of profiles in each environment. fd is 

equal to: 

ௗ݂ ൌ ௙೎Ǥ௩௖                        (5) 

where c is the celerity. fref is chosen > 2.fd to respect the 

Nyquist-Shannon sampling theorem. 

2.3. Time-Varying 2×2 MIMO Channel 

In this section, we present the method used to obtain a 

model of a time variant channel, using the Rayleigh fading. 

A 2×2 MIMO Rayleigh fading channel [23-24] is consid-

ered. The MIMO channel matrix H can be characterized by 

two parameters: 

1) The relative power Pc of constant channel components 

corresponds to LOS paths. 

2) The relative power Ps of the channel scattering com-

ponents corresponds to NLOS paths. 

The ratio Pc/Ps is called Ricean K-factor. 

Assuming that all the elements of the MIMO channel 

matrix H are Rice distributed, it can be expressed for each 

tap by: ܪ ൌ ඥ ௖ܲ Ǥ  ܪி ൅ ඥ ௦ܲ Ǥ  ܪ௩             (6) 

where HF and HV are the constant and the scattered channel 

matrices respectively.  

The total relative received power is P = Pc + Ps. There-

fore: 

௖ܲ ൌ ܲ Ǥ ௄ା௄ ଵ                      (7) 

௦ܲ ൌ ܲǤ ଵ௄ାଵ                       (8) 

If we replace Equation (7) and Equation (8) in Equation (6) 

we obtain: ܪ ൌ ξܲǤ ቆට ௄௄ାଵ ிܪ ൅ ට ଵ௄ାଵ  ௏ቇ         (9)ܪ

To obtain a Rayleigh fading channel, K is equal to zero, so 

H can be written as: ܪ ൌ ξܲǤ  ௏                     (10)ܪ

P is the relative power of the impulse response. It is de-

rived from Table 2 for each tap. For 2 transmit and 2 receive 

antennas: 

ܪ ൌ ξܲǤ ൤ ଵܺଵ ଵܺଶܺଶଵ ܺଶଶ൨                (11) 

where Xij (i-th receiving and j-th transmitting antenna) are 

correlated zero-mean, unit variance, complex Gaussian 

random variables as coefficients of the variable NLOS 

(Rayleigh) matrix HV. 

To obtain correlated Xij elements, a product-based model 

is used [23]. This model assumes that the correlation coef-

ficients are inde h of the link: pendently derived at eac end ܺ ൌ ሺܴ௥ሻଵȀଶǤ ௪ܪ Ǥ ൫ሺܴ௧ሻଵȀଶ൯்
           (12) 

Hw is a matrix of independent zero mean, unit variance, 

complex Gaussian random variables. Rr and Rt are the re-

ceive and transmit correlation matrices. They can be written 

by: ܴ௧ ൌ ቂ ͳ כߙߙ ͳቃ  ǡ    ܴ௥ ൌ ൤ ͳ כߚߚ ͳ൨          (13) 

where ߙ is the correlation between channels (between their 

average signal gain) at two receives antennas, but originat-

ing from the same transmit antenna (SIMO). It is the corre-

lation between channels that have the same Angle of De-

parture (AoD). ߚ is the correlation coefficient between 

channels at two transmit antennas that have the same receive 

antenna (MISO). 

The use of this model has two conditions: 

1) The correlations between channels at two receive (resp. 

transmit) antennas are independent from the Rx (resp. Tx) 

antenna. 

2)  If s1 (resp. s2) is the cross-correlation between anten-

na AoD esp. AoA) at the sa e side of the link, then: s1 = ߚ  + ߙ an  s2 = ߚ +כߙ. 

s (r m

dߙ and ߚ are expressed by ߩ :ߩ ൌ ܴ௫௫ሺܦሻ ൅ ݆Ǥ ܴ௫௬ሺܦሻ           (14) 

where D = 2ʌd/λ, d = 0.5λ is the distance between two 

successive antennas, λ is the wavelength and Rxx and Rxy are 

the real and imaginary parts of the cross-correlation function 

of the ns rrelated aco idered co ngles:  

௫ሺ cos 15) ܴ௫ ሻܦ ൌ ׬ ሺܦǤ sin ሺ߮గିగ ሻሻǤ ሺ߮ሻǤܵܣܲ ݀߮     (ܴ௫௬ሺܦሻ ൌ ׬ sin ሺܦǤ sin ሺ߮గିగ ሻሻǤ ሺ߮ሻǤܵܣܲ ݀߮     (16) 

The PAS (Power Angular Spectrum) closely matchs the 

Laplacian distribution [25-26]: ܲܵܣሺߠሻ ൌ ଵξଶఙ ݁ିหξଶఏȀఙห          (17) 

where ı is the standard deviation of the PAS. 

