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Timed Event Graphs (TEGs) are a specific class of Petri nets that have been thoroughly studied given their useful linear state representation in (Max,+) algebra. Unfortunately, TEGs are generally not suitable for modeling systems displaying resources sharing (or conflicts). In this paper, we show that if a system with conflicts is modeled using a NCTEG (Networked Conflicting Timed Event Graphs), it is quite possible to obtain an equivalent (Max,+) representation. More precisely, we prove that the evolution of a NCTEG satisfies linear time-varying (Max,+) equations. In case of cyclic NCTEGs, which are a natural model of many repetitive systems, we provide a standard time-invariant (Max,+) representation. As an application of the proposed approach to exhibit its interest, we consider the case of Jobshops. We first propose a generic NCTEG-based model of these systems and subsequently apply the corresponding (Max,+) representation to evaluate some of their performances.

INTRODUCTION

Petri nets are a powerful tool for discrete events systems modeling and analysis. They are often used to represent phenomena like synchronization, parallelism and concurrency [START_REF] Murata | Petri nets: properties analysis and applications[END_REF]. Their domain of application is very large, including manufacturing systems, communication systems, transportation, etc. Many classes of Petri nets with more or less elaborated semantics are used according to the context of the study. Generally speaking, the more their structure and semantics are elaborated the more complex is their analysis. The relatively simple class of Petri nets called Timed Event Graphs (TEGs) is likely to be the most investigated one. Indeed, TEGs are easily represented in the form of linear equations in (Max,+) algebra, provided that the places and the transitions be overtaking free (FIFO places and FIFO transitions as defined in [START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF]). This linear (Max,+) form being very similar to the state representation of the classical discrete linear systems, the main related results are mostly straightforwardly applied [START_REF] Cohen | Max plus algebra and systems theory: where we are and where to go now[END_REF]. Unfortunately, TEGs are Petri nets with places displaying at most one upstream transition and one downstream transition. Thus, they are not suitable for modeling systems with resources sharing or conflicts. Note nonetheless that some particular systems involving shared resources (e.g. flowshops), can be modelled using TEGs with time-varying parameters [START_REF] Lahaye | Linear periodic systems over dioids[END_REF]. The authors had however to change the usual FIFO rule to prevent tokens from overtaking and finally to get to linear (Max,+) equations. Such a consideration is possible in some cases but it is unfortunately not always the case. In literature, a number of other efforts have been undertaken to tackle differently the problem of conflicts. The authors in [START_REF] Hillion | Performance evaluation of jobshop systems using timed event graphs[END_REF] investigated the problem of repetitive systems i.e. with a cyclic allocation of the shared resources. They proposed to transform the original Petri net with conflicts into a TEG, the (Max,+) representation of this latter being easily obtained. In [START_REF] Gaubert | Modeling and analysis of timed Petri nets using heaps of pieces[END_REF], an algebraic modeling, based on the heaps-of-pieces theory and (Max,+) automata, is provided for safe Petri nets. For the case of Free Choice Petri nets, a very complete analytic study is proposed in [START_REF] Baccelli | Free choice Petri nets: an algebraic approach[END_REF]. The case of processes that switch between different functioning modes is investigated in [START_REF] Van Den Boom | Modeling and control of discrete event systems using switching Max-Plus linear systems[END_REF] using switching (Max,+) linear systems. We can also quote Correïa et al. (2009) where local (Max,+) equations are written without taking into account the conflicts. A constraint (inequality) is then added to represent only the admissible evolutions of the global system. In Naït et al. (2006), a method introducing the concept of virtual firing of transitions is proposed for a transportation system. More recently [START_REF] Boutin | Modeling systems with periodic routing functions in dioid (Min,+)[END_REF], an approach based on the dioid of intervals is used to represent extreme behaviors of a manufacturing system (with shared resources i.e. conflicts context) and provide the bounds of its production rate.

In the current investigation, we propose a novel approach to model a large category of systems involving shared resources. This paper intends to extend the study proposed in [START_REF] Addad | Linear Time-Varying (Max,+) Representation of Conflicting Timed Event Graphs[END_REF] concerning Networked Conflicting Timed Event Graphs (NCTEGs) and their (Max,+) representation. Moreover, it provides a generic NCTEG-based model of the well-known systems called jobshops. In a more general context, the purpose of our investigation was originally to extend the use of (Max,+) algebra to the class of NCTEGs which are much larger than TEGs. On top of that, some of the previously exposed hypotheses in the existing works about conflicts are relaxed: i) the TEGs that constitute the NCTEG are not necessarily safe (they, by the way, display input transitions).

ii) the conflicting transitions can have more than one upstream place (unlike Free Choice Petri nets).

iii) resources allocation policy is not necessarily cyclic.

The remainder of this paper is organized as follows: Section 2 recalls some basic notions about TEGs and their linear (Max,+) representation. Section 3 is dedicated to the study of NCTEGs in (Max,+) algebra: Section 3.1 introduces some definitions and notations with regard to NCTEGs and Section 3.2 presents their modeling using (Max,+) equations. Thereafter, a linear time-varying reformulation is provided in Section 4. Hence, a standard time-invariant linear state form is provided for cyclic NCTEGs in Section 5. Then, Section 6 exposes jobshops as an application of NCTEGs and their (Max,+) representation. Finally, Section 7 concludes this paper with some outlooks for future work.

