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Abstract

In this paper we prove some results on interior transmission eigenvalues. First, under rea-

sonable assumptions, we prove that the spectrum is a discrete countable set and the generalized

eigenfunctions spanned a dense space in the range of resolvent. This is a consequence of spectral

theory of Hilbert-Schmidt operators. The main ingredient is to prove a smoothing property of

resolvent. This allows to prove that a power of the resolvent is Hilbert-Schmidt. We obtain an

estimate of the number of eigenvalues, counting with multiplicities, with modulus less than t
2

when t is large. We prove also some estimate on the resolvent near the real axe when the square

of the index of refraction is not real. Under some assumptions we obtain lower bound on the

resolvent using the results obtained by Dencker, Sjöstrand and Zworski on the pseudospectra.
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1 Introduction

In this paper we prove existence of infinite number of interior transmission eigenvalues under some
condition on the index of refraction. Remind the problem. Let Ω a smooth bounded domain in Rn.
Let n(x) a smooth function defined in Ω, called the index of refraction. The problem is to find k and
(w, v) such that















∆w + k2n(x)w = 0 in Ω,
∆v + k2v = 0 in Ω,
w = v on ∂Ω,
∂νw = ∂νv on ∂Ω,

(1)

where ∂ν is the exterior normal derivative to ∂Ω. We consider here the function n(x) complex valued.
In the physical models, we have n(x) = n1(x)+ in2(x)/k where nj are real valued. Taking u = w− v
and ṽ = k2v, we obtain the following equivalent system







(

∆+ k2(1 +m)
)

u+mv = 0 in Ω,
(∆ + k2)v = 0 in Ω,
u = ∂νu = 0 on ∂Ω,

(2)

where, for simplicity, we have replaced ṽ by v and n by 1 +m.
Under some assumptions on n(x), for instance our results apply for n(x) = n1(x) + in2(x)/k

where nj are real valued, we prove that the associated resolvent is compact on H2(Ω) ⊕ L2(Ω) (see
Theorem 2) and we have a countable set of k2j and generalized finite dimensional eigenspace Ej

such that ∪j∈NEj spanned a dense space in the range of the resolvent (see Theorem 3). When n(x)
is real, Päivärinta ans Sylvester [20] have proved that there exist interior transmission eigenvalues,
Cakoni, Gintides and Haddar [5] proved that the set of k2j is infinite and discrete. For n(x) complex
valued Sylvester [21] proved that this set is discrete finite or infinite. The case where n(x) = 1 in
a part of Ω that is the presence of cavities in Ω was considered by Cakoni, Çayören and Colton [3],
Cakoni, Colton and Haddar [4]. Here maybe because we use pseudo-differential calculus we do not
have problems with cavities. In [13, 14] Hitrik, Krupchyk, Ola and Päivärinta studied same type of
problems where the Laplacian is replaced by an elliptic operator with constant coefficients of order
m ≥ 2. They proved in some cases, existence of interior transmission eigenvalue and the generalized
eigenfunctions span a dense space. The proof uses the property of trace class operators and requires
that m > n. Here as we consider the power of resolvent we have not this restriction and we consider
the Laplacian for seek of simplicity but we can replace the Laplacian by a general elliptic operator
of order 2 with real coefficients.

We can complete this result giving a weak version of Weyl law. If we denote by N(t) the number of
|kj |, counting with multiplicities, smaller than t, we prove thatN(t) ≤ Ctn+4 (see Theorem 4). In [17]
Lakshtanov and Vainberg give some results on the number of real interior transmission eigenvalues.
The estimate is different than the one given here but it is not so clear that we estimate the same
eigenvalues. Indeed we take account also the complex eigenvalues and as the problem is not self-
adjoint, it is not clear that we have only real eigenvalues. This paper follows [16] where the same
authors prove that the system is elliptic in some sense.

In [8] Colton and Kress prove that if Imn(x) ≥ 0 for all x ∈ Ω and Imn 6= 0 then k2 is not real.
Here we give an estimate on the resolvent for k2 ∈ R (see Theorem 5). This result is based on the
Carleman estimates and following the same way as in the context of control theory, stabilization,
scattering (see for instance [18], [19], [10]).

In some case (see Theorem 6) we can give lower bound on the resolvent using the result obtained
by Dencker, Sjöstrand and Zworski [12] on the pseudospectra. Even if the bounds obtained by
Carleman’s method and by the pseudospectra results have the same size, we cannot apply both
methods in the same situation.

The interest of the problem (1) is related with the Theorem 8.9 in Colton and Kress [8] first
proved by Colton, Kirsch and Päivärinta [7]. Here we give a quick survey of this result. Let n(x)
defined in Ω as the one in (1) and by 1 in Rn \ Ω. We assume n(x) 6= 1 in Ω. For k ∈ R, let u the
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solution of the following problem







∆u+ k2n(x)u = 0 in Rn,
u = ui + us,

limr→+∞ r(n−1)/2(∂u
s

∂r − ikus) = 0,

where ui is a solution to ∆ui + k2ui = 0 in Rn, and r = |x|. We have us(x) = eik|x|

|x|(n−1)/2u∞(x̂) +

O
(

1
|x|(n+1)/2

)

, where x̂ = x/|x|.
If ui(x) = eikxd, where d ∈ Sn−1 we denote the corresponding u∞ by u∞(x̂, d). If we assume that

Ω is connected and contains 0, the space spanned by u∞(x̂, d) for d ∈ S
n−1 is dense in L2(Sn−1) if

and only if the space of solution of (1) is reduced to 0. This problem can be interpreted as follow, ui

is a incident plane wave and u∞ is the first relevant term of u created by the perturbation n localized
in Ω. This kind of result is interesting in the field of inverse scattering problem. I let the reader
interested by this field to find more information in [8] and in the recent survey given by Cakoni and
Haddar [6].