3. Architecture and Implementation on 

FPGA 

In this section, improved frequency and time domains 
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architectures are presented and implemented on a FPGA 

Virtex-IV. 

3.1. Frequency Domain Architecture 

The new frequency architecture for a SISO channel is 

presented in Fig. 3. This architecture has been verified and 

tested with Gaussian impulse response and a description is 

presented in [27]. It operates correctly for signals with a 

number of samples exceeding the size of the FFT module. 

 
Figure 3. Frequency architecture for a SISO channel for TGn channel 

model E. 

In general, for each SISO channel, the size of the 

FFT/IFFT modules is determined by the last excess delay of 

the impulse response of the channel. However, by simulating 

a scenario all the channels have to be considered. The 

highest last excess delay for the three environments is for E3 

(Model E). 

For TGn channel model E, Neff = 131 samples. Thus, N = 

128 samples (the last tap has a relative power of -24.6 dB, 

therefore it will be considered as zero). However, to test the 

new architecture, it is mandatory to extend each partial input 

of N samples with a “tail” of N null samples, as in [27], to 

avoid a wrong result. Therefore, 256-FFT/IFFT modules are 

used. 

H is the representation of h in the frequency domain. It 

can be calculated by: ܪ ൌ ௦ܶ Ǥ ݄௤ Ǥ ௤ܹ              (18) 

where hq is n 1 s ed by: h quantified o 6 bits and Wq i  comput

௤ܹ ൌ
ێێۏ
ͳۍێێ ͳ ͳ ǥ ͳͳ ሺݓሻ௤ ሺݓଶሻ௤ ǥ ሺݓேିଵሻ௤ͳ ሺݓଶሻ௤ ڭڭ ڭ ͳڭ ሺݓேିଵሻ௤ ǥ ǥ ൫ݓሺேିଵሻమ൯௤ۑۑے

 (19)     ېۑۑ

where ݓ௟ ൌ ݁ି௝ǤଶǤగǤ௟Ǥ௙ೞǤ ೞ்                  (20) 

and each w l is quantified on 12 bits (which is the best 

trade-off between the occupation on FPGA of the FFT block 

and its accuracy). 

The truncation block is located at the output of the digital 

adder. It is necessary to reduce the number of bits after the 

sum of the signals computed by the IFFT blocks to 14 bits. 

Thus, these samples can be accepted by the digital-to-analog 

converter (DAC), while maintaining the highest accuracy. 

The immediate solution is to keep the most significant 14 

bits. It is a “brutal” truncation. This truncation decreases the 

real value of the quantified output sample. 17 - 14 = 3 bits 

will be eliminated. Thus, instead of an output sample y, we 

obtain ݕہȀʹ௠ۂ, where ۂݑہ  is the biggest integer number 

smaller or equal to u. However, for low voltages of the 

output of the digital adder, the brutal truncation generates 

zeros to the input of the DAC. 

Therefore, a better solution is the sliding window trunca-

tion presented in Fig. 4 which uses the 14 most effective 

significant bits. This solution modifies the output sample 

values. Therefore, the use of a reconfigurable amplifier after 

the Digital-Analog convertor must be used to restore the 

correct output value. 

 
Figure 4. Sliding window truncation from 17 to 14 bits. 

In order to implement the hardware simulator, the adopted 

solution uses a prototyping platform (XtremeDSP Devel-

opment Kit-IV for Virtex-IV) from Xilinx [5], which is 

presented in Fig. 5 and described in [27]. 

 
Figure 5. XtremeDSP Development board Kit-IV for Virtex-IV. 

The simulations and synthesis are made with Xilinx ISE 

[5] and ModelSim software [28]. 

The V4-SX35 utilization summary for this architecture 

with FFT 256 and IFFT 256 blocks is given in Table 4.  

