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Abstract

This paper deals with the definition and optimization of augmenta-
tion spaces for faster convergence of the conjugate gradient method in the
resolution of sequences of linear systems. Using advanced convergence
results from the literature, we present a procedure based on a selection of
relevant approximations of the eigenspaces for extracting, selecting and
reusing information from the Krylov subspaces generated by previous so-
lutions in order to accelerate the current iteration. Assessments of the
method are proposed in the cases of both linear and nonlinear structural
problems.

Keywords: Krylov solvers; multiresolution; model reduction.

1 Introduction

Accelerating the convergence of Krylov iterative solvers [44] is an old issue which
has returned to the spotlight because of the increasing number of applications
for which these are preferred to direct solvers today. Traditional approaches
aim at improving the condition number by using frameworks in which efficient
preconditioners exist (e.g. domain decomposition methods [25, 17]), or for which
good initialization vectors [19], relevant augmentation subspaces [6, 43, 5] or
suitable block strategies (see [1] for a very general block-Lanczos algorithm) are
available. For instance:

• For 3D elasticity problems, domain decomposition methods come with
“physical” augmentation associated with the global equilibrium of floating
substructures (rigid body motions), which makes the methods scalable
[13, 30]; for plate and shell problems, additional augmentation through
“corner modes” [11, 9, 26] is required.

• For structures with repeated patterns, block strategies are possible [20].
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• For restarted algorithms, one can use deflation or augmentation [33, 7], or
block techniques [3].

• For problems with multiple right-hand sides, deflation [10, 46, 8] is a rather
classical approach.

The problem with these techniques is that they require some a priori informa-
tion which is seldom available, except in specific cases.

Many recent works present theoretical and practical comparisons of the nu-
merous algorithms which have been developed in connection with these ideas
[48, 47].

Multiresolution approaches form a general framework in which numerical
information is available to accelerate the convergence of Krylov solvers. Mul-
tiresolution refers to situations in which the solution of a mechanical problem
cannot be achieved through the resolution of a single linear system. For ex-
ample, calculating the solution of a nonlinear or time-dependent problem or
exploring a design of experiment during an optimization procedure requires the
resolution of sequences of linear systems. Multiresolution is more general than
using multiple right-hand sides because the matrices themselves are likely to
change from one system to another (multiple right-hand and left-hand sides).
Thus, the problem consists in solving a k-indexed family of large, sparse, linear
n× n systems of the form:

A(k)x(k) = b(k) (1)

Although different, the systems are assumed to be similar to one another. This
similarity can be defined in several ways: in terms of rank, by the fact that
rank(A(k) − A(k−1)) � rank(A(k)); or in a spectral sense by the fact that
the eigenspaces remain stable from one system to another; or in terms of the
Krylov subspaces generated [4]. The first case can be dealt with easily, even
with direct solvers, by using the Sherman-Morrison formula; the second case
requires augmentation strategies in order to eliminate the most penalizing part
of the spectrum and improve the active condition number1 [39, 16, 38, 50]; and
the last case calls for preconditioning techniques [40, 41].

While most of the studies of Krylov methods for multiresolution (often re-
ferred to as the recycling of Krylov subspaces) are set in the framework of
GMRes/MinRes [38, 50], we chose to work on the specific case of the resolu-
tion of symmetric, positive definite systems using conjugate gradients (CGs), in
which the convergence is under control and related to easily calculated spectral
properties [49]. In earlier works, the authors developed efficient preconditioners
based on previous Krylov subspaces [40, 41] which took advantage of the con-
jugation properties of CGs, but did not extract the most interesting part of the
information available in the Krylov subspaces, and they proposed augmentation
techniques using Ritz vectors [39]. Typically, these works were aimed at nonlin-
ear mechanical systems solved by Newton-Raphson linearization and FETI or
BDD domain decomposition [18, 27].

1“active” referring to the part of the spectrum of the matrix which is solicited by the
right-hand side.
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The recycling of Krylov subspaces can also be analyzed from the model re-
duction point of view. Since Krylov solvers satisfy Petrov-Galerkin conditions,
they share many common points with strategies based on Karhunen-Loeve ex-
pansion [31, 42, 36]. These similarities are well-known [15, 14, 21]. But our
objective is not to develop reduced models of mechanical systems in order to
perform fast but coarse analyzes; it is to define, improve and reuse reduced
models in order to carry out calculations both rapidly and accurately.

In this paper, we undertake a more in-depth investigation of augmentation
using a selection of post-processed Ritz vectors. In Section 2, we begin with a
detailed presentation of the theoretical framework of the augmented precondi-
tioned conjugate gradient method; then, in Section 3, we propose a first reuse
algorithm in a multiresolution framework (TRKS); in Section 4, we improve this
algorithm by proposing a procedure for selecting the “best” Ritz vectors (SRKS
and “cluster”); finally, in Section 5, we propose an evaluation of the method in
the case of nonlinear mechanics and parametric problems, using domain decom-
position methods [17] to define efficient preconditioners.

2 The augmented preconditioned conjugate gra-
dient method

2.1 Algorithm and properties

Let us consider the linear problem

Ax = b, (2)

where A is an n × n symmetric positive definite matrix, and let us study the
resolution of this system using the augmented preconditioned conjugate gradient
algorithm. With M being the n × n symmetric positive definite matrix of the
preconditioner, we introduce the following notations:

i = 0 . . .m the iteration number

xi the ith approximation

ri = b−Axi = A(x− xi) the ith residual

(3)

With no loss of generality, the presentation can be limited to the case of a zero
initial guess x00 = 0. (Otherwise, one can set b← b−Ax00.)

Let C be a subspace of Rn of dimension nc, and let Matrix C = [c1, . . . , cnc ]
be a basis of C. The search principle of the augmented left-preconditioned
conjugate gradient is:{

find xi ∈ Ki(M−1A, C,M−1r0)
such that ri ⊥ Ki(M−1A, C,M−1r0)

(4)

where Ki(M−1A, C,M−1r0) is the augmented Krylov subspace associated with
preconditioned operator M−1A and augmentation subspace C:

Ki(M−1A, C,M−1r0) = span
(
M−1r0, . . . , (M

−1A)(i−1)M−1r0

)
⊕ C (5)
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A classical implementation relies on the definition of a convenient initializa-
tion and projector pair (x0,P ):

x = x0 + P y

{
CT r0 = 0 ⇐ x0 = C(CTAC)−1CT b
CTAP = 0 ⇐ P = I −C(CTAC)−1CTA

(6)

One should note that since AP = P TAP = P TA augmentation preserves
symmetry. One should also note that PC = 0. The system to be solved is:

AP y = (P TAP )y = r0 = P T b (7)

The C-augmented, M -preconditioned conjugate gradient technique (APCG)
implemented by projection is presented in Algorithm 1. (For the sake of sim-
plicity, the methods will be described assuming exact arithmetic, even though
they are compatible with more realistic full reorthogonalization [28].)