1.1 Results

Let Ω a C ∞ bounded domain in Rn. Let n(x) ∈ C∞(Ω) complex valued. We denote by m(x) =
n(x) − 1. We consider also the case where n(x) = n1(x) + in2(x)/k where nj are real valued. We
assume that for all x ∈ Ω, n(x) 6= 0, or n1(x) 6= 0 or equivalently m(x) 6= −1. We assume there exists
a neighborhood W of ∂Ω such that for x ∈ W , n(x) 6= 1 or n1(x) 6= 1 or equivalently m(x) 6= 0.
Actually if n(x) 6= 1 for all x ∈ ∂Ω, such a neighborhood W exists.

Let Ce the cone in C defined by

Ce = {z ∈ C, ∃x ∈ Ω, ∃λ ≥ 0, such that z = −λ(1 +m(x))}. (3)

In the case where n = n1 + in2/k, Ce = (−∞, 0] if n1(x) > −1 for all x ∈ Ω, and Ce = [0,+∞)
if n1(x) < −1 for all x ∈ Ω.

Our regularity result will be given in the Sobolev spaces. We use the following notations. The
L2(Ω)-norm will be denoted by ‖ · ‖. For s ∈ R, we denote the usual Hs norm in Rn by ‖w‖2Hs =
∫

(1 + |ξ|2)s|û(ξ)|2dξ where û is the classical Fourier transform. The Hs space on Ω will be denoted

by H
s
(Ω) and we say that w a distribution in Ω is in H

s
(Ω) if there exists β ∈ Hs such that

β|Ω = w. The norm is given by ‖w‖Hs
(Ω) = inf{‖β‖Hs , where β|Ω = w}. For q ∈ N it is classical

that ‖w‖2
H

q
(Ω)

is equivalent to
∑

|α|≤q ‖∂αxw‖2 (see for instance [15, Vol. 3, Corollary B.2.5]).

We denote by Bz(u, v) = (f, g) the mapping defined from H2
0 (Ω)⊕ {v ∈ L2(Ω), ∆v ∈ L2(Ω)} to

L2(Ω)⊕ L2(Ω) by

{ (

1
1+m∆− z

)

u+ m
1+mv = f in Ω

(∆− z)v = g in Ω
(4)

Theorem 1. Assume Ce 6= C, then there exists z ∈ C such that Bz is bijective from H2
0 (Ω)⊕ {v ∈

L2(Ω), ∆v ∈ L2(Ω)} to L2(Ω)⊕ L2(Ω).

If for z ∈ C the solution Bz(u, v) = (f, g) exists we denote by Rz(f, g) = (u, v).

Theorem 2. Assume Ce 6= C, there exists z ∈ C such that the resolvent Rz from H
2
(Ω)⊕L2(Ω) to

itself is compact.

In particular, we can apply the Riesz theory, the spectrum is finite or a discrete countable set. If

λ 6= 0 is in the spectrum, λ is a eigenvalue with finite dimensional associated generalized eigenspace.

Remark 1. This result improves the Sylvester’s theorem [21, theorem 2] with respect the geometrical
assumption on m. Nevertheless, here the regularity assumption on m is stronger than the assumption
given in [21].
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Remark 2. Actually if z0 6∈ Ce ∪ (−∞, 0] for all λ large enough we can take z = λz0 in the
Theorems 1 and 2.

Remark 3. Actually we can also consider Rz on L2(Ω)⊕ L2(Ω) to itself. The range is in H2
0 (Ω)⊕

L2(Ω). Then with our regularity results we can prove that R2
z is a mapping from L2(Ω)⊕ L2(Ω) to

H
4
(Ω) ⊕H

2
(Ω). In particular R2

z is compact from L2(Ω) ⊕ L2(Ω) to itself and we can deduce the
same properties on the spectrum of Rz as in Theorem 2.

In general for a non self-adjoint problem, we cannot claim that the spectrum is non empty. In the
following theorem, with a stronger assumption on Ce, we can prove that the spectrum is non empty.

We say that Ce is contained in a sector with angle less than θ if there exist θ1 < θ2, such that
Ce ⊂ {z ∈ C, z = 0 or z

|z| = eiϕ, where θ1 ≤ ϕ ≤ θ2}, and θ2 − θ1 ≤ θ.

Theorem 3. Assume that Ce is contained in a sector with angle less than θ with θ < 2π/p and

θ < π/2 where 4p > n. Then there exists z such that the spectrum of Rz is infinite and the space

spanned by the generalized eigenspaces is dense in H2
0 (Ω)⊕ {v ∈ L2(Ω), ∆v ∈ L2(Ω)}.

Remark 4. This result is based on the theory given in Agmon [1] and using the spectral results
on Hilbert-Schmidt operators. In this theory we deduce that the spectrum is infinite from the proof
that the generalized eigenspaces is dense in the closure of the range of Rz. Here we prove that Rp

z

is a Hilbert-Schmidt operator if 4p > n. We can deduce the spectral decomposition of Rz from the
one of Rp

z .

We can prove a weak Weyl law. Let zj the elements of the spectrum of Rz and Ej the generalized
associated eigenspace. We denote by N(t) =

∑

|zj |−1≤t2 dimEj .

Theorem 4. Under the same assumption as in Theorem 3, then there exists C > 0 such that

N(t) ≤ Ct4+n.

Remark 5. I do not know if this result is optimal. The estimate is lower than the usual Weyl law
which is in tn. This is due to the estimates obtained on the resolvent which are different than the
one used to prove the usual Weyl law.

Here we give some ideas to obtain the Theorems 3 and 4 using the method given in Agmon [1].
First we prove a regularity result, that is we consider the iterate of Rz, we have Rk

z is bounded
from H2 ⊕ L2 to H2k+2 ⊕ H2k. This implies that Rk

z is an Hilbert-Schmidt operator if k is large
enough and we can use the spectral theory for this operator class. The main problem to prove the
regularity result is at the boundary. To do this we reduce the problem to the boundary by using
the pseudo-differential calculus. It is well-known that for an elliptic problem, we can find a relation
between the two traces of a solution. These two relations, for u and v in (4) and the assumption on
the two traces of u allows to compute the trace of v by the data. Actually the coupling is very weak
because it involves a lower order term, consequently we obtain a weak estimate.