Table 4. Virtex-IV utilization for MIMO 2×2 frequency domain architecture 

Number of slices 

 

Number of bloc RAM 

14,755 out of 15,360 

 

72 out of 192 

96 % 

 

37 % 

Number of DSP48s 8 out of 192 4 % 

3.2. Time Domain Architecture 

In general, for each channel the FIR width and the number 

of used multipliers are determined by the taps of each 

channel. However, by simulating a scenario all the channels 
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have to be considered. To use limited number of multipliers 

on the FPGA and to switch from one environment to another, 

a solution is proposed to control the change of delays in 

architecture by connecting each multiplier block of the FIR 

by the corresponding shift register block. Therefore, the 

number of multipliers in the FIR filters is equal to the 

maximum number of taps between all channels of all envi-

ronments. E3 has the highest number of taps which is 18. 

Therefore, 4 FIR filters with 18 multipliers each are con-

sidered. For TGn channel model E, the length of the FIR 

filter is N =  t s mputed as: 131. Thus, the ou put ignal can be coݕ௤ሺ݅ሻ ൌ  σ ݄௤ሺ݅௞ሻǤ ௤ሺ݅ݔ െ ݅௞ሻǡ ݅߳ܰଵ଼௞ୀଵ         (21) 

 
Figure 6. FIR 131 with 18 multipliers 

The index q suggests the use of quantified samples and 

hq(ik) is the attenuation of the kth path with the delay ikTs. Fig. 

6 presents the architecture of the FIR filter 131 with 18 

non-null coefficients. This architecture uses series of im-

pulse responses with a refresh frequency fref depending on 

the coherence time of the channel, in order to simulate a time 

variant channel. Therefore, we have developed our own FIR 

filter instead of using Xilinx MAC FIR filter to make it 

possible to reload the FIR filter coefficients. fref must be at 

least twice the maximum Doppler frequency. 

Table 5 shows the device utilization for four FIR filter 131 

for 18 selected positions for the channel impulse response 

which are considered as non-null, in one V4-SX35 after 

synthesis, mapping and route. 

Table 5. Virtex-IV utilization for MIMO 2×2 time domain architecture 

Number of slices 

 

Number of bloc RAM 

6,124 out of 15,360 

 

72 out of 192 

43 % 

 

37 % 

Number of DSP48s 72 out of 192 37 % 

3.3. ASF Solution 

After analyzing the SNR (shown in Section 4.2.1), we 

conclude that it is high only for high values of the input 

signals. Therefore, to decrease the error, a solution is pro-

posed.  

The input and output signals are limited to [-Vm,Vm] with 

Vm = 1 V. The solution consists on multiplying each sample 

of the input signal with a corresponding 2k where k is an 

integer verifying: 0.5 < 2k.x < 1. However, we cannot predict 

x and multiply each sample by ASF at a high sample fre-

quency. Therefore we will use the ASF on the MIMO im-

pulse responses. If hmax = max (|h|) < 0.5 it will be multiplied 

by ʹ௞೓  where ݇௛  is the unique integer verifying 0.5 < ʹ௞೓ .hmax < 1. In the case of a brutal truncation, ASF=2k. 

However, for sliding truncation, if the output signals are 

presented on more than 14 bits, the sliding factor ʹ௞೤ has to 

be considered to amplify the output signal in order to obtain 

the correct result. In this case, ASF = ݇௛ - ݇௬. The ASF is 

sent to a reconfigurable analog amplifier to restore the true 

value of the output signals. ASF can be presented on 14 bits 

(limited by the D/A convertor). The first bit is “1” if it is a 

multiplication by ASF, and “0” if it is a division by ASF. 

4. Results and Accuracy 

4.1. Data Transfer Description 

The channel impulse responses are stored on the hard disk 

of the computer and read via the PCI bus and then stored in 

the FPGA dual-port RAM.  

Fig. 7 shows the connection between the computer and the 

FPGA board to reload the coefficients. The successive 

profiles are considered for the test of a 2×2 MIMO 

time-varying channel. 

 

Figure 7. Connection between the computer and the XtremeDSP board.. 

The maximum data transfer of the impulse responses is: 

18 × 4 = 72 words of 16 bits = 144 bytes to transmit for a 



 American Journal of Networks and Communications 2012, 1(1): 1-10 7 

 

 

MIMO profile, which is: 144 × fref  (Bps). fref depends on 

each environment in the scenario. For E1 it is 2.88 (kBps) 

and for E2 and E3 it is 5.76 (kBps). 

The MIMO profiles are stored in a text file on the hard 

disk of a computer. This file is then read to load the memory 

block which will supply RAM blocks on the simulator (one 

block for each tap of the impulse response).  