Linear (Max,+) equations of TEGs

In this section, we recall the linear (Max,+) representation of TEGs that will be useful in the sequel of this paper. Note that a mix of t-timed and p-timed TEGs are considered in our study. If their delays are not depicted, they are supposed to be null. Let us consider the simple example below (a t-timed one). () 1 m a x (() , ( 1) )

G 4 2 t 1 1 t u t G 4 2 t 1 1 t u t Fig. 1. Example of TEG. Let ( ) i x k , 1, 2 i = (resp.
() 4 () xk uk x k xk xk =+ - ⎧ ⎨ =+ ⎩ (1)
The equations above can be rewritten using (Max,+) algebra operators: the classical maximum noted ⊕ and the usual addition noted ⊗ . These operators are defined on the set max {} =∪ -∞ {{ and have respectively ε = -∞ and 0 e = as null and identity elements. Equations (1) become:

12 21 () 1 () 1 ( 1 ) () 4 () xk uk x k xk xk =⊗ ⊕⊗ - ⎧ ⎨ =⊗ ⎩ (2)
Using a matrix notation, we finally get to:

01 0 () () ( 1 ) () X kAX kAX k BU k =⊗ ⊕⊗ -⊕⊗ (3) 
with:

( )

12 t X xx = , Uu = , 0 4 A ε ε ε ⎛⎞ = ⎜⎟ ⎝⎠ , 1 1 A ε ε ε ⎛⎞ = ⎜⎟ ⎝⎠ , and 0 1 B ε ⎛⎞ = ⎜⎟ ⎝⎠ .
Equation (3) can also be brought to an explicit form thanks to the following theorem:

Theorem 2.1 [START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF]): with By applying the previous theorem to equations (3), we get to the following explicit form: Remark 2.1: Equation (3) and its explicit form (4) feature every TEG (alive nevertheless). It is a standard state representation like the classical representation of linear systems. Thus, it is widely used alike to solve many problems of performance evaluation and control synthesis [START_REF] Cohen | Max plus algebra and systems theory: where we are and where to go now[END_REF].

() ( 1 ) () X kA X k B U k =⊗ -⊕⊗ (4) 

NCTEG modeling in (Max,+) algebra

Definitions and notations

A net of Conflicting Timed Event Graphs or NCTEG is a set of TEGs noted 

= GG G G A N 12 {,
Rp p p = # ## # A . Each timed event graph G i is connected to a subset of conflict places (or resources) noted i R # ( i RR ⊆ ## ). With place j i pR ∈ # #
, we get the generic structure of NCTEG on Fig. 2(a): For the sake of simplicity, we will adopt the following hypotheses and notations:

4 11 t & 1 11 t % G2 1 p # 2 3 j p # G i ij t % ij t & j τ# ij τ % 21 t % 21 t & G1 5 () a () b 4 11 t & 1 11 t % G2 1 p # 2 3 j p # G i ij t % ij t & j τ# ij τ % 21 t % 21 t & G1 5 () a () b
-H1) the unique upstream transition of place j p # in G i is noted ij t & and the unique downstream transition is noted ij t % (Fig. 2(a)). We suppose also, without loss of generality (since we can always get to this case by duplicating the transition ij t % ) that ij t % has a unique upstream place of conflict j p # .

-H2) a shared resource is used by at most one user at a time. So, in terms of Petri nets, when the unique token of a place j p # is not in this place, only one elementary

circuit ij ij j ij tt p t %&% # A
, among all the others that involve place j p # , contains it at a time. A resource is indeed either idle or being used by one among the N TEGs.

-H3) each TEG G i is alive, represented by its state form:

01 0 () () ( 1 ) () ii i ii i ii i ii X kAX kAX k BU k =⊗ ⊕⊗ -⊕⊗ (5) 
where:

( )

12 i t ii i i n X xx x = A
is the state vector whose dimension is i n and

( )

12 i t ii i i m Uu u u = A
is the input vector whose dimension is i m . So, i m is the number of input transitions in TEG G i and i n the number of the other transitions.

In the remaining of this study, we also adopt the following notations:

-N1) the holding time associated to place j p # is denoted j τ# and the firing time of ij t % is denoted ij τ % (see Fig. 2(a)).

-N2) the th i row of a matrix A is denoted (, : )

A i
whereas the intersection element of the th i row and the th j column is denoted (, )

A ij.

NCTEG modeling in (Max,+) Algebra

In studying TEGs, daters are usually associated to the transitions. In our approach however, we also associate a dater to the token of every place of conflict j pR ∈ # # . The date of availability of this token for the th j l time is denoted ()

j j l ψ#
. Intuitively, this is the date of availability of the shared resource j p # after being used j l times.

Let us suppose that every transition of TEG G i has already fired (1 ) i ktimes. To fire for the th i k time, each transition needs all its upstream places to have at least one available token. So, a conflicting transition ij t % needs the token of its upstream place of conflict j p # to be available too. Suppose that the token of this place is attributed effectively to G i when it is available for the th j l time. So, to write the dater of transition we need to consider two cases, depending of whether the transition is downstream of a place of conflict or not.