In the context of stabilization or control for wave equation, there are a lot of results on decreasing
of energy obtained by Carleman estimates (see for instance [18, 19, 10]). This method allows to
give quantitative results related with uniqueness result. We use here the same method to prove an
estimate on the resolvent near the real axe for a complex index of refraction. The theorem below is
an quantitative version of the Theorem 8.12 given by Colton and Kress [8]. Here it is more convenient
to use the variables introduce in (1). Let (w, v) solutions of















∆w + k2n(x)w = f in Ω
∆v + k2v = g in Ω
w = v on ∂Ω
∂νw = ∂νv on ∂Ω,

where (f, g) ∈ L2(Ω) ⊕ L2(Ω). We denote R̃k2(f, g) = (w, v). Remark that R̃k2 exists except for
a discrete set of k2. Indeed we can check that R−k2(f − g, k2g) = (w − v, k2v) this gives (w, v) if
(−k2)−1 is not in the spectrum of R0.
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Theorem 5. We assume that Imn ≥ 0 and Imn 6≡ 0 or if n(x) = n1(x) + in2(x)/k, n2(x) ≥ 0 and

n2 6≡ 0. Then there exist C1 > 0 and C2 > 0 such that ‖R̃k2‖ ≤ C1e
C2|k| for all k ∈ R. Here ‖ · ‖

denote the norm of the operator from L2(Ω)⊕ L2(Ω) to itself.

Remark 6. We have the same result if we assume Imn ≤ 0 and Imn 6≡ 0 or if n(x) = n1(x) +
in2(x)/k, n2(x) ≤ 0 and n2 6≡ 0.

In the context of non self-adjoint operator, the spectrum is not the most relevant notion. Actually
Davies [11] introduced the notion of the pseudospectrum. Roughly speaking this set is defined by
the points z where the resolvent is large. This notion is related with the notion of ill-conditioned for
the matrix. Here we use the result proved by Dencker, Sjöstrand and Zworski [12] to obtain a lower
bound on the norm of resolvent.

Theorem 6. Assume there exist ξ0 ∈ R
n and x0 ∈ Ω such that Im((n(x0))〈ξ0, ∂xn(x0)〉) 6= 0. Then

for all N > 0, sup{|k|−N‖R̃k2‖, k2 = r(n(x0))
−1, r > 0} = +∞. Moreover if n is an analytic function

in a neighborhood of x0 there exists C > 0 such that sup{e−C|k|‖R̃k2‖, k2 = r(n(x0))
−1, r > 0} = +∞.

Remark 7. Even if the lower bound, in analytic case, is of the same type of the upper bound
obtained in Theorem 5, we cannot apply both theorems for the same direction z. Actually k2 is in
general in C, if we want apply the Theorem 5 we need n(x0) ∈ R, that is Imn(x0) = 0, as Imn(x) ≥ 0
then we cannot have Im ∂xn(x0) 6= 0 to apply the Theorem 6.

1.2 Ouline

In the Section 2 we prove the main technical results. Roughly speaking if the data (f, g) are more
regular in Hs norm we prove that the solution (u, v) is also more regular. More precisely, we prove

for p ≥ 0, that if (f, g) ∈ H
2p+2

(Ω) ⊕H
2p
(Ω) then Rz(f, g) = (u, v) ∈ H

2p+4
(Ω) ⊕H

2p+2
(Ω). This

proves first that Rz is compact as an operator from H
2
(Ω) ⊕ L2(Ω) to itself and Rp

z is an operator

from H
2
(Ω) ⊕ L2(Ω) to H

2p+2
(Ω) ⊕ H

2p
(Ω). This implies that Rp

z is an Hilbert-Schmidt operator

on H
2
(Ω) ⊕ L2(Ω) if 4p > n. To prove the regularity result, first we prove an estimate on u in the

subsection 2.1. It is an easy estimate to obtain as u|∂Ω = 0, u satisfies a classical Dirichlet problem.
Second we prove in Subsection 2.2 the regularity of v in all compact in Ω. As v satisfies an elliptic
equation, far away the boundary of Ω it is a classical result. In the third Subsection 2.3 we prove the
regularity result on v in a neighborhood of ∂Ω. The idea to do this is to explain v by the unknown
traces of v. This description allows to obtain a relation between v|∂Ω and ∂nv|∂Ω. Then we can
use this formula on v in the equation on u. The fact that u|∂Ω = 0 and ∂nu|∂Ω = 0 gives another
relation between v|∂Ω and ∂nv|∂Ω. These relations allow to determine v|∂Ω and ∂nv|∂Ω with (f, g).
This explicit formula, in sense of pseudo-differential calculus, allows to prove the regularity result.
We need also following the same way to prove an estimate of the L2 norm of v by the L2 norm of f .
This implies a weak convergence result. Actually the problem is that v has the same regularity than
f . In particular if we consider the resolvent as a operator from L2(Ω) ⊕ L2(Ω) to itself, we cannot

prove that the resolvent is compact. Here we avoid this problem by the assumption that f ∈ H
2
(Ω).

In the Section 4 we recall some result proved in Agmon [1] and we apply this to prove the
Theorems 2, 3 and 4.

In the Section 5 we prove some a priori bound on the resolvent. In Subsection 5.1 we prove an
upper bound on the resolvent near the real axe when the imaginary part of the refraction index have
a sign and is not identically null. The main tool is to use the interpolation estimate obtained from
the Carleman estimate. In the Subsection 5.2 we use the result obtained by Dencker, Sjöstrand and
Zworski [12] on the pseudospectra to obtain lower bound on the resolvent. Roughly speaking this
result says that when the operator is not elliptic in the semi-classical sense, even if a point is not in
the spectrum, the resolvent is generically large.