Algorithm 1: APCG(A,M ,C, b)

Calculate AC, (CTAC)−1 ; (P = I −C
(
CTAC

)−1
CTA);

x0 = C(CTAC)−1CT b;
r0 = b−Ax0 = P T b;
z0 = PM−1r0, w0 = z0;
for j = 1, . . . ,m do

αj−1 = (rj−1, wj−1)/(Awj−1, wj−1)
xj = xj−1 + αj−1wj−1
rj = rj−1 − αj−1Awj−1
zj = PM−1rj+1

wj = zj − βjwj−1
βj = (Awj−1, zj)/(wj−1,Awj−1)

end

The following basic relations hold:

(ri, zj) = 0, i 6= j

(wi,Awj) = 0, i 6= j
(8)

With Wi = [w0, . . . , wi−1] and Zi = [z0, . . . , zi−1] being two bases ofKi(PM−1A, z0),
the projector enables the spaces to be divided orthogonally:

Ki(M−1A, C,M−1r0) = Ki(PM−1A, z0)
⊥A
⊕ C (9)

Of course, in the absence of optional constraints (C = 0, P = I), APCG
reduces to standard preconditioned conjugate gradients PCG(A,M , b); if, in
addition, M−1 = I, it becomes a standard conjugate gradient algorithm CG(A,
b).

Let us recall a first result which was proven in [6] for the case of non-
preconditioned augmented conjugate gradients.

4



Proposition 1. Let V = Range(P )

• APCG(A, I,C, b) is equivalent to CG(P TAP|AV , P T b) in the sense that both

generate the same residuals. xi, the ith APCG approximation, is connected to
yi, the ith CG approximation, by xi = x0 + P yi.

• APCG(A, I,C, b) does not break down; it converges, and its asymptotic con-
vergence rate is governed by the condition number κ

(
P TAP|AV

)
6 κ (A).

Consequently, augmentation strategies never decrease the asymptotic con-
vergence rate. The following corollary is straightforward:

Corollary 1. Let D = [d1, . . . , dmd ] be a set of md linearly independent vec-
tors such that E = [C,D] is a full column rank matrix. Let PE = I −
E(ETAE)−1ETA, and let VE be the range of PE.

• APCG(A, I,E, b) is equivalent to APCG(P TAP , I, D, P T b) in the sense
that both generate the same residual. xEi , the ith approximation of APCG(A, I,E,
b), is connected to xDi , the ith approximation of APCG(P TAP , I, D, P T b),
by xEi = x0 + PxDi .

• The asymptotic convergence rate is governed by κ
(
PE

TAPE |AVE

)
6 κ

(
P TAP|AV

)
6

κ (A).

In conclusion, an increase in the size of the augmentation can only improve
the asymptotic rate of convergence. (In the worst case, it leaves it unchanged.)

Now let us focus on the effect of preconditioning. Since M is a symmetric
positive definite matrix, it can be factorized in Cholesky form M = LLT (where
L denotes a lower triangular matrix with positive diagonal coefficients). Let us
introduce the notation:

Â = L−1AL−T ; b̂ = L−1b ; x̂ = LTx

Ĉ = LTC ; P̂ = I − Ĉ(ĈT ÂĈ)−1ĈT Â
(10)

Then, the following equivalence between preconditioned and non-preconditioned
augmented conjugate gradients holds:

Proposition 2. APCG(A,M ,C, b) is equivalent to APCG(Â, I, Ĉ, b̂) with

r̂ = L−1r = ẑ = LT z, ŵ = LTw, α̂ = α and β̂ = β. Its asymptotic convergence

rate is governed by κ
(
P̂ T ÂP̂|ÂV̂

)
6 κ

(
Â
)

.

Proof. Since P̂ = LTPL−T , we obtain directly x̂0 = Ĉ(ĈT ÂĈ)−1ĈT b̂ =

LTx0, r̂0 = b̂ − Âx̂0 = L−1r0 = ẑ0 = LT z0 and ŵ0 = LTw0. By induction,
it follows that α̂j−1 = (r̂j−1, ẑj−1)/(Âŵj−1, ŵj−1) = αj−1, r̂j = L−1rj , β̂j =

(Âŵj−1, ẑj)/(Âŵj−1, ŵj−1) = βj and ŵj = LTwj . Proposition 1 provides the
inequality concerning the asymptotic convergence rate.

Putting these propositions together, APCG(A,M ,C, b) is equivalent to
CG(L−1P TAPL−T , L−1P T b). All these results lead us to propose an efficient
augmentation by analogy with an equivalent, simpler system solved by classical
conjugate gradients.
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2.2 Interpretation and choice of the augmentation

From a “constraint” point of view, the projection guarantees the C-orthogonality
of the residual throughout the iterations (CT rj = 0). For example, in the FETI
domain decomposition method, the residual is the displacement jump between
the subdomains; in the case of shell and plate problems, matrix C is intro-
duced to enforce the continuity of the displacement at the corner points [12]. In
the BDD domain decomposition method, matrix C is associated with the rigid
body motions of floating substructures and, therefore, local Neumann problems
in the preconditioner are always well-posed [29]; for shell and plate problems,
the matrix is enriched by corner mode corrections [26]. In both cases, matrix
(CTAC)−1, called a coarse grid matrix, plays a crucial role in the scalability
of these methods.

From a “spectral” point of view, augmentation can be used to decrease
the active condition number (“active” referring to eigenelements solicited by
the right-hand side) and, thus, improve the asymptotic convergence rate. This
is called a deflation strategy [8, 5], which boils down to building matrix C
by using (approximate) eigenvectors associated with the lowest eigenvalues.
Obviously, when C consists of the nc eigenvectors associated with the low-
est eigenvalues (λ1 6 . . . 6 λnc 6 . . . 6 λn), the condition number decreases
strictly: κ

(
P TAPAV

)
= λn

λnc
< λn

λ1
.

From a “model reduction” point of view, subspace C represents a “macro”
(or coarse) space in which the macro part of the solution is calculated directly
during the initialization while the “micro” part of the solution, when required,
is obtained during the iterations.

2.3 Estimation of computation costs

With regard to the numerical cost of augmentation, the main operations for
the construction of the projector are: (i) the block product AC (and assembly
with neighbors for domain decomposition methods), (ii) the block dot-product
(CTAC) (plus an all-to-all sum for domain decomposition methods), and (iii)
the factorization of the fully-populated coarse matrix (CTAC). Then, the ap-
plication of the projector consists simply of (i) one block dot-product ((AC)Tx)
(plus an all-to-all exchange), (ii) the resolution of the coarse problem, and (iii)
the matrix-vector product (Cα).