1) If ij

x is the dater of vector i X associated to transition of conflict ij t % , then we can write:

01 0 ( ) (, : ) ( ) (, : ) ( 1 ) (, : ) ( ) ( ) i ji i ii i ii i ii i j jj x kA j X kA j X k B j U k l τ ψ =⊗ ⊕⊗ -⊕⊗ ⊕ ⊗ % # (6) 
Equation ( 6) is written for every transition downstream a place of conflict belonging to i R # .

2) If dater ij x is associated to a transition which is not downstream a place of conflict, then its expression is unchanged in (5) since it does not depend directly on ()

j j l ψ#
. So, we have:

01 0 ( ) (, : ) ( ) (, : ) ( 1 ) (, : ) ( ) i ji i ii i ii i ii x k A jX kA jX k B jU k =⊗ ⊕⊗ -⊕⊗ (7) 
Or indifferently, by adding a null term as follows:

01 0 () (, : ) () (, : ) ( 1 ) (, : ) () () i ji i ii i ii i ii jj x k A jX kA jX k B jU k l εψ =⊗ ⊕⊗ -⊕⊗ ⊕ ⊗ #
So, by combining ( 6) and ( 7), we get to the new state form:

01 0 0 () () ( 1 ) () () ji ii i ii i ii i ii i j jj pR Xk A Xk A Xk B Uk F l ψ ∈ =⊗ ⊕⊗ -⊕⊗ ⊕ ⊗ ⊕ # # # (8)
All the involved matrices and vectors in ( 8) are exactly the same as in ( 5). The only new elements are the availability dates ()

j j l ψ#
defined previously and vectors 0ij

F , 1 iN ≤≤ and 1 jM

≤≤

. We can note that vector 0ij F is of the form

() t ij ε τε % AA
i.e. its components are all null (equal to ε ) except for the th j one (equal to ij τ % ).

By applying Theorem 2.1 to (8), we finally obtain:

() ( 1 ) () () ji ii i ii i ii i j jj pR X kA X k B U k F l ψ ∈ ⎡ ⎤ =⊗ -⊕⊗ ⊕ ⊗ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⊕ # # # (9) 
where:

* 01 ii A AA =⊗, * 00 ii BAB =⊗ and * 00 ij ij F AF =⊗
.

On the other hand, since the token of j p # is consumed by

G i (via the firing of ij t % )
when it is available for the th j l time, then it is available for the (1 )

th j l + time by the firing of transition ij t & for the th i k time (recall from hypothesis H2 that circuit ij ij j ij tt p t %&% # A is safe). Let ij x & be the component of i X associated to transition ij t
& . Thus, we can write:

(1 ) ( )

j jj i j i lx k ψ τ += ⊗ & # # (10) 
This equation can be rewritten as:

(1 ) ( )

j ji j i i lG X k ψ += ⊗ # (11) with ij G is a line vector () j ε τε # AA whose all components are null except for one (equal to j τ# ) corresponding to transition ij t & .
To sum up, if the th j l token of j p # contributes to firing the transitions of TEG G i for the th i k time (note that because of resources invariance we have:

(1 )

ji ji pR lk ∈ =-∑ # # ),
then the following recurrent (Max,+) equations are verified:

() ( 1 ) () () (1 ) ( ) ji ii i ii i ii i j jj pR jj i j i i j i X kA X k B U k F l l G X k for all p R ψ ψ ∈ ⎧ =⊗ -⊕⊗ ⊕ ⊗ ⎪ ⎨ ⎪ += ⊗ ∈ ⎩ ⊕ # # # # # # (12) 
As can be seen, equations ( 12) include a parameter, j l in ()

j j l ψ #
, that defines entirely the policy of resources allocation. Hence, these equations represent all the admissible evolutions of NCTEGs. All the involved elements are systematically calculated according to the method explained before. These equations are important and will be the cornerstone of all the results provided later in this paper.

Example 3.1: to illustrate the previous method, let us consider the following example (note that if the holding time or firing time is not mentioned, then it is equal to 0): 

G2 1 21 t % 2 22 t % G1 5 12 t % 3 11 t % 2 p # 1 p # 1 u t 1 4 G2
G 1 : 11 1 1 1 12 1 12 1 11 1 () 3 () 3 ( 1 ) () 5 () xk uk xk xk xk = ⊗⊕ ⊗- ⎧ ⎨ =⊗ ⎩ %% %% (13)
Now, let us take into account the places of conflict. If the token of 1 p # (available for the 1 th l time) and the token of 2 p # (available for the 2 th l time) are attributed to G 1 to enable its transitions to fire for the 1 th k time, then we have:

11 1 1 1 12 1 1 1 12 1 11 1 2 2 11 1 1 1 22 1 2 1 ()3 ()3 ( 1 )3 ( ) () 5 () 5 ()
(1 ) 4 ( )

(1 ) 1 ( )

x ku k x k l xk xk l lx k lx k ψ ψ ψ ψ =⊗ ⊕⊗ -⊕⊗ ⎧ ⎪ =⊗ ⊕⊗ ⎪ ⎨ +=⊗ ⎪ ⎪ += ⊗ ⎩ %% # %% # % # % # (14)
These equations are easily brought to form (12):