As we use deeply the semi-classical pseudo-differential calculus in the Section 2, in the Appendix A
we fix the notation used in the rest of paper, we recall the classical results used, we give some ideas of
proof on the action of the pseudo-differential operators on H

s
(Ω) spaces, we give some computations

on integrals to obtain some explicit formulae used in Subsection 2.3. This allows to give the explicit
first term of the resolvent in sense of the semi-classical pseudo-differential calculus.
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2 Regularity results

We describe now the idea of the proof. As we want prove an estimate when |z| is large we will
compute the resolvent in semi-classical framework. We multiply the Equations (4) by h2, we denote
by µ = −h2z where µ belongs to a bounded domain of C, a = 1/(1 +m) and V = m/(1 +m). We
change (f, g) in (−f,−g).

Remind the assumption on m, we have m(x) 6= −1 for all x ∈ Ω and m(x) 6= 0 for x in a
neighborhood of ∂Ω.

Thus following (4), we obtain the system







(

− ah2∆− µ
)

u− h2V v = h2f in Ω
(−h2∆− µ)v = h2g in Ω
u = ∂νu = 0 on ∂Ω.

(5)

The goal of this section is to prove the following estimates if s ≥ 0. The result is given using the
semi-classical Hs norm, see Appendix A for the definition of these spaces.

Theorem 7. We assume that for all x ∈ Ω, and all ξ ∈ Rn, a(x)|ξ|2 − µ 6= 0 and |ξ|2 − µ 6= 0.

Let s ≥ 0, there exists h0 > 0 such that for f ∈ H
2+s

sc (Ω), g ∈ H
s

sc(Ω), u ∈ H
1+s

sc (Ω) ∩ H2
0 (Ω) and

v ∈ H
s

sc(Ω) solutions of system (5) then u ∈ H
4+s

sc (Ω) , v ∈ H
2+s

sc (W ) and for h ∈ (0, h0) we have,

‖u‖
H

4+s
sc (Ω)

. h2‖f‖
H

2+s
sc (Ω)

+ h4‖g‖Hs
sc(Ω) (6)

‖v‖
H

2+s
sc (Ω)

. ‖f‖
H

2+s
sc (Ω)

+ h2‖g‖Hs
sc(Ω). (7)

First we prove an estimate on u. For this, we work globally in Ω. The estimate on v is more
difficult to obtain. In a first step we prove an estimate in the interior by usual pseudo-differential
tools. In a second step we prove the estimate in a neighborhood of the boundary ∂Ω and we finish
the proof. This will be do in the following three sections.

In the proof we use semi-classical pseudo-differential calculus. We give in Appendix A, the results
used, trace formula, action of pseudo-differential operators on Sobolev space, the parametrices.

2.1 Estimate on u

The goal of this section is to proof a weak version of (6).

Lemma 2.1. We assume that for all x ∈ Ω, and all ξ ∈ Rn, a(x)|ξ|2 − µ 6= 0. There exists h0 > 0
such that for s ≥ 0, for all f ∈ H

s

sc(Ω), v ∈ H
s

sc(Ω), and u ∈ H2
0 (Ω) solution of

{ (

− ah2∆− µ
)

u = h2V v + h2f in Ω
u = ∂νu = 0 on ∂Ω,

then u ∈ H
2+s

sc (Ω) and for h ∈ (0, h0),

‖u‖
H

2+s
sc (Ω)

. h2‖f‖Hs
sc(Ω) + h2‖v‖Hs

sc(Ω). (8)

Proof. As u ∈ H2
0 (Ω), we can extend u by 0 in the exterior of Ω and u satisfied the same equation

in the whole space. Here we extend also v and f by 0, this makes sense at least in L2. We have

(

− ah2∆− µ
)

u = h2V v + h2f in R
n, (9)

where we denote, for w ∈ L2(Ω), by

w(x) =

{

w(x) if x ∈ Ω
0 if x 6∈ Ω.
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Let N ≥ s + 2, we take a parametrix Q of −ah2∆ − µ, this is possible because we assume for
all x ∈ Ω, a(x)|ξ|2 − µ 6= 0. We have Q(−ah2∆ − µ) = χ + hK where χ ∈ C∞

0 (Rn) , χ = 1 in a
neighborhood of Ω, K is of order −N and Q is of order −2.

Applying Q to Equation (9) we obtain,

u+ hKu = h2Qf + h2Q (V v)

As Q is a mapping on the Sobolev spaces (see (55)) we obtain,

‖u‖
H

2+s
sc (Ω)

. h‖u‖L2(Ω) + h2‖f‖Hs
sc(Ω) + h2‖v‖Hs

sc(Ω).

We can absorb the term h‖u‖L2(Ω) by the left hand side and this imply (8).

2.2 Estimate on v in interior of Ω

To prove an estimate on v in interior of Ω we follow essentially the same way than in the proof of the
estimate on u given in the previous section except that we cannot extend v in exterior of Ω but we
use semi-classical pseudo-differential calculus in open relatively compact in Ω. The estimate proved
is given in the following lemma.

Lemma 2.2. We assume for all ξ ∈ Rn, we have |ξ|2 − µ 6= 0. Let χ ∈ C∞
0 (Rn) supported in W

relatively compact in Ω, and s ≥ 0, there exists h0 > 0 such that for g ∈ H
s

sc(Ω) and v ∈ H
s+1

sc (Ω)
solution of

(−h2∆− µ)v = h2g in Ω,

then v ∈ H
2+s

sc (W ) and for h ∈ (0, h0) we have,

‖χv‖H2+s
sc

. h‖v‖
H

s+1
sc (Ω)

+ h2‖g‖Hs
sc(Ω). (10)

Proof. In the sequel we can take χ supported in W or χ = 1 on W and supported in a compact
of Ω. We can essentially repeat the proof of Lemma 2.1 given to estimate u.