Reading the file can be done either from USB or PCI in-

terfaces, both available on the used prototyping board. The 

PCI bus is chosen to load the profiles. It has a speed of 30 

(MB/s). In addition, this is a bus of 32 (bits). Thus, on each 

clock pulse two samples of the impulse response are trans-

mitted.  

The Nallatech driver in Fig. 7 provides an IP sent directly 

to the "Host Interface" that reads it from the PCI bus and 

stores these data in a FIFO memory. The module called 

"Loading profiles" reads and distributes the impulse re-

sponses in "RAM" blocks.  

While a MIMO profile is used, the following profile is 

loaded and will be used after the refresh period. 

4.2. Accuracy 

In order to determine the accuracy of the digital block, a 

comparison is made between the theoretical and the Xilinx 

output signals.  

A Gaussian input signal x(t) is considered long enough 

(more than N = 256 samples) to be used in streaming mode. 

To simplify the calculation, we consider x1(t) = x2(t)=x(t) 

given by: 

ሻݐሺݔ ൌ ሻݐଵሺݔ ൌ ሻݐଶሺݔ ൌ ௠݁ିሺ೟ష೘ೣሻమమ഑మݔ ǡ Ͳ ൑ ൑ ݐ ͵ ௧ܹ  (22) 

where N = 256, Wt = NTs, mx = 3Wt/4 and σ = mx/4. 

The A/D and D/A convertors of the development board 

have a full scale [-Vm,Vm], with Vm = 1 V. For the simulations 

we consider xm = Vm/2.  

The theor i u g ls r : et c o tput si na  a e calculated byݕଵሺݐሻ ݄ଵ ݅ ଵୀ଼ൌݔ σ ଵሺ ௞ሻǤ ଵሺݐ െ ݅௞ ௦ܶሻ௞ ଵ   ݄ ଵሺ ሻǤ ሺ          (23) ൅ σ ଶ ݆௞ ଶݔ ݐ െ ݆௞ ௦ܶሻଵ଼௞ୀଵ ሻݐଶሺݕ   ଵ ݅ଵୀ଼ൌ σ ݄ ଶሺ ௞ሻǤ ݐଵሺݔ െ ݅௞ ௦ܶሻ௞ ଵ   ൅ σ ݄ଶଶሺ݆௞ሻǤ ݐଶሺݔ െ ݆௞ ௦ܶሻଵ଼௞ୀଵ           (24) 

4.2.1. Relative Error and SNR 

The relat is co ted fo t sample by:  ive error mpu r each outpu

ሺ݅ሻߝ  ൌ  ௬ೣ೔೗೔೙ೣሺ௜ሻି௬೟೓೐೚ೝ೤ሺ௜ሻ௬೟೓೐೚ೝ೤ሺ௜ሻ Ǥ ͳͲͲ ሾΨሿ         (25) 

where YXilinx and Ytheory are vectors containing the samples of 

corres  he Sign -to-N se R NR) is: ponding signals. T al oi atio (Sܴܵܰሺ݅ሻ ൌ ʹͲǤ ଵ଴݃݋݈ ฬ ௬೟೓೐೚ೝ೤ሺ௜ሻ௬ೣ೔೗೔೙ೣሺ௜ሻି௬೟೓೐೚ೝ೤ሺ௜ሻฬ ሾ݀ܤሿ    (26) 

Fig. 8 shows a snapshot of the Xilinx output signal y1 

(which is the first output for a MIMO 2×2) with their relative 

error and SNR using the new frequency architecture for E1, 

E2 and E3.  

 

 

 
Figure 8. Snapshot of y1 with the relative error and SNR using the fre-

quency domain architecture. 

The results are given with brutal truncation (B.T.) and 

sliding truncation (S.T.). Fig. 9 shows a snapshot of the 
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Xilinx output signal y1 with their relative error and SNR 

using the time domain architecture for E1, E2 and E3. 

 

 

 
Figure 9. Snapshot of y1 with the relative error and SNR using the time 

domain architecture. 