( ) ( ) 11 1 1 1 2 2 11 1 22 1 33 88 4 1 3 () ( 1 ) () () ( ) 85 (1 ) ( ) (1 ) ( ) X kX kU kl l lX k lX k ε ε ε ε ε ψψ ψ ψ ⎧ ⎛⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ =⊗ -⊕ ⊗ ⊕ ⊗ ⊕ ⊗ ⎪ ⎜⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪ ⎪ += ⊗ ⎨ ⎪ += ⊗ ⎪ ⎪ ⎩ ## # #
We let the reader write the equations relative to G 2 and get to form (12) with:

( ) ( ) 22 2 1 1 2 2 11 2 22 2 3 2 4 1 13 () ( 1 ) () () ( ) 2 (1 ) ( ) (1 ) ( ) X kX kU kl l lX k lX k ε ε ε ε ε ε ψψ ε ψ ψ ⎧ ⎛⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ =⊗ -⊕ ⊗ ⊕ ⊗ ⊕ ⊗ ⎪ ⎜⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎪ ⎪ += ⊗ ⎨ ⎪ += ⊗ ⎪ ⎪ ⎩ ## # #
Note that all these matrices are constant and independent of resources allocation policy.

Standard linear (Max,+) equations of NCTEGs

Let us recall that a linear time-varying system is of the form:

() ( 1 ) ( 1 ) () () X kA k X k B kU k =-⊗-⊕ ⊗ (15)
This equation would be more suitable than form (12) for most problems resolution. So, one can ask the question: is it possible to bring form (12) to form (15)? Answering this question is indeed crucial since modeling many existing systems using NCTEGs is quite easy (e.g. the TEGs are products and the conflict places are machines) but obtaining directly ( 15) is not so obvious for some reasons exposed later (Remark 4.2).

To provide an answer to the previous question, one has to know how the shared resources are allocated to the different TEGs (the sequence of allocating the resources). So, if we know which TEG uses a given resource at a given date for a given time, we can deduce which TEG will use it next. So, by using recurrence and equations ( 12), we can build a time-varying state representation.

Definitions

-D1) In practice, resources are usually allocated according to a sequence (periodic or not). So, we say that a NCTEG evolves according to sequence

σ - = AA G G G G 12 ( 1 ) jj j k j k
, if for each resource represented by j p # and shared between two TEGs G jk and + G () jk q , the resource j p # is first attributed to G jk and subsequently to

+ G () jk q
for all 1 k ≥ , 1 q ≥ . Then, we say that at the th k step of sequence σ the resources are allocated to G i if:

= G jk G i . Example 4.1: 123 {, , } Rp p p = # ## #, 11 3 {, } Rp p = # ##, 22 3 {,} Rp p = # ##, 31 2 {, } Rp p = # ## , σ = G G G G G G G G G
122133321 . According to this sequence, the token of 11 3 () pRR ∈∩ ## # is to be attributed twice to G 1 then 3 times to G 3 and finally one time to G 1 .

Remark 4.1:

The hypothesis that a whole NCTEG evolves according to an arbitrary sequence, common to all the resources as defined before, does mean that all the admissible evolutions of the NCTEG are swept. The general case is when each shared resource evolves according to its own sequence.

-D2) Let us define the set of indices of TEGs: 

σ = G 1 G 2 G 2 G 1 G 3 G 3 G 3 G 2 G 1 1 p # x x x x x x 2 p # x x x x x x 3 p # x x x x x x
The arrows in the table simplify the following samples of function Fre: means that G 1 frees 3 p # to be used by G 2 for the 3 rd time.

1 12 1 Fre ( p , , ) = # , 2 23 
Theorem 4.1: A NCTEG verifying the hypotheses of Section 3.1 and evolving according to an arbitrary sequence

σ - = AA G G G G 12 ( 1 ) jj j k j k
, has an equivalent Linear Time-Varying (Max,+) representation.

Proof: Let us suppose that a NCTEG verifies the hypotheses of Section 3.1 and evolves according to a sequence σ . So, we can write, from 1 st equation in ( 12), the following form:

() ( 1 ) () () ji ii i ii i ii i j jj pR X kA X k B U k F l ψ ∈ =⊗ -⊕⊗ ⊕ ⊗ ⊕ # # # (16) 
Suppose that TEG G i frees resource j p # to be used by G i for the th i k time. So, by using the 2 nd equation in (12) we can write:

'' ' () ( 1 ) jj i j i i lG X k ψ =⊗ - #

Since by definition

j i i' Fre ( p ,i,k ) = #
, the previous expression becomes:

(, , ) (, , ) (, , ) () ( 1 ) 
ji ji ji j j F r epi k j F r epi k F r epi k lG X k ψ =⊗ - ## # # (17) 
So, by replacing ( 17) in ( 16), we obtain:

( , ,) ( , ,) ( , ,) () ( 1 ) () ( 1 ) ji ji ji ji ii i ii i ii i j F r e p i k j F r e p i k F r e p i k pR Xk A Xk B Uk F G X k ∈ ⎡ ⎤ =⊗ -⊕⊗ ⊕ ⊗ ⊗ - ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⊕ ## # # # (18)
Before going any further, let us explain how to handle vectors and matrices whose entries are vectors and matrices respectively. ( )