As we have assumed that |ξ|2−µ 6= 0, we can take a parametrix Q̃ of (−h2∆−µ) defined globally
in Rn, such that we have Q̃(−h2∆ − µ) = χ + hK where K is of order −1, Q̃ is of order −2. Let
χj ∈ C∞

0 (Rn), j = 1, 2 supported in a compact of Ω where χ1 = 1 on the support of χ and χ2 = 1

on support of χ1. By pseudo-differential calculus we have Q̃χ1(−h2∆ − µ) = χ+ hK−1 where K−1

is of order −1. Now we have Q̃χ1(−h2∆− µ)χ2 = χ+ hK−1χ2. We can localized the equation on v
and we have χ1(−h2∆− µ)χ2v = h2χ1g. Applying Q̃ to this equation we obtain

χv + hK−1(χ2v) = h2Q̃(χ1g). (11)

Taking the H2+s
sc norm of χv we obtain (10).

2.3 Estimate on v in a neighborhood of the boundary

Proof of Theorem 7.

Taking account the Lemma 2.1 and 2.2, to acheive the proof, we need an estimate on v near the
boundary ∂Ω. It is well-known that we can find in a neighborhood W of the boundary ∂Ω a system
of coordinates such that the Laplacian can be written ∂2xn

+ R(x, ∂x′) + α(x)∂xn , where x′ are the
coordinates on the manifold ∂Ω, xn ∈ (0, ε), Ψ(W ) = ∂Ω× (0, ε), Ψ is the change of coordinates and
R is a differential operator on ∂Ω of order 2 depending of the parameter xn.

We keep the notation u, v, a in the coordinates x instead of u◦Ψ, etc. The Equations (5) become







(

a(D2
xn

+R(x,D′) + hαDxn)− µ
)

u− h2V v = h2f in ∂D × (0, ε)
(D2

xn
+R(x,D′) + hαDxn − µ

)

v = h2g in ∂D × (0, ε)
u = ∂νu = 0 on ∂Ω× {0}.

(12)
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We have taken the semi-classical notations, Dxj =
h
i ∂xj , D

′ = (Dx1 , · · · , Dxn−1). Actually R and V
may depend explicitly of h but this introduces no problem in the estimates, if V|h=0 6= 0, this is the
case if n = n1 + in2/k, we have V|h=0(x) = (1− n1)/n1 6= 0 by assumption.

Let w ∈ L2(xn > 0), we denote by

w = 1xn>0w =

{

w if xn > 0
0 if xn < 0.

(13)

Usually we use w but some time it is more convenient to use 1xn>0w. We have

Dxnw = 1xn>0Dxnw +
h

i
w|xn=0 ⊗ δxn=0

D2
xn
w = 1xn>0D

2
xn
w +

h

i
Dxnw|xn=0 ⊗ δxn=0 +

h

i
w|xn=0 ⊗Dxnδxn=0.

Here and in the sequel, for simplicity we denote by w|xn=0 the limit, when xn goes to 0 with xn > 0,
of w(x′, xn), if the limit exists. Here the distributions u and v are solutions of elliptic equations then
the limits exist in a space of distributions.

From (12), we obtain

{
(

a(D2
xn

+R(x,D′) + hαDxn)− µ
)

u− h2V v = h2f in ∂Ω× (−ε, ε)
(D2

xn
+R(x,D′) + hαDxn − µ

)

v = h2g + h
i γ0 ⊗ δxn=0 +

h
i γ1 ⊗Dxnδxn=0 in ∂Ω× (−ε, ε), (14)

where γ0 = Dxnv|xn=0+αhv|xn=0 and γ1 = v|xn=0. We can consider these equations for xn ∈ (−ε, ε)
indeed the coefficients of R are smooth up the boundary, and we can extend R in a neighborhood of
the boundary for xn < 0. The functions u and v are null for xn < 0 so the equations are relevant
only to take account the boundary terms. Remark, in the first equation because the traces of u are
null, they are not boundary terms.

The main goal of this section, is to obtain estimates on γ0 and γ1.
Now we search, using the equations (14), two relations between the traces of v. First we localize

v in a neighborhood of the boundary. We denote by w = χ0v where χ0 ∈ C
∞(R), χ0(xn) = 1 in a

neighborhood of boundary, for instance if |xn| ≤ ε/4 and χ0(xn) = 0 if |xn| ≥ ε/2. From the second
equation of (14) we obtain

(D2
xn

+R(x,D′)+hαDxn −µ
)

w = h2χ0g+
h

i
γ0⊗ δxn=0+

h

i
γ1 ⊗Dxnδxn=0 +hKv on ∂Ω×R, (15)

where K is a first order differential operator coming from the commutator between D2
xn

or Dxn and
χ0.

Let χ1 ∈ C∞(R) such that χ1χ0 = χ0 for instance χ1(xn) = 1 if |xn| ≤ ε/2 and χ0(xn) = 0 if
|xn| ≥ 3ε/4. By assumption we have ξ2n +R(x, ξ′)− µ 6= 0 then by semi-classical pseudo-differential
calculus there exists Q̃ of order -2 such that Q̃(D2

xn
+ R(x,D′) + hαDxn − µ

)

= χ1 + hK̃ where K̃

is of order −N where N ≥ s+ 2. Applying Q̃ to (15), we obtain

χ1w = w = Q̃(
h

i
γ0 ⊗ δxn=0 +

h

i
γ1 ⊗Dxnδxn=0) + g1

where g1 = −hK̃w + h2Q̃(χ0g) + hQ̃Kv thus

‖g1‖Hs+2
sc (Ω)

. h‖v‖
H

s+1
sc (Ω)