Thus, provided that the number of columns of matrix C is small, the main
cost is related to the calculation of AC. One must bear in mind that block
operations (on “multivectors”) are comparatively much faster than single vector
operations, especially when the matrices are sparse (because data fetching is
factorized). In a domain decomposition context, product AC corresponds to
the resolution of Dirichlet or Neumann problems in substructures, which makes
the simultaneous treatment of many columns very efficient (and minimizes the
number of exchanges). One must also remember that a conjugate gradient
iteration involves a preconditioning step which may be expensive. (The cost is
comparable to that of an operator product in optimal domain decomposition
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methods.) Thus, the additional cost of augmentation relative to the cost of one
iteration depends on many parameters (the size of the problem, the number of
augmentation vectors, the number of subdomains, the preconditioner chosen...).
Typically, in the examples presented in this paper, we found that, using an
optimal preconditioner, the CPU cost of between 4 and 7 augmentation vectors
(depending on the hardware configuration) cost no more than one CG iteration.

A question which is not addressed in this paper is the verification of the
full-rank property of matrix C, which affects the quality of the factorization
of matrix (CTAC). Strategies to correct a dependence among the columns of
matrix C due to inexact arithmetic can be found in [1].

3 Total reuse of Krylov subspaces

In this section, we show how it is possible to define efficient augmentation strate-
gies in a multiresolution context. Let us consider the sequence of linear systems:

A(k)x(k) = b(k) , k = 1, . . . p (11)

where A(k) is an n× n symmetric positive definite matrix and b(k) is the right-
hand side. Each linear system is solved using an augmented preconditioned
conjugate gradient algorithm APCG(A(k), M (k),C(k), b(k)). Let m(k) be the
number of iterations which is necessary to reach convergence, and let

W (k)
m =

[
w

(k)
0 , . . . , w

(k)

m(k)−1

]
(12)

be a basis of the associated Krylov subspace.
As explained in the previous section, augmentation never increases the con-

dition number which governs the asymptotic convergence rate. More precisely,
the presence of active eigenvectors of the current preconditioned problem in C(k)

may increase the efficiency of the iterative solver significantly. Classical strate-
gies can be used in the case of invariant preconditioned operators (A(k) = A,
M (k) = M) and multiple right-hand sides.

It is more difficult to define efficient strategies in the general case of varying
operators with no information available on their evolution. A simple and natural
idea is to reuse previous Krylov subspaces. A first algorithm which reuses all
the previous Krylov subspaces is Total Reuse of Krylov Subspaces (TRKS)
(Algorithm 2), which needs only a few comments:

• Since (according to (8)) C(k)TA(k)W
(k)
m = 0, the vectors of the concate-

nated matrix C(k+1) are linearly independent. Therefore, APCG(A(k+1),
M (k+1),C(k+1), b(k+1)) does not break down and converges.

• The previous Krylov subspaces are fully reused through concatenation
without post-processing; the only downside is that the memory require-
ments increase due to the need to save the Krylov subspaces.
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• If the number of columns of matrix C(k) becomes too large, the method
may become computationally inefficient, even though the number of iter-
ations decreases considerably. Nevertheless, TRKS probably leads to the
best reduction in the number of iterations achievable by reusing Krylov
subspaces. Therefore, it can be used as a reference in terms of the reduc-
tion of the number of iterations for any other algorithm based on a reuse
of Krylov subspaces.

• One possible way to reduce the cost of TRKS without reducing the size
of C consists in using approximate solvers, as in the IRKS strategy [41].

Algorithm 2: TRKS-APCG

Initialize C(0) = C0 (an n×m0 full-rank matrix);
for k = 0, . . . , p− 1 do

Solve A(k)x(k) = b(k)

with APCG(A(k), M (k),C(k), b(k));

Define W
(k)
m =

[
. . . , w

(k)
j , . . .

]
06j<m(k)

;

Concatenate: C(k+1) =
[
C(k),W

(k)
m

]
end

In order to reduce the cost associated with the total reuse of Krylov sub-
spaces, we propose to work on extracted sub-subspaces, an operation often re-
ferred to as the recycling of Krylov subspaces. The objective is to retain the
smallest number of independent vectors which achieve the greatest decrease in
the number of iterations. Clearly, the most effective approach would be to
calculate approximate eigenvectors from the previous Krylov subspaces for the
current operator. However, because of the variability of the operators, the ex-
traction of such information would be extremely time consuming and would
affect the global efficiency. Conversely, approximate eigenvectors of previous
problems can be calculated from the associated Krylov subspaces at nearly no
cost. In the following section, we describe an efficient algorithm for the extrac-
tion of such approximation vectors along with a simple selection procedure to
recycle only a few of these vectors. Of course, the performance of our method
depends on the stability of the eigenspaces from one system to another. This
topic, especially concerning the lower part of the spectrum, is discussed in [24].

4 Selective recycling of Krylov subspaces

The standard convergence of conjugate gradients corresponds to an asymptotic
convergence rate. Using this property to predict the number of iterations n

ε

which is required to reach an accuracy level ε
cg

leads to a huge overestimation.
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Indeed, one has:

‖xi − x‖A
‖x

0
− x‖A

6 2(σ
1,n

)i 6 ε
cg

⇒ i > n
ε

=
ln(εcg/2)

ln(σ
1,n

)

with σ
r,s

=

√
κr,s − 1
√
κ
r,s

+ 1
and κ

r,s
=
λ
r

λ
s

(13)

This result alone cannot explain the improvement in the convergence rate
observed during the iteration process. This superconvergence phenomenon can
be explained by a study of the convergence of Ritz values [33] which enables
one to define an instantaneous convergence rate [49]. This explanation can be
improved by a study of the influence of the distribution of the eigenvalues [35, 2].

The objective of recycling Krylov subspaces is to find the best augmentation
space in order to trigger superconvergence quickly. This section is organized as
follows: we start with a review of Ritz eigenelement analysis and continue with
a brief presentation of the improved convergence results; these results lead to a
number of selection strategies, which will be assessed in Section 5.