5 d = .
A matrix of matrices is for instance: Let us then define the vector of vectors () X k (resp. () Uk ) relative to the (1 ) th kstep of sequence σ as follows:

[ ]

11 2 2 (1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) t ii NN Xk X k X k X k X k -= - - - - AA , [ ] 11 2 2 (1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) t ii NN Uk U k U k U k U k -= - - - - AA ,
where

i kis the number of occurrences of TEG G i at the (1 ) th kstep of σ . It follows that:

1 1( 1)

N i i kk = -= - ∑ .
If the th k step of σ corresponds to TEG G i , then we also (according to the previous definition of vector X ) write:

( )

11 2 2 () ( 1 ) ( 1 ) ( ) ( 1 ) t ii N N Xk X k X k X k X k =- - - AA
The question is then, how to write () X k as a function of (1 ) Xk-?

We will write each line of () X k as function of (1 )

Xk-

and then deduce the relation between the whole vector () X k and (1 ) Xk-.

The first line () ( 1 ) Xk of () X k is equal to 11 (1 ) Xk-and the first line of (1 ) Xk-is equal to 11 (1 ) Xk-too. So, we can simply write: nn × identity matrix and 1 i nn × null matrix.

We can repeat the same procedure for the second line of () X k to obtain:

( )

21 2 2 () ( 2 ) ( 1 ) N nn n nn Xk I d Xk ε ε =⊗ - A
So, we repeat the same procedure for every line pi ≠ of ()

X k and obtain:

( )

12 ( 1 ) () ( ) ( 1 ) pp p p N p N nn nn n nn nn Xk p I d Xk εε ε ε - =⊗ - AA
In case of line pi = however, we rather use equation ( 18

): ( , ,) ( , ,) ( , ,) () () ( ) ( 1 ) ( ) ( 1 ) ji ji ji ji ii i ii i ii i j F

r e p i k j F r e p i k F r e p i k pR

Xk i X k A X k B U k F G X k ∈ ⎡ ⎤ == ⊗ -⊕ ⊗⊕ ⊗ ⊗ - ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⊕ ## # # #

By isolating the term multiplied by (1 )

ii Xk-we get to:

(, , ) ( , ,) ( , ,) ( , ,) /( , , ) () () ( 1 ) ( ) (1 ) ji ji ji ji ji j i ii j i j i i i i i Fre p i k i ij Fre p i k j Fre p i k Fre p i k pRF r e p i k i X ki A F G Xk B Uk FG X k = ∈≠ ⎡⎤ ⎛⎞ =⊕ ⊗ ⊗ -⊕ ⊗ ⎢⎥ ⎜⎟ ⎜⎟ ⎢⎥ ⎝⎠ ⎣⎦ ⎡⎤ ⊕⊗ ⊗ - ⎢⎥ ⎢⎥ ⎣⎦ ⊕ ⊕ # ## # # ##
This equation is of the form:

() () ( 1 ) ( ) ( 1 ) ii i ii i qq q qi Xk i X k B U k X k α β ≠ ⎡ ⎤ =⊗ -⊕⊗ ⊕ ⊗ - ⎢ ⎥ ⎣ ⎦ ⊕
It can be rewritten using (1 ) Xk-as:

() () ( 1 ) () ( 1 ) () ( ) iq i i i qi X ki Xk i Xk q B Uk α β ≠ ⎡⎤ =⊗ - ⊕ ⊗ - ⊕⊗ ⎢⎥ ⎣⎦ ⊕ Or: ( ) 1 () () ( 1 ) () ( ) iN i i i X ki Xk i B Uk βαβ =⊗ - ⊕ ⊗ AA Where: (, , ) ji i i ij ij Fre p i k i A FG α = ⎛⎞ =⊕ ⊗ ⎜⎟ ⎜⎟ ⎝⎠ ⊕ # and (, , ) ji qi j F r e p i k j FG β =⊗ #
To sum up, we have the following equations: This is obviously a linear time-varying (Max,+) system of the form:

( ) 12 () ( 1 ) ( 1 ) N nn n Xk I d Xk εε =⊗ - A ( ) 12 () ( 2 ) ( 1 ) i nn n Xk I d Xk ε ε =⊗ - A ( ) 1 ( )( ) ( 1)( ) ( )( ) iN i X ki Xk i B Uki βαβ =⊗ - ⊕ ⊗ AA ( ) 1( 1 ) () ( ) ( 1 
() ( 1 ) ( 1 ) () () X kA k X k B kU k =-⊗-⊕ ⊗ , ( 19 
)
where matrices of matrices (1 ) Ak-and () Bk are defined as:

() () ()
(1 ) ( , ) p pq n i q nn if p q and p i if p q i if p i and q i otherwise Id Ak pq

α β ε = ≠ == =≠ ⎧ ⎪ ⎪ -= ⎨ ⎪ ⎪ ⎩ (20) () () ( ,) pq i nm otherwise Bi fpqi Bk pq ε == ⎧ ⎪ = ⎨ ⎪ ⎩ (21)
Finally, the sought linear representation is obtained and this concludes the proof of Theorem 4.1. ミ

Note that (1 ) ( , )

A kp q and () ( , ) Bk pq are not scalars but matrices. They are multiplied by the elements of X and U which are vectors.