+ h2‖g‖Hs
sc(Ω), (16)

actually we can estimate K̃w because w ∈ L2(Rn) and K̃ is smoothing. By this trick we have not
to verify that K̃ is a mapping on the H

s

sc. In appendix A, Estimate (55), we have proved that a
parametrix as Q̃ is a mapping on the H

s

sc(Ω).
By ellipticity assumption on ξ2n + R(x, ξ′) − µ, there exist ρ1(x, ξ

′) and ρ2(x, ξ
′) with Im ρ1 > 0

and Im ρ2 < 0 such that ξ2n +R(x, ξ′)− µ = (ξn − ρ1(x, ξ
′))(ξn − ρ2(x, ξ

′)) (see A.2).
From (58) and Lemma A.1 we have
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Q̃(
h

i
γ ⊗Dk

xn
δxn=0) = op(q̃)γ (17)

where q̃ =
1

2iπ

∫

R

eixnξn/h
ξkn

(ξn − ρ1)(ξn − ρ2)
dξn + r−2+k, (18)

where we denote here and in the sequel by rj an operator of order j.
From Lemma A.2 we obtain if we restrict (16) on {xn = 0} and as w|xn=0 = γ1,

γ1 = op(
1

ρ1 − ρ2)
ρ0 + op(

ρ1
ρ1 − ρ2

)γ1 + h op(r−2)γ0 + h op(r−1)γ1 + (g1)|xn=0. (19)

Thus we obtain

op

(

ρ2
ρ2 − ρ1

)

γ1 + op

(

1

ρ2 − ρ1

)

γ0 = (g1)|xn=0 + h op(r−2)γ0 + h op(r−1)γ1. (20)

Then applying op(ρ2−ρ1) on both sides of (20), using estimate (16) to estimate g1, trace formula
and by pseudo-differential calculus we obtain

op(ρ2)γ1 + γ0 = g2 where g2 = op(ρ2 − ρ1)(g1)|xn=0 + h op(r−1)γ0 + h op(r0)γ1

and |g2|Hs+1/2
sc (∂Ω)

. h1/2‖v‖
H

s+1
sc (Ω)

+ h3/2‖g‖Hs
sc(Ω) + h|γ0|Hs−1/2

sc (∂Ω)
+ h|γ1|Hs+1/2

sc (∂Ω)
(21)

To obtain a second equation on the traces, we use the first equation of (14). As before there exist
Q of order -2, K of order −N−4, χ2 such that χ2χ0 = χ0 and such that Q(a(D2

xn
+R+hαDxn)−µ) =

χ2 + hK .
We apply Q to the first equation of (14), we obtain

χ2u = h2Q(V w) + g3

where g3 = −hKu+ h2Q(V (1− χ0)v) + h2Qf

‖g3‖Hs+4
sc (Ω)

. h‖u‖
H

s+2
sc (Ω)

+ h2‖(1− χ0)v‖Hs+2
sc (Ω)

+ h2‖f‖
H

s+2
sc (Ω)

. (22)

Using Lemma 2.2 we can estimate the term (1−χ0)v, using the Lemma 2.1 we can estimate ‖u‖
H

s+2
sc (Ω)

and we obtain,
‖g3‖Hs+4

sc (Ω)
. h3‖v‖

H
s+1
sc (Ω)

+ h4‖g‖Hs
sc(Ω) + h2‖f‖

H
s+2
sc (Ω)

.

We replace w by the Formula (16), we take the trace on xn = 0, as u|xn=0 = 0, we obtain

[

Q

(

V

(

Q̃(
h

i
γ0 ⊗ δxn=0 +

h

i
γ1 ⊗Dδxn=0)

))]

|xn=0

= g4, (23)

where g4 = −h−2(g3)|xn=0 − [QV (g1)]|xn=0, then

|g4|Hs+7/2
sc (∂Ω)

. h1/2‖v‖
H

s+1
sc (Ω)

+ h3/2‖g‖Hs
sc(Ω) + h−1/2‖f‖

H
s+2
sc (Ω)

. (24)

As a(x)(ξ2n+R(x, ξ
′))−µ is elliptic, the polynomial in ξn has two roots λj one satisfies Imλ1 > 0 and

the other Imλ2 < 0 (see section A.2). We have a(x)(ξ2n+R(x, ξ
′))−µ = a(ξn−λ1)(ξn−λ2). The prin-

cipal symbol of Q is χ2

a(ξn−λ1)(ξn−λ2)
. The principal symbol of QV Q̃ is V χ1χ2

a(ξn−λ1)(ξn−λ2)(ξn−ρ1)(ξn−ρ2)
.

Following the same method used to obtain (20) from (16), we have by (58), Lemmas A.1 and A.3,
as χ2 = 1 in neighborhood of ∂Ω

op

(

V (λ2 − λ1 + ρ2 − ρ1)

a(λ1 − λ2)(λ1 − ρ2)(ρ1 − λ2)(ρ1 − ρ2)

)

γ0

+ op

(

V (ρ2λ2 − ρ1λ1)

a(λ1 − λ2)(λ1 − ρ2)(ρ1 − λ2)(ρ1 − ρ2)

)

γ1 = g5

where g5 = g4 + h op(r−4)γ0 + h op(r−3)γ1.
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As V 6= 0 in a neighborhood of ∂Ω, we can apply op( a
V (λ1 − λ2)(λ1 − ρ2)(ρ1 − λ2)(ρ1 − ρ2)), we

obtain

op ((λ2 − λ1 + ρ2 − ρ1)) γ0 + op ((ρ2λ2 − ρ1λ1)) γ1 = g6,

where g6 = op(
a

V
(λ1 − λ2)(λ1 − ρ2)(ρ1 − λ2)(ρ1 − ρ2))g5 + h op(r0)γ0 + h op(r1)γ1

then |g6|Hs−1/2
sc (∂Ω)

. h1/2‖v‖
H

s+1
sc (Ω)

+ h3/2‖g‖Hs
sc(Ω) + h−1/2‖f‖

H
s+2
sc (Ω)

+ h|γ0|Hs−1/2
sc (∂Ω)

+ h|γ1|Hs+1/2
sc (∂Ω)

(25)

Now we have two equations on traces by (21) we can replace γ0 in (25). We obtain by pseudo-
differential calculus

op(ρ2λ2 − λ1ρ1)γ1 − op((λ2 − λ1 + ρ2 − ρ1)ρ2)γ1 = g6 − op(λ2 − λ1 + ρ2 − ρ1)g2 = g7.