4.1 Ritz analysis: theory and practical calculation

For 0 6 i < m, Ritz vectors (ŷim) and values (θim) are approximations of the

eigenvectors and eigenvalues of the symmetric positive definite matrix Â; their
definition is similar to that of the iterates in the conjugate gradient algorithm
(4) {

find (ŷim, θ
i
m) ∈ Km(Â, v̂0)× R

such that Âyim − θimyim ⊥ Km(Â, v̂0)
(14)

The symmetric Lanczos algorithm [45] enables one to build a particular or-

thonormal basis of Km(Â, v̂0), denoted Vm. Then, the search principle becomes:

yim = V̂mq
i
m, V̂ T

m ÂV̂mq
i
m = θimq

i
m (15)

The Lanczos basis V̂m makes the Hessenberg matrix Ĥm = V̂ T
m ÂV̂m symmet-

rical and tridiagonal. V̂m and Ĥm can be recovered directly from the conjugate
gradient coefficients [44]:{

V̂m =
(
. . . , (−1)j

r̂j
‖r̂j‖ , . . .

)
06j<m

Ĥm = tridiag(ηj−1, δj , ηj)06j<m

with δ0 =
1

α0
, δj =

1

αj
+
βj−1
αj−1

, ηj =

√
βj

αj

(16)

Since matrix Ĥm is symmetrical and tridiagonal, its eigenelements (θmj , q
m
j )16j6m

can be calculated easily, for example using a Lapack procedure. Let us de-
fine Θm = diag(θ1m 6 . . . 6 θmm) and Qm =

[
q1m, . . . , q

m
m

]
such that Ĥm =

QmΘmQm
T . Θm and Ŷm = V̂mQm are the Ritz values and associated Ritz
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vectors, which are approximations of the eigenelements of operator Â and sat-
isfy:

Ŷ T
m ÂŶm = Θm and Ŷ T

m Ŷm = Im

We presented Ritz analysis for the equivalent symmetric system described
previously because symmetry simplifies the calculation of eigenelements, but
the analysis can be transferred back to the left-preconditioned system using the
following transformation rules:

Vm = L−T V̂m =

[
. . . , (−1)j

zj
(rj , zj)1/2

, . . .

]
Hm = Ĥm = V T

mAVm

Ym = L−T Ŷm = VmQm

(17)

The Ritz vectors are the solution of a generalized eigenproblem and satisfy the
following orthogonality properties:

Y T
mAYm = Θm and Y T

mMYm = Im (18)

One can show that when m increases the Ritz values converge toward the
eigenvalues of Â, and that the convergence is either from above or from below
depending on their rank [49, 51]:

θ1m > θ1m−1 > θ2m > . . . > θm−1m > θm−1m−1 > θmm (19)

In addition, in the case of clearly distinct eigenvalues, the convergence of a Ritz
value results in the convergence of the associated Ritz vector.

4.2 Relation between the convergence of conjugate gradi-
ents and the convergence of the Ritz values

In [49], the superconvergence phenomenon is explained by the convergence of
the Ritz values through the definition, at each iteration, of a instantaneous
convergence rate associated with the part of the spectrum that is not yet ap-
proximated correctly by the Ritz values: at a given conjugate gradient iteration,
one can find a deflated system (with some of its extreme eigenvalues removed)
with similar behavior. Let [λ

l
, .., λ

r
] be the spectrum of the deflated operator.

The equivalent convergence rate is:

‖x− x
i+1
‖A 6 F

i,l,r
2 σ

l,r
‖x− x

i
‖A (20)
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where F
i,l,r

quantifies the convergence of the l smallest and r largest Ritz values
to the extreme eigenvalues:

F
i,l,r

= max
l′>l

J (i)
l,l′

max
r′>r

L(i)
r,r′

J (i)
l,l′

=

l∏
j=1

∣∣∣∣1− λ
l′

λ
j

∣∣∣∣
∣∣∣∣∣1− λ

l′

θij

∣∣∣∣∣
−1

L(i)
r,r′

=

r∏
j=1

∣∣∣∣∣1− λ
n−r′

λn+1−j

∣∣∣∣∣
∣∣∣∣∣1− λ

n−r′

θii+1−j

∣∣∣∣∣
−1

Since this result holds for every pair (l, r), the effective convergence rate at
Iteration i corresponds to the pair (l, r) which minimizes σ

i,l,r
= F

i,l,r
σ
l,r

.
Then, after some iterations, the superconvergent conjugate gradient algo-

rithm behaves very much like a conjugate gradient algorithm augmented by
the extreme eigenvectors which are associated with the converged Ritz values.
In a multiresolution context, provided the linear systems have similar spectral
properties, the Ritz vectors associated with the converged Ritz values obtained
for one system should define a viable augmentation space for the subsequent
resolutions.

4.3 Effect of the distribution of the eigenvalues

The effect of the distribution of the eigenvalues on the convergence of conjugate
gradients was studied in [35, 2]. The results take into account the fact that
preconditioning often leads to clustered eigenvalues as opposed to uniformly
distributed eigenvalues, as can be seen in Figure 1.

In addition to other results, the authors showed that if a spectrum consists of
p isolated eigenvalues in the high part of the spectrum, p isolated eigenvalues in
the low part of the spectrum and n−2p uniformly distributed central eigenvalues,
then the conjugate gradient convergence takes the form:

nε > ñε = 2p+ int

 ln (ε
cg
/2)

ln σ
p+1,n−p

−

∑p
i=1 ln

(
λ
n−p+i
4λ
i

(
1− λ

i

λ
n−p+i

))
ln σ

p+1,n−p

 (21)

The convergence rate is approximately equal to the classical convergence rate
for the central part, plus one iteration per higher eigenvalue and a little more
than one iteration per lower eigenvalue. These results can be combined with the
work by Jiao [51, 22] on the convergence of Ritz values. In general, since the
method is related to the power iteration method, a correct approximation by
the Ritz values is obtained first for the highest eigenvalues, then for the lowest
part of the spectrum, resulting in superconvergence (which is governed by the
asymptotic convergence rate of the reduced spectrum).
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4.4 Selection procedures

The results of Section 4.2 lead to a first proposal of a selection procedure for
converged Ritz vectors: convergence is identified by the stagnation of the Ritz
values; if the conjugate gradient algorithm converges at iteration m, the Ritz
values are calculated for the previous two states Θm and Θm−1. Once ranked,
the m most recent Ritz values Θm are compared to the m − 1 previous values
according to the following criteria:

θjm has converged if
|θjm − θ

j
m−1|

|θjm|
6 ε, 1 6 j 6 m−1

θm−jm has converged if
|θm−jm − θm−1−jm−1 |

|θm−jm |
6 ε, 0 6 j 6 m− 2

(22)

where ε is a user parameter which is easy to adjust since the criterion is generally
either very high (before the convergence of the Ritz value) or very small (after
convergence). Figure 1 illustrates that property with the simple example of
the operator associated with the decomposition of a linear elastic cube into ten
subdomains; in that case, the higher half of the spectrum has converged.
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Figure 1: Ritz spectrum and convergence of the Ritz values

The principle of the selective recycling of Krylov subspaces (SRKS-APCG)
is described in Algorithm 3. Basically, in addition to the memory required by
APCG, the SRKS-APCG algorithm requires storage for m n-vectors (zj)j=1,m.
One should note that the selected vectors are normalized by the square root
of the associated Ritz value in order to improve the condition number of the
coarse matrix. (If operator A remained constant, matrix (CTAC) would be
the identity matrix.)