Remarks 4.2:

-It could be thought that since we can represent a system using a NCTEG and subsequently equations ( 19), then why not do it from the beginning without passing through the NCTEG modeling? Indeed, equations ( 19) might represent a TEG (with time-varying parameters nevertheless), equivalent to the NCTEG. However, if we look closely at matrix () A k , we will notice that some of its components are, over time, sometimes null (equals ε ) and sometimes not. This means literally that some places of the TEG sometimes exist and sometimes disappear. This is obviously not a usual feature with regard to Petri nets and therefore not a natural modeling of systems (see Example 6.1).

-As a straightforward result from the previous theorem, a NCTEG, verifying the conditions of Section 3.1 (especially the TEGs to be alive) and evolving according to an arbitrary sequence, is necessarily alive. Indeed, since the NCTEG is initially alive, the recurrent linear time-varying equations are written according to the previous theorem. The evolution of the NCTEG can be calculated until any horizon k. So, the firing of all the transitions for the th k time ( k ∈ ' ) is possible and the date of each firing is finite. This is however not always true, even if the TEGs are alive, if each resource is allocated according to its own sequence (general case). The deadlock in this case would be caused by the non feasibility of the adopted scheduling for instance.

(Max,+) equations of cyclic NCTEGs

Equation ( 19) can be obtained whatever is the NCTEG evolution sequence. In practice nonetheless, many systems are repetitive and evolve according to a periodic sequence of the form 000 σ σσσ = A where 0 σ is the basic sequence to be repeated. Let us suppose:

σ - = A G G G G 01 2( 1 ) jj j T j T .
This means that σ is Tp e r i o d i c -. It can be easily checked that given this periodic pattern, we have:

j ij i Fre( p ,i,k T ) Fre( p ,i,k ) += ##
for every triplet Hence, we can apply a well known result in conventional theory related to the classical periodic linear systems [START_REF] Bolzern | Zeros of discrete time linear periodic systems[END_REF], [START_REF] Misra | Time-Invariant representation of discrete periodic systems[END_REF] and similarly used in (Max,+) algebra [START_REF] Lahaye | Linear periodic systems over dioids[END_REF]). This result is a transformation of a periodic time-varying linear system into an time-invariant one using the notion of monodromy.

Let us define the transition matrix relative to matrix A as:

1 0 (1 ) ( 2 ) ( ) (, ) d if q if q Ai Ai Ai q ii q I ≥ = ⎧ -⊗ -⊗ - ⎪ Φ-= ⎨ ⎪ ⎩ A . Note that Φ is Tp e r i o d i c - i.e. ( , 
)( ,) iT iT q i iq Φ ++ -= Φ-.
Using ( 19), it follows that:

(

2) (1) (1) (2) (2) (3) (2) (2) (3) (3) (3,1) (1) (3, 2) (2) (2) (3,3) (3) (3) XAXBU XAXBU XB UB U =⊗⊕ ⊗ =⊗⊕⊗ =Φ ⊗ ⊕Φ ⊗ ⊗ ⊕Φ ⊗ ⊗ (22)
By recurrence, we get to:

1 (1 ) (1 ,1) (1) (1 , 1 ) (1 ) (1 ) 
T q XT T X TqBq Uq = += Φ + ⊗ ⊕ Φ + +⊗ +⊗ + ⊕ (23) 
By adding (1 ) lT -⋅ in vectors indices of ( 23) and using the periodicity of Φ , we get to:

1 (1 ) (1 ,1) (1 ( 1) ) (1 , 1 ) (1 ) (1 ( 1) ) T q Xl T T X l T TqBq U l T q = +⋅ = Φ + ⊗ + -⋅ ⊕ Φ+ + ⊗ + ⊗ + -⋅+ ⊕ (24) 
Let us set () 24) is therefore a standard time-invariant system:

( 1 ) X lX l T =+ ⋅ and () ( ( 1 ( 1 ) 1 ) ( 1 ( 1 ) ) ) t Ul U l T U l T T = +-⋅+ +-⋅+ A . Equation (
() ( 1 ) () X lA X l B U l =⊗ -⊕⊗ (25) 
where

(1 , 1) A T =Φ + and () (1 , 1 ) (1 ) (,) if p q otherwise TqBq Bpq I ε = ⎧Φ+ + ⊗ + = ⎨ ⎩
Note that we could start from any initial step 0 k in ( 22). In this case, we find matrix 00 (, ) A kT k =Φ + . The state matrix A is then called monodromy matrix at 0 k .

Application: modeling and performance evaluation of jobshops

Different applications of the NCTEG-based method presented previously can be considered: performance evaluation, control synthesis, scheduling optimization, resources use optimization, event-driven simulation, etc. As an example of application, we present some performances evaluation of the well-known systems called jobshops.