This implies,

op((ρ2 − ρ1)(λ1 − ρ2))γ1 = g7, with

|g7|Hs−1/2
sc (∂Ω)

. h1/2‖v‖
H

s+1
sc (Ω)

+ h3/2‖g‖Hs
sc(Ω) + h−1/2‖f‖

H
s+2
sc (Ω)

+ h|γ0|Hs−1/2
sc (∂Ω)

+ h|γ1|Hs+1/2
sc (∂Ω)

. (26)

As Imλ1 > 0, Im ρ1 > 0 and Im ρ2 < 0, the symbol (ρ2 − ρ1)(λ1 − ρ2) is elliptic, by inversion we
obtain

|γ1|Hs+3/2
sc (∂Ω)

. h1/2‖v‖
H

s+1
sc (Ω)

+ h3/2‖g‖Hs
sc(Ω) + h−1/2‖f‖

H
s+2
sc (Ω)

+ h|γ0|Hs−1/2
sc (∂Ω)

+ h|γ1|Hs+1/2
sc (∂Ω)

. (27)

and using (21), we obtain

|γ0|Hs+1/2
sc (∂Ω)

. h1/2‖v‖
H

s+1
sc (Ω)

+ h3/2‖g‖Hs
sc(Ω) + h−1/2‖f‖

H
s+2
sc (Ω)

+ h|γ0|Hs−1/2
sc (∂Ω)

+ h|γ1|Hs+1/2
sc (∂Ω)

. (28)

Summing (27) and (28) we have for h0 small enough

|γ1|Hs+3/2
sc (∂Ω)

+ |γ0|Hs+1/2
sc (∂Ω)

. h1/2‖v‖
H

s+1
sc (Ω)

+ h3/2‖g‖Hs
sc(Ω) + h−1/2‖f‖

H
s+2
sc (Ω)

.

From (16) and from estimate (56) obtained in Appendix A

‖w‖
H

s+2
sc (Ω)

. ‖g1‖Hs+2
sc (Ω)

+ h1/2
(

|γ0|Hs+1/2
sc (∂Ω)

+ |γ1|Hs+3/2
sc (∂Ω)

)

. h‖v‖
H

s+1
sc (Ω)

+ h2‖g‖Hs
sc(Ω) + ‖f‖

H
s+2
sc (Ω)

. (29)

We can now estimate v, we have by (29), Lemma 2.2,

‖v‖
H

s+2
sc (Ω)

≤ ‖w‖
H

s+2
sc (Ω)

+ ‖(1− χ0)v‖Hs+2
sc (Ω)

. h‖v‖
H

s+1
sc (Ω)

+ h2‖g‖Hs
sc(Ω) + ‖f‖

H
s+2
sc (Ω)

.

This implies
‖v‖

H
s+2
sc (Ω)

. h2‖g‖Hs
sc(Ω) + ‖f‖

H
s+2
sc (Ω)

,

if h0 is small enough. Using this estimate and (8) we obtain

‖u‖
H

4+s
sc (Ω)

. h2‖f‖
H

s+2
sc (Ω)

+ h4‖g‖Hs
sc(Ω).

These two last estimates imply the Theorem 7.
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Remark 8. Actually in this proof we have assumed v ∈ H
s+1

sc (Ω). To prove the result with v ∈
H

s

sc(Ω), we argue in two steps, first following the same proof we can obtain v ∈ H
s+1

sc (Ω) and second

the proof given above gives v ∈ H
s+2

sc (Ω)

The estimate proved above are not enough on v with respect f . For the sequel we need to estimate
v by f in Hs norm.

Proposition 2.3. We assume that for all x ∈ Ω, and all ξ ∈ Rn, a(x)|ξ|2 − µ 6= 0 and |ξ|2 − µ 6= 0.
There exist h0 > 0 and C > 0 and for all δ > 0, let χδ ∈ C

∞ supported in a δ-neighborhood of ∂Ω,

there exists Cδ > 0 such that for h ∈ (0, h0), f ∈ H
s

sc(Ω), g = 0, u ∈ H
s+1

sc (Ω) ∩H2
0 (Ω), v ∈ H

s

sc(Ω)
and ∆v ∈ L2(Ω), solutions of system (4) we have the estimate,

‖v‖Hs
sc(Ω) ≤ C‖χδf‖Hs

sc(Ω) + Cδh‖f‖Hs
sc(Ω).

Proof. The proof follows the previous one. We give only the modifications to do. From (15) we
obtain (16) with the estimate

‖g1‖Hs+1
sc (Ω)

. h‖v‖Hs
sc(Ω). (30)

Thus we obtain (20) and (21) with the estimate

|g2|Hs−3/2(∂Ω) . | op(r1)(g1)|∂Ω|Hs−1/2(∂Ω) + h|γ0|Hs−5/2(∂Ω) + h|γ1|Hs−3/2(∂Ω)

. h1/2‖v‖Hs
sc(Ω) + h|γ0|Hs−5/2(∂Ω) + h|γ1|Hs−3/2(∂Ω). (31)

We must modify (22) to obtain the term χδ. We take the same Q as in (22) and we apply Qχδ to
the first equation from (14). We obtain

Qχδ

(

a(D2
xn

+R(x,D′) + hαDxn)− µ
)

u− h2QχδV v = h2Qχδf in ∂Ω× (−ε, ε).