For better computational efficiency, a restart parameter can be introduced
in order to limit the size of the augmentation space associated with parameter

12



Algorithm 3: SRKS-APCG

Initialize C(0) = C0 (full column rank matrix);
for k = 0, . . . , p− 1 do
• Solve A(k)x(k) = b(k) with APCG(A(k),M (k),C(k), b(k));

• Define Vm =
[
. . . , (−1)j

zj
(rj ,zj)1/2

, . . .
]
06j<m

;

• Define Hm = tridiag(ηj−1, δj , ηj)06j<m

δ0 = 1
α0

, δj = 1
αj

+
βj−1

αj−1
, ηj =

√
βj
αj

;

• Compute eigenelements (Qm,Θm) of Hm (θ1m > . . . > θmm);
• Compute Ym = VmQm =

[
y1m, . . . , y

m
m

]
;

• Extract Hm−1 = tridiag(ηj−1, δj , ηj)06j<m−1 ;

• Compute eigenvalues (θjm−1) of Hm−1 ;
for j = 1, . . . ,m− 1 do

C =

[
C,

yjm√
|θjm|

]
if |θjm − θ

j
m−1| 6 ε|θjm|;

C =

[
C,

yj+1
m√
|θj+1
m |

]
if |θj+1

m − θjm−1| 6 ε|θj+1
m |

end

• Concatenate C(k+1) = [C(k);C] , C = [0];
• If dim(C(k+1)) > nclim , then C(k) = C(0)

end

nclim in Algorithm 3. This limit size can be set after a complexity analysis
under the assumption that all non-augmented systems would be solved in the
same number of iterations. However, we did not use such a restart procedure in
our experiments.

In order to be even more selective, we propose a reselection strategy based
on a prediction of the efficiency of the retained vectors. Indeed, the results of
Section 4.3 in terms of the effect of the distribution of the eigenvalues lead us
to retain only the converged Ritz vectors which belong to the external part of
the spectrum:

• this is known to be the first part of the spectrum whose approximation by
Ritz values is good;

• since the convergence of Ritz vectors is identified by the stagnation of the
associated Ritz values, the fact that the external Ritz values are distinct
ensures that the Ritz vectors approximate the eigenvectors correctly [51];

• while choosing vectors in the dense central zone does not modify the shape
of the spectrum and does not improve convergence, selecting the external
part of the spectrum triggers superconvergence instantly.

In order to select only the external part of the spectrum, we implemented
the cluster identification algorithm proposed in [32]. This algorithm seeks the
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piecewise constant distribution which is nearest (in a least squares sense) to the
distribution of the distances among the sorted eigenvalues. The only parameter
required is the minimum size of the cluster, which we set at one-fifth the number
of preselected vectors. As will be shown in the next section, the performance
achieved with this reselection algorithm is not outstanding, but some results in
terms of gain per augmentation vector are worth considering.

5 Numerical assessments

We present three numerical experiments. Two concern the evaluation of a struc-
ture made of random materials, as is the case in a Monte-Carlo simulation. In
the first case, the materials are elastic; in the second case, which is a nonlinear
problem, they are elastic-plastic. The last case is a large displacement problem,
which raises specific difficulties.

The methods were implemented in the ZEBULON code [34] and paral-
lelism was introduced using MPI. The calculations were performed on the LMT-
Cachan cluster, which consists of dual quadcore and dual hexacore processors
connected by a gigabit network. The calculations were always carried out on
homogeneous sets of processors which were entirely dedicated to one task which
fit entirely in memory, so swapping was not necessary. In each case, we indicate
the CPU time which measures the amount of work performed for one subdo-
main. The Wall Clock Time (WCT), a global measure which is more sensitive
to external perturbations induced by the operating system and the presence of
other users, was considered to be unreliable in many cases; so we mention it
only for the first set of experiments. One should note that the gains calculated
with WCT were always greater.

The CPU plots show the total time as well as the time dedicated to aug-
mentation (preparation of the coarse operator, initialization and projections);
the difference represents the iterations of the solver.

All the calculations used a dual formulation of the interface problem through
domain decomposition (FETI). The convergence was evaluated using the norm
of the residual (which corresponds to the displacement gaps at the interfaces)
normalized by the condensed right-hand side. Classically for such structural
problems, total reorthogonalization was used to enforce the A-conjugation of
the search directions. (The case without reorthogonalization is discussed briefly
in the first example.)

5.1 The case of a sequence of linear systems

We considered a cube (of side 50 mm) with 4×4×4 = 64 small cubic inclusions
(of side 5.5 mm). A slice through this structure is shown in Figure 2. The
cube was clamped over one side, and the opposite side plus another side were
subjected to uniform pressure. The mesh consisted of 125, 000 linear hexahedral
elements for a total of 400, 000 degrees of freedom. Three automatic decomposi-
tions (into 12, 48 and 96 subdomains) were performed using the Metis algorithm

14



[23] (see Figure 3). The resulting interface system contained 54, 000 unknowns
for the 12-subdomain decomposition, 96, 000 unknowns for the 48-subdomain
decomposition and 133, 000 unknowns for the 96-subdomain decomposition. All
the materials were isotropic, linear and elastic, and were characterized by their
Young’s modulus and Poisson’s coefficient. The material properties of each in-
clusion and of the matrix were chosen randomly following a normal law with
a relative standard deviation equal to 10%, leading to a ±23% variation range
about the nominal value. The average Young’s modulus was 200 MPa for the
matrix and 20, 000 MPa for each inclusion, and the average Poisson’s coeffi-
cient was 0.27 for the matrix and 0.35 for each inclusion. The objective was to
perform the calculations for 40 draws of the 130 coefficients.

Figure 2: A slice through the heteroge-
neous cube (shear stress) Figure 3: The decomposition into 48

subdomains

We used a dual formulation (FETI) with both a Dirichlet (optimal) and a
lumped preconditioner, leading to 10−3 and 10−6 APCG accuracy respectively.
We considered the following algorithms: conjugate gradients (cg), total reuse of
Krylov subspaces (trks) and selective reuse of Krylov subspaces with two values
of the criterion, ε = 10−6 (srks6) and ε = 10−14 (srks14). In addition, in the
last case (ε = 10−14), we also attempted to further refine the selection by not
selecting the converged Ritz values contained in the central cluster (identified
by the algorithm proposed by [32]); this method is labeled (clust14).