Definition 6.1: as defined for instance in [START_REF] Gaubert | Modeling and analysis of timed Petri nets using heaps of pieces[END_REF], a jobshop is specified by:

-A finite set 2 ={ , , , } 1M rr r A R
of resources (machines) -A finite set T of elementary tasks -Each task a ∈ T is to be executed on a single machine () Ra∈R (hypothesis) during a duration () a τ .

-A finite set of jobs J . Each job 12 m Ja a a = ∈ A J is composed of a sequence of the elementary tasks, each task a belonging to a unique job () J a (hypothesis). We say that a unit of job J is produced every time the sequence J is executed.

According to this definition and the considered hypotheses, one can draw the generic NCTEG model of every job J as in Fig. 4,duration i τ being equal to

() i a τ
. For clarity reasons, we omitted to represent the other transitions from/to the conflict places. Note that graph G , representing job J , involves a place noted wip p whose delay is wip τ . This place represents the number of works in process (WIP) i.e. the number of units of job J that are allowed to be processed in parallel. The number of tokens of place wip p defines the WIP (this may represent for instance the number of pallets that are allocated to a given part type in a manufacturing system). In Fig. 4, there is only one token in wip p . So, this job J is said to be safe. Thus, the processing of a task of J cannot start again while all the tasks of the current cycle are not finished. If all the jobs of a jobshop are safe, the jobshop is safe.

The matrices of the (Max,+) representation of the NCTEG-based model are easily calculated. Let us write the (Max,+) equations of graph G in Fig. 4:

11 1 1 22 1 2 2 (1 ) () [ ( 1 ) () ] () [ () ( ) ] () [ () ( ) ] wip m mm m m m x kx k l xk xk l xk x k l ττ ψ τψ τ ψ - =⊗ ⊗ -⊕ ⎧ ⎪ =⊗ ⊕ ⎪ ⎨ ⎪ ⎪ =⊗ ⊕ ⎩ B (26)
We have also:

{ ( 1) ( ) 1,..., jj j le x k f o r jm ψ +=⊗ = # (27)
These equations can be brought to a state representation: )

1 () ( 1 ) () (1 ) ( ) 1 , . . . , m iii i i jj j j jj i j i i X kA X k F l lG X k f o r jm ψ ψ = ⎧ =⊗ -⊕ ⊗ ⎪ ⎨ ⎪ += ⊗ = ⎩ ⊕ # # (28)
1 i Ge ε ε = A , ( ) 
2 i Ge ε ε = A , … , ( ) im Ge εε = A .
Hence, the matrices relative to each job (graph) are calculated systematically, without passing through the (Max,+) equations.

Remark 6.1

Contrary to [START_REF] Gaubert | Modeling and analysis of timed Petri nets using heaps of pieces[END_REF], where only safe jobshops were studied using the heaps-of-pieces approach, we can consider, using our method, any number of tokens in wip p . Such a condition has indeed not been posed in our hypotheses (our hypothesis of boundedness is related only to elementary circuits ij ij j ij tt p t %&% # A of the NCTEG not the whole of it). All we have to do is transform this place wip p into a series of places containing one token to obtain the first order (Max,+) representations of the graphs [START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF]. The delays associated to the added places and transitions are all zeros, except for one that equals the delay of place wip p . In case of three tokens for instance, the transformation is depicted in Fig. 5. We add two transitions 3 t and 4 t . The 3 rd order equations of this TEG can then be rewritten in an equivalent first order form as follows: Example 6.1: To illustrate how to use systematically the results above, we consider an example studied in [START_REF] Hillion | Performance evaluation of jobshop systems using timed event graphs[END_REF] and [START_REF] Gaubert | Modeling and analysis of timed Petri nets using heaps of pieces[END_REF]. It is a manufacturing system constituted of three machines 1 r , 2 r and 3 r that produce three types of parts represented by TEGs G 1 , G 2 and G 3 (Fig. 6). Note that: Let us associate availability dates 1 ψ# , 2 ψ# , 3 ψ# to the tokens of places 1 r , 2 r and 3 r .

So, according to (28) the matrices relative to TEG G 1 are directly calculated as: The matrices relative to G 2 are: We let the reader make the transformation (as on Fig. 5) of the place with two tokens in TEG G 3 . The resulting matrices are: All these matrices are calculated once and for all, whatever is the considered sequence of the jobshop evolution.

-Production rate evaluation: as a first application, we will consider a periodic case and calculate the asymptotic production rate of the jobshop. Let us consider for instance the basic sequence:

σ = G G G G 0 1233 . We first calculate j i
Fre ( p ,i,k ) # relative to the three resources: The unique finite eigenvalue of A is equal to 9. The asymptotic production rate of G 1 and G 2 is therefore 12 1/9 λ λ = = whereas the production rate of G 3 is 3 2/9 λ = . As expected, this gives the same result as in the aforementioned works. Note however that the NCTEG of Fig. 6 is not a safe Petri net and therefore the authors in [START_REF] Gaubert | Modeling and analysis of timed Petri nets using heaps of pieces[END_REF] used an equivalent safe one to make possible the application of the method based on heaps-of-pieces. Finding such an equivalent safe net is not always possible especially in case of presence of input transitions. The advantage of our method is also to avoid building a heap-of-pieces automaton. We can also note that the proposed approach can be applied even with infinite sequences without any effect on the NCTEG structure. This is actually not the case with the method in [START_REF] Hillion | Performance evaluation of jobshop systems using timed event graphs[END_REF] since the initial Petri net must be transformed into an equivalent TEG. Unfortunately, the resulting TEG depends dramatically on the length of the sequence and becomes very voluminous even with not long sequences (see an example in [START_REF] Gaubert | Modeling and analysis of timed Petri nets using heaps of pieces[END_REF]).