4.2.2. Mean Global Relative Error and Global SNR with 

Time-Varying Profiles 

The global values of the relative error and of the SNR 

computed for the output signal before and after the final 

truncations are necessary to evaluate the accuracy of the 

architecture. The gl rel e e o uted by: obal ativ rr r is compߝ ൌ ԡாԡฮ௒೟೓೐೚ೝ೤ฮ ൈ ͳͲͲ ሾΨሿ            (27) 

The global  y SNR is computed b : ܴܵܰ௚ ൌ ʹͲ ൈ ݋݈ ଵ݃଴ ฮ௒೟೓೐೚ೝ೤ฮԡாԡ ሾ݀ܤሿ        (28) 

where E = YXilinx - Ytheory is the error vector.  

For a given vector X , …  xL] |  || is:  = [x1  x2, , , |  xԡݔԡ ൌ ටଵ௅ σ ௞ଶ௅௞ୀଵݔ                 (29) 

Table 6 shows the mean global values of the relative error 

and the SNR for all profiles using the two architectures. The 

results are given with sliding truncation and using ASF.  

Table 6. Mean global error and SNR for the proposed scenario.  

 Frequency Architecture Time Architecture 

Environment Error (%) SNR (dB) Error (%) SNR (dB) 

E1 0.9241 40.68 0.0120 78.41 

E2 0.3912 48.15 0.0101 79.91 

E3 0.2427 52.29 0.0118 78.56 

To compare the time domain architecture with the new 

frequency domain architecture, three points resume the 

comparison: the precision, the occupation on the FPGA and 

the latency.  

With sliding window truncation, the relative error do not 

exceed 1 % (for the worst case, with TGn model B), which is 

sufficient for the test. However, the time domain architecture 

presents high precision. 

In terms of occupation of slices on the FPGA Virtex-IV, 

the occupation for the time domain architecture is 43 % in 

contrast with the occupation of the frequency domain ar-

chitecture which is 96 %. Thus, the time domain architecture 

presents another advantage. Moreover, with the time domain 

architecture we can simulate up to 8 SISO channels. 

Therefore, MIMO 4×2 system can be used and which oper-

ates via 18×8 = 144 multipliers and producing an occupation 

of 87 % of slices on the FPGA. 

In term of latency, the time domain architecture presents 

another advantage by generating a latency of 165 ns. How-

ever, the new frequency architecture generates 7 ȝs. 

Therefore, the time domain architecture is more efficient 

to use, especially for MIMO systems. However, the use of 

more performing FPGAs as Virtex-VII is mandatory to solve 

the occupation problem for the new frequency domain 

architecture and to simulate high order MIMO systems. 

5. Conclusion 

This paper presents a frequency domain and time domain 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Time [ us ]

y
1
 [

 V
 ]

 

 

Snapshot E
1

Snapshot E
2

Snapshot E
3

0 0.5 1 1.5 2 2.5 3
-100

-50

0

50

100

Time [ us ]

R
e

la
ti

v
e

 e
rr

o
r 

[ 
%

 ]

 

 
Snapshot E

1
 / B.T.

Snapshot E
1
 / S.T.

Snapshot E
2
 / B.T.

Snapshot E
2
 / S.T.

Snapshot E
3
 / B.T.

Snapshot E
3
 / S.T.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

Time [ us ]

S
N

R
 [

 d
B

 ]

 

 
Snapshot E

1
 / B.T.

Snapshot E
1
 / S.T.

Snapshot E
2
 / B.T.

Snapshot E
2
 / S.T.

Snapshot E
3
 / B.T.

Snapshot E
3
 / S.T.



 American Journal of Networks and Communications 2012, 1(1): 1-10 9 

 

 

architectures for the digital block of a hardware simulator of 

MIMO propagation channels. This simulator is used for 

WLAN 802.11ac applications. It characterizes an indoor 

scenario using TGn channel models. After the description of 

the general characteristics of the hardware simulator, the 

new architectures of the digital block have been presented 

and designed on a Xilinx Virtex-IV FPGA. Their accuracy, 

occupation on the FPGA and latency have been analyzed. 

After a comparative study, in order to reduce occupation 

on the FPGA, the error and the latency of the digital block, 

the time domain architecture present the best solution for 

indoor environments. 

For our future work, simulations made using a Virtex-VII 

[5] XC7V2000T platform will allow us to simulate up to 300 

SISO channels. In parallel, measurement campaigns will be 

carried out with the MIMO channel sounder realized by 

IETR to obtain the impulse responses of the channel for 

specific and various types of environments. The final ob-

jective of these measurements is to obtain realistic MIMO 

channel models in order to supply the hardware simulator. A 

graphical user interface will also be designed to allow the 

user to reconfigure the simulator parameters. 
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