5.1.1 Comparison of the strategies

The results for the 12-subdomain decomposition are summarized in Table 1,
which gives the average number of APCG iterations to convergence, the average
size of the augmentation space, the final size of the augmentation space, the
average CPU and wall clock times per system, from which we also deduced the
augmentation time (operator preparation and projection). Computations were
conducted one dual hexacore processor (one subdomain per core). When the
average and final sizes of the augmentation space are close, this means that
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12 subdomains
accur. precond. avg.

# it
avg.
nc

max
nc

avg.
to-
tal
CPU

avg.
CPU
aug.

avg.
to-
tal
WCT

avg.
WCT
aug.

10−3

D
ir

ic
h

le
t cg (no reo.) 70 — — 23.5 0 31.8 0

cg 44.3 — — 16.0 0 24.5 0
trks 2.4 77.8 96 7.1 6.3 9.1 7.6
srks6 20.5 41.3 50 11.0 3.8 15.6 4.7
srks14 25.6 24.6 27 11.7 2.7 17.1 3.5
clust14 30.6 16.8 24 13.8 2.2 25.3 3.2

L
u

m
p

ed

cg (no reo.) 145 — — 27.7 0 40.3 0
cg 68.1 — — 13.6 0 24.0 0

trks 0.4 71.8 74 5.7 5.6 6.8 6.7
srks6 27.4 81 108 12.3 6.5 18.0 8.0
srks14 32.0 59.6 71 11.8 5.1 18.1 6.4
clust14 51.1 20 39 12.8 2.3 21.7 3.2

10−6

D
ir

ic
h

le
t

cg (no reo.) 174 — — 58.3 0 85.8 0
cg 84.4 — — 30.0 0 49.1 0

trks 13.2 382.9 551 46.5 41.3 60.4 52.8
srks6 36.7 104.3 142 22.3 8.6 35.7 11.0
srks14 42.8 72.6 87 22.7 6.3 36.2 8.1
clust14 60.8 35.2 77 25.7 3.6 39.8 4.9

L
u

m
p

ed

cg (no reo.) >400 — — >78 0 >110 0
cg 147.7 — — 31.7 0 61.0 0

trks 16.3 516.7 735 70.2 65.7 93.3 85.9
srks6 54.2 225.7 311 33.4 20.5 49.4 25.6
srks14 60.6 170.2 216 29.2 15.0 44.2 18.3
clust14 129.4 20 39 30.4 2.6 55.6 4.0

Table 1: Performance summary for the cube with inclusions

most of the augmentation space was identified with the first systems. For a
given configuration (accuracy and preconditioner), the figures in bold in the
three columns ‘average number of iterations’, ‘average CPU time’ and ‘average
wall clock time’ indicate the best strategy in terms of gain per unit augmentation
vector compared to CG.

For the 12-subdomain decomposition, Figures (4, 6, 8) (for an objective of
10−3 accuracy) and Figures (5, 7, 9)) (for an objective of 10−6 accuracy) give
the evolutions of the number of APCG iterations to convergence for each linear
system, the dimension of the augmentation space nc and the the CPU time for
the resolution of each system, with both lumped and Dirichlet preconditioners.

Without full reorthogonalization, the performance was very poor and led to
about twice the number of iterations of the recommended fully reorthogonalized
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Figure 4: Cube 12 subdomains, lumped,
10−3accuracy, number of iterations per
linear system

Figure 5: Cube 12 subdomains, Dirich-
let, 10−6accuracy, number of iterations
per linear system

Figure 6: Cube 12 subdomains, lumped,
10−3accuracy, dimension of the aug-
mentation space

Figure 7: Cube 12 subdomains, Dirich-
let, 10−6accuracy, dimension of the
augmentation space

conjugate gradients. This was expected because systems resulting from domain
decomposition formulations are known to often require full reorthogonalization
[13]. Furthermore, one should note that the additional iterations carried out in
the non-reorthogonalized case led to vector sets which made the Ritz analysis
more complex due to the appearance of nonphysical, multiple eigenvalues. The
non-reorthogonalized approach was no longer considered in the other examples.

With the TRKS approach, two types of behavior were observed. In the low-
accuracy case (10−3), for both preconditioners (but especially for the lumped
preconditioner), the size of the augmentation space reached a plateau, which
means that the augmentation space contained almost all the required informa-
tion; the gains in terms of both the number of iterations (> 90%) and the CPU
time (> 55%) were excellent. In the high-accuracy case (10−6), the size of the
augmentation space never stabilized; therefore, even though the number of it-
erations decreased drastically, the CPU time increased. Table 2 gives extended
performance results for TRKS which confirm this analysis. The gains are given

17



Figure 8: Cube 12 subdomains, lumped,
10−3accuracy, CPU time per linear sys-
tem

Figure 9: Cube 12 subdomains, Dirich-
let, 10−6accuracy, CPU time per linear
system

relative to conjugate gradients. The efficiency of augmentation is defined by
the average decrease in the number of iterations per augmentation vector; the
higher the required accuracy, the less efficient the TRKS approach. These re-
sults justify our decision to select the subspaces so that the dimension of the
augmentation space would remain under control.

The SRKS14 approach succeeded in limiting the size of the augmentation
space and led to a satisfactory decrease in the number of iterations. As can be
seen on the figures, SRKS6 did not stabilize the augmentation space as efficiently
and behaved half way between TRKS and SRKS14; therefore, we will choose
SRKS14 as our reference algorithm from now on.

The cluster strategy as it stands today gave unsatisfactory results: even
though it often led to the best gain per augmentation vector, it seemed to impair
the selection of useful vectors and allow much less reduction in the number of
iterations than SRKS. After the resolution of many systems, it tended to lead
to the same augmentation space as SRKS.

To confirm that hypothesis, we compared the spaces CSRKS and Ccluster
after the 40 resolutions for the low-accuracy Dirichlet case. We used the follow-
ing procedure: first, the vectors were orthonormalized using SVD: C = UΣV T ;
then SVD was applied to the concatenated matrix [USRKS , Ucluster]. A plot of
the singular values is shown in Figure 10. Independent spaces would lead to a
constant value equal to 1, while for nested spaces the common space would lead
to {
√

2, 0} pairs of singular values. One can observe that the spaces are not
exactly nested, but come quite close.

In conclusion, the cluster strategy is not mature yet, but it is promising.
It was not considered for the following experiments because, due to the larger
number of systems involved, it would behave quite similarly to SRKS.