σ = G 1 G 2 G 3 G 3 1 11 3 ,) Fre ( p , = # , 1 31 1 ,) Fre ( p , = # , 1 32 3 ,) Fre ( p , = # 1 p # x x x 2 11 2 ,) Fre ( p , = # , 2 21 1 ,) Fre ( p , = # , 2 p # x x 3 11 3 ,) Fre ( p , = # , 3 21 1 ,) Fre ( p , = # , 3 31 2 ,) Fre ( p , = # , 3 32 
-Work-in-process (WIP) inventory minimization: as another application of the NCTEG-based approach and its (Max,+) representation, we can also tackle the problem of WIP inventory minimization. It is indeed legitimate, in case of the previous manufacturing system for example, to ask question: what is the minimal number of pallets to use for each job to optimize the production rate? Such a problem has already been solved in different past investigations using linear programming as in [START_REF] Gaubert | Resource optimization and (min,+) spectral theory[END_REF] or [START_REF] Laftit | Optimization of invariant criteria for event graphs[END_REF] but only in case of systems modelled using TEGs.

By applying our (Max,+) approach, we can solve such a problem when dealing with systems modelled using NCTEGs, not limited to TEGs. So, to solve this problem we can begin by considering the safe case (one token in each place wip p ) and calculate the production rate (by calculating the eigenvalue of the monodromy matrix A as we did before). Then, we increase progressively the number of tokens in each WIP place wip p of each graph on the NCTEG of Fig. 6 until the eigenvalue of the matrix A does not change. This process was applied to example 6.1 and we got to the results of Table 3. We can notice that the eigenvalue reaches its maximal value 11 in the safe case and does not change after getting two tokens in the WIP place of TEG G 3 . Its minimal value is equal to 9. The minimal WIP inventory is therefore: one pallet for job 1, one pallet for job 2 and two pallets for job 3. Obviously, this pattern results from sequence 0 σ and the minimal WIP would probably change if we were to consider another sequence.

Note by the way that the approach can also be used quite easily for scheduling optimization, to maximize the production rate, by looking for the optimal basic sequence 0 σ that minimizes the eigenvalue of matrix A . Such a scheduling problem optimization has already been investigated in [START_REF] Mayer | Throughput-Optimal Sequences for Cyclically Operated Plants[END_REF]) by deriving a mixed integer optimization problem. A comparison of the two methods would be an interesting outlook for future work.

Conclusion

In this study, we extended the use of (Max,+) algebra to Conflicting Timed Event Graphs or NCTEGs which are a natural model of a large category of practical systems involving shared resources. We proved that NCTEGs can be represented using a system of (Max,+) Linear Time-Varying equations while the policy of resources allocation is arbitrary. In case of a cyclic NCTEG, we used the notion of monodromy to get to a standard (Max,+) state space representation. An application on the well-known jobshop has also been presented. For future work, it would be interesting to look for the relevant modifications to bring to the proposed approach so as to relax some of the hypotheses of Section 3.1. 
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  Fig. 2. (a) Generic structure of a NCTEG ( j
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  Fig. 4. A NCTEG-based model of a jobshop.
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 5 Fig. 5. Example of a NCTEG transformation in case of a 3-bounded jobshop.

  Fig.6. A NCTEG model of a manufacturing system (jobshop) involving three machines producing three types of parts.

Table 1 :

 1 Let us return to example 4.1 and build the following table to explain this function (a cross in a box of the row of j p # and column of G i function Fre values in case of sequence σ of example 4.1

	{1, 2 , , } SN = A	and the function:

Table 2 :

 2 function Fre values in case of Example 6.1

	0

Table 3 :

 3 production rate (eigenvalue) and WIP inventory minimization

	Case	1/1/1 1/2/1 1/1/2 1/2/2 2/1/1 2/2/1 2/1/2 2/2/2 3/3/3
	1/ wip wip wip 2/	3								
	Eigenvalue	11	11	9	9	11	11	9	9	9

Table :

 : Notations and symbols

	Symbols	Meaning
	i A	State matrix of the th i timed event graph
	i B	input matrix of the th i timed event graph
	X	i	State vector of the th i timed event graph
	U	i	Input vector of the th i timed event graph
	G			Set of the timed event graphs of the NCTEG
	G i			The th i timed event graph of the NCTEG
	R #			Set of the places of conflict of the NCTEG
	p #		j	The th j place of conflict of the NCTEG
	i R #	Set of places of conflict connected to the th i timed event graph
	ij t %			Unique transition from place j p # to timed event graph G i
	ij t &			Unique transition from timed event graph G i to place j p #

ij τ % Firing time of transition ij t % ij τ & Firing time of transition ij t &