5.1.2 Study of SRKS14 in various configurations
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Figure 10: Singular values of
[CSRKS , Ccluster]

accur. precond. # subdomains iteration gain CPU gain efficiency of
augmenta-
tion

10−3
lumped

12 99.4% 58.2% 0.94
48 97.7% 60.1% 0.97

Dirichlet
12 94.7% 55.5% 0.54
48 96.2% 62.6% 0.69

10−6
lumped

12 89% -121.2% 0.25
48 90.2% -162.3% 0.37

Dirichlet
12 84.4% -55.1% 0.19
48 83.3% -90.7% 0.21

Table 2: Relative performance of TRKS

Table 3 shows the relative performance of SRKS14 as a function of the num-
ber of subdomains, of the preconditioners and of the accuracy. The efficiency of
the augmentation is defined as the decrease in the average number of iterations
per augmentation vector. One can observe that the efficiency ranged between
0.5 and 0.85 and was best for the lower accuracy and the improved precon-
ditioner. For these spectra in which there exist no small isolated eigenvalues
(which could lead to efficiencies greater than 1), such results are consistent with
the theory (see Section 4.3). In the next section, we will see that this moderate
efficiency does not preclude significant CPU improvements.

The gains in terms of the number of iterations were relatively stable, typically
between 50% and 60% in the high-accuracy case.

5.1.3 Influence of the hardware configuration on the CPU gains

Now, let us study the performance of SRKS14 in terms of CPU time for the
same decomposition into 48 subdomains, but using different hardware configu-
rations:

1. Configuration A corresponds to 4 dual hexacore nodes with 1 subdomain
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precond. accur. # subdomains CG avg.
# itera-
tions

avg. nc iteration gain efficiency of
augmenta-
tion

lumped
10−3

12 68.1 59.6 52.9% 0.6
48 43.7 28.2 54.2% 0.84

10−6
12 147.7 170.2 59% 0.51
48 162.7 186.3 62.5% 0.55

Dirichlet

10−3
12 43.3 24.6 42.2% 0.76
48 50.7 31 48.6% 0.79
96 67.4 51.1 51.7% 0.68

10−6
12 84.4 72.6 49.3% 0.57
48 116. 111.5 57.2% 0.6
96 140.7 141.9 60.3% 0.6

Table 3: Iteration gains for SRKS14

per core;

2. Configuration B corresponds to 6 dual quadcore nodes with 1 subdomain
per core;

3. Configuration C corresponds to 3 dual quadcore nodes with 2 subdomains
per core;

4. Configuration D corresponds to 2 dual quadcore nodes with 3 subdomains
per core.

One can note that the processors in Configuration A were different from those
used in the other cases. In all the cases, the memory was sufficient to avoid
swapping. The results are given in Table 4 for the Dirichlet preconditioner and
in Table 5 for the lumped preconditioner. One can see that Configurations B,C
and D had similar performances and were slower than Configuration A due to
the different memory technology.

One interesting factor is the ratio of the average CPU cost of an iteration to
the average CPU cost of an augmentation vector (the last columns of Table 4
and 5). One can see that in Configuration A, 4 augmentation vectors cost no
more than one iteration; in the other configurations 7 augmentation vectors
cost no more than one iteration. Since we saw that one needs about 1/0.6 ' 1.6
augmentation vectors to save one iteration, the advantage of augmentation is
clear. Indeed, we observe a 32% CPU improvement in Configuration A and a
40% to 50% improvement in the other configurations.

Note that when the lumped preconditioner is used the equivalent cost of
an iteration is only 2.8 augmentation vectors in Configuration A and 4.5 aug-
mentation vectors in Configuration D (see Table 5). Since the efficiency of the
augmentation vectors is less when this inexpensive preconditioner is used (in
the high accuracy case), so is the CPU improvement.
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Configuration CG avg. CPU CPU gain CPU per iteration /
CPU per augm. vector

A 9.5 32.6% 4
B 25.7 41.5% 6.7
C 29.7 48.9% 7.7
D 29.9 47.6% 7.8

Table 4: CPU performance of SRKS14 for 10−6 accuracy with the Dirichlet
preconditioner

Configuration CG avg. CPU CPU gain CPU per iteration /
CPU per augm. vector

A 10.7 22.4% 2.8
D 27.4 33.3% 4.5

Table 5: CPU performance of SRKS14 for 10−6 accuracy with the lumped
preconditioner

The ratio of the CPU time per iteration to the CPU time per augmentation
vector for SRKS (Column 4 of the previous tables) turned out to be relatively
stable for a given machine with a given preconditioner. This is due to the
stability of the size of the augmentation space which prevented the cost from
soaring (as would happen with TRKS). Thus, the CPU performance can be
deduced from the iteration gains and the augmentation efficiency (see Table 3).
For instance, the CPU gain for SRKS with the 96-subdomain decomposition
was slightly greater than 50%.

5.2 The case of a sequence of nonlinear problems

Now let us consider a hexahedral holed plate (10×10×0.2 mm with a center hole
of radius 1 mm, see Figure 11) subjected to unidirectional tension (a prescribed
normal displacement). The plate was discretized into 61, 000 linear hexahedral
elements for a total of 41, 000 degrees of freedom. The structure was divided
into 8 subdomains using the Metis algorithm, which resulted in an interface
system with 3, 000 unknowns. The problem was solved using one 8-core proces-
sor (one subdomain per core). Elastic-plastic behavior with nonlinear isotropic
hardening and a Von Mises’-type plasticity criterion was assumed. Denoting σ
the Cauchy stress tensor, ε(u) the symmetric gradient of the displacement field
u, and K the Hooke tensor, the material law can be written as:

ε(u) = εe + εp, σ = K : εe

if f(σ) = 0 then ε̇p = λf
,σ

if f(σ) 6 0 then ε̇p = 0

f(σ) =
√

3
2 σ : σ −

(
R

0
+Q

(
1− e−bλ

)) (23)
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The coefficients were assigned a normal law with a 10% relative standard de-
viation, which implied variations of up to ±23% in the coefficients. The mean
values of the material parameters were: E = 200, 000 MPa, ν = 0.3, R0 = 300
MPa, b = 22 and Q = 170 MPa. The loading was applied in two steps: first,
a single increment to reach the elastic limit; then, 16 equal increments in order
to multiply the prescribed displacement by 4. The objective of the study was
to analyze 21 configurations.

Again, the linear solver used was FETI with a Dirichlet or lumped precon-
ditioner. The accuracy objective for the linear systems was set at 10−6. (The
accuracy must be high for the nonlinear process to run well). Because of the
approximations, not all the methods converged in the same number of Newton
iterations; on average, one nonlinear analysis required the resolution of 95 tan-
gent systems. Table 6 summarizes the performances of the various methods;
Figure 12 shows the evolution of the average number of APCG iterations with
the lumped preconditioner during the sequence of linear systems; Figure 13
shows the evolution of the size of the augmentation space; Figures 14 and 15
show the evolutions of the average CPU time and wall clock time for the resolu-
tion of one linear system along with the evolution of the average augmentation
time (operator creation and projection).

Figure 11: The holed
plate example (plastic
strain)

precond. method avg.
# it

avg.
nc

max
nc

avg.
CPU

avg.
WCT

Dirichlet cg 25.6 – – 1.21 3.03
Dirichlet trks∗ 1.4 358 492 2.66 9.83
Dirichlet srks14 16.1 17 19 0.98 2.35
lumped cg 41.4 – – 1.03 3.24
lumped trks∗ 1.2 520 695 4.72 6.98
lumped srks14 19.1 43 45 0.87 2.08

∗ calculation too slow, was stopped before all the systems were

solved

Table 6: Holed plate, performance summary

Figure 12: Plate, lumped – avg. # it. /
linear system

Figure 13: Plate, lumped – dimension
of aug. space
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Figure 14: Plate, lumped – avg. CPU
time / system

Figure 15: Plate, lumped – avg. wall
clock time / system

This test leads to conclusions similar to the previous ones. More specifi-
cally, one can observe that the SRKS augmentation space selected after the first
nonlinear configuration remained stable. Conversely, since the TRKS augmen-
tation space never reached a plateau, the solutions of the linear systems did not
belong to a common space. SRKS was the most efficient method, leading to a
20% CPU gain and a 36% wall clock time improvement.

5.3 The case of a large displacement problem

Finally, let us consider the problem of the buckling of a straight heterogeneous
beam with a circular cross section (length/diameter ratio equal to 30), clamped
at one end and subjected to an axial pressure at the other, with no radial
displacement. The heterogeneities consisted of five straight fibers whose stiffness
was 1, 000 times that of the matrix. The problem was formulated in the updated
Lagrangian framework, assuming linear elastic behavior (characterized by the
Young’s modulus and Poisson’s coefficient) in the current configuration. The
beam was discretized into 90, 000 linear hexahedral finite elements for a total of
300, 000 degrees of freedom. It was divided into 10 subdomains using the Metis
algorithm, leading to an interface system with 16, 000 unknowns. A single 12-
core processor was used (1 subdomain per core, leaving 2 inactive cores). The
pressure was applied incrementally up to the configuration shown in Figure 18,
in which the maximum axial displacement was about 3% of the total length.
12 increments were used, leading to the resolution of about 30 tangent linear
systems.

We used a FETI solver with a Dirichlet preconditioner and an “identity”
projector. The FETI convergence criterion was set to 10−6. Figure 16 shows
the evolution of the number of conjugate gradient iterations required for the
resolution of each linear system. Figure 17 shows the evolution of the size
of the augmentation space. Three algorithms were tested: classical conjugate
gradients, total reuse of subspaces, and selective reuse of subspaces (ε = 10−14).
Table 7 summarizes the main results.

The following observations can be made:
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Figure 16: Buckling of the heteroge-
neous beam: number of iterations per
linear system

Figure 17: Buckling of the heteroge-
neous beam: dimension of the augmen-
tation space for each linear system

Figure 18: The beam in the refer-
ence and deformed configurations,
with a view of the cross section

• The performance of TRKS was really impressive because the systems con-
verged in 10 times fewer iterations than with CG, but the size of the
associated augmentation space was large (up to 208 vectors) and never
ceased to increase;

• SRKS appeared to be efficient: the number of iterations was divided by 3
with a space whose size increased slowly, then reached a plateau;

• With the hardware configuration used, the best results in terms of com-
putation time (a 48% CPU improvement) were achieved with TRKS, but
the gain normalized by the number of augmentation vectors was better
with SRKS (a 29% CPU improvement). SRKS was truly successful in
controlling the dimension of the augmentation space.

In this example, the augmentation proved to be very efficient in terms of the
iteration gain per augmentation vector, especially for SRKS (0.85). This was
probably because of a specificity of the spectrum of the preconditioned operator
due to the use of domain decomposition in large displacements. Indeed, the
tangent matrix of a floating subdomain with prescribed Neumann conditions
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method avg. # it. avg. nc CPU WCT
CG 97.2 – 392 504

TRKS 7.8 131.7 203 217
SRKS 14 33.8 75.1 278 298

Table 7: Recycling performance for the
buckling problem

may become non-positive, contrary to the Dirichlet operator which remains
positive definite. It is known that a slight lack of positivity of the operator
does not prevent reorthogonalized conjugate gradients from converging [37], but
convergence is slower than when all the eigenvalues are positive. The positivity
of the preconditioner makes the selection procedure still possible. Moreover,
the negative eigenvalues are systematically selected by the procedure, so using
augmentation causes the solver to iterate in the subspace in which the operator
is positive, leading to a much better convergence rate.

6 Conclusion

This paper dealt with the resolution of sequences of large linear systems with
varying matrices and right-hand sides using conjugate gradients. We proposed
several algorithms based on the augmentation of the current Krylov subspace by
a selection of previously generated subspaces. The advantage of these methods
is that some of the iterations are replaced by the preprocessing of a coarse
problem associated with optimized operations.

When low accuracy is sufficient, total reuse of the previous subspaces (the
TRKS algorithm) appears to lead to satisfactory results. When high accuracy
is required, the subspaces are too unstable, which causes the dimension of the
TRKS augmentation space to soar. Therefore, we proposed to retain only the
part of the subspace generated by the Ritz vectors associated with converged
Ritz values of the preconditioned operator (the SRKS algorithm). These vectors
can be built very inexpensively. Such an augmentation was found to remain
stable throughout the linear systems and to lead to a reduction in the number
of iterations which is consistent with the theory. In terms of computation time,
the proposed method leads to a variable, but always positive, gain compared to
non-augmented systems. We observed CPU time improvements of 20% to 50%,
and wall clock time improvements of 40% to 70%.

Up until now, our attempts to improve the selection algorithm by eliminat-
ing the converged values in the central part of the spectrum have not led to
impressive results. This probably means that the Ritz vectors associated with
converged Ritz values contain meaningful information which cannot be removed
from the analysis of the current system. A continuation of this work could con-
sist in a better analysis of the accumulation of the augmentation vectors. This
can be done by studying the coarse matrix CTAC whose distance to the identity
matrix characterizes the variation of the Krylov subspaces. Another objective
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would be to port some of the ideas presented in this paper to nonsymmetric
solvers.
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