We have χδ

(

a(D2
xn

+R(x,D′) + hαDxn)−µ
)

=
(

a(D2
xn

+R(x,D′) + hαDxn)−µ
)

χδ +L1 where L1

is a differential operator of order 1 depending of δ. As Q(a(D2
xn

+ R + hαDxn)− µ) = χ2 + hK−N

where K−N is of order −N , with N ≥ s+ 2, and χ2χδ = χδ, we have

χδu = h2Q(χδV w) + g3

where g3 = −hQL1u+ hK−Nu+ h2Q(χδf)

‖g3‖Hs+2
sc (Ω)

≤ Cδh‖u‖Hs+1
sc (Ω)

+ Ch2‖χδf‖Hs
sc(Ω).

We have used that Q and L1, a differential operator, act on the H
s

sc. We can estimate u by (8), this
gives

‖g3‖Hs+2
sc (Ω)

≤ Cδh
3‖f‖Hs

sc(Ω) + Cδh
3‖v‖Hs

sc(Ω) + Ch2‖χδf‖Hs
sc(Ω)

We replace w by its value given by the formula (16) with the estimate (30). We obtain (23) with

|g4|Hs+3/2
sc (∂Ω)

≤ Cδh
1/2‖f‖Hs

sc(Ω) + Cδh
1/2‖v‖Hs

sc(Ω) + Ch−1/2‖χδf‖Hs
sc(Ω). (32)

If we compare this estimate with (24) we see that the bad power of h in front of f is only a part of
f localized in a neighborhood of the boundary.

We can follow the proof and we obtain (25) where the estimate on g6 is

|g6|Hs−5/2(∂Ω) ≤ Cδh
1/2‖f‖Hs

sc(Ω) + Cδh
1/2‖v‖Hs

sc(Ω) + Ch−1/2‖χδf‖Hs
sc(Ω)

+ Ch|γ0|Hs−5/2(∂Ω) + Ch|γ1|Hs−3/2(∂Ω).

We have the Formula (26) where g7, from (31) is estimated by

|g7|Hs−5/2(∂Ω) ≤ Cδh
1/2‖f‖Hs

sc(Ω) + Cδh
1/2‖v‖Hs

sc(Ω) + Ch−1/2‖χδf‖L2(Ω)

+ Ch|γ0|Hs−5/2(∂Ω) + Ch|γ1|Hs−3/2(∂Ω).
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By ellipticity and Formula (26) we obtain

|γ1|Hs−1/2(∂Ω) ≤ Cδh
1/2‖f‖Hs

sc(Ω) + Cδh
1/2‖v‖Hs

sc(Ω) + Ch−1/2‖χδf‖Hs
sc(Ω)

+ Ch|γ0|Hs−5/2(∂Ω) + Ch|γ1|Hs−3/2(∂Ω),

and by (21) where g2 satisties (31), we have,

|γ0|Hs−3/2(∂Ω) ≤ Cδh
1/2‖f‖Hs

sc(Ω) + Cδh
1/2‖v‖Hs

sc(Ω) + Ch−1/2‖χδf‖Hs
sc(Ω)

+ Ch|γ0|Hs−5/2(∂Ω) + Ch|γ1|Hs−3/2(∂Ω).

Summing the previous estimates and for h small enough, we obtain,

|γ1|Hs−1/2(∂Ω) + |γ0|Hs−3/2(∂Ω) ≤ Cδh
1/2‖f‖Hs

sc(Ω) + Cδh
1/2‖v‖Hs

sc(Ω) + Ch−1/2‖χδf‖Hs
sc(Ω).

From (16) with g1 satisfying (30), we have by (56)

‖w‖Hs
sc(Ω) ≤ C‖g1‖Hs

sc(Ω) + Ch1/2
(

|γ0|Hs−3/2
sc (∂Ω)

+ |γ1|Hs−1/2
sc (∂Ω)

)

≤ Cδh‖v‖Hs
sc(Ω) + Cδh‖f‖Hs

sc(Ω) + C‖χδf‖Hs
sc(Ω). (33)

Using the formula (11) in the proof of Lemma 2.2 with g = 0, we obtain ‖χv‖Hs
sc(Ω) ≤ C‖v‖Hs

sc(Ω).

This estimate and (33) give

‖v‖Hs
sc(Ω) ≤ Cδh‖v‖Hs

sc(Ω) + Cδh‖f‖L2(Ω) + C‖χδf‖Hs
sc(Ω).

This estimate is also true for a fixed δ then we have for h ∈ (0, h0), h0 small enough

‖v‖Hs
sc(Ω) ≤ C‖f‖Hs

sc(Ω).

This with the previous estimate implies the Proposition 2.3.

3 Existence and compactness

In this section we prove the Theorems 1 and 2.

3.1 Proof of Theorem 1

Proof. We follow the proof given by Sylvester [21, Proposition 10], we prove that le range of Bz is
closed and dense.

To prove the range is closed we apply the a priori estimates prove in section 2. We recall that
a = 1/(1 +m) and V = m/(1 +m).

We remark that if we have Ce 6= C then Ce ∪ (−∞, 0] 6= C. Indeed, as Ω is compact, Ce is closed.
If Ce ∪ (−∞, 0] = C then Ce \ (−∞, 0] = C \ (−∞, 0] as C \ (−∞, 0] is dense in C, we have Ce = C.
Let z0 such that z0 6∈ Ce ∪ (−∞, 0], we can choose |z0| = 1, let z = h−2z0 we have µ = −z0. First we
can estimate ‖v‖L2(Ω) by Proposition 2.3 with s = 0 and δ fixed if g = 0 and by Theorem 7 if f = 0.
There exists C > 0 such that for all |z| large enough,

‖v‖L2(Ω) ≤ C‖f‖L2(Ω) +
C

|z|2 ‖g‖L2(Ω). (34)

We can apply the Lemma 2.1 with s = 0, we obtain with the previous estimate on v,

|z|2‖u‖L2(Ω) + |z|‖u‖
H

1
(Ω)

+ ‖u‖
H

2
(Ω)

≤ C‖f‖L2(Ω) +
C

|z|2 ‖g‖L2(Ω). (35)

Clearly these estimates prove that the range of Bz is closed where the norm on the domain of the
operator is given by the H2 norm for u and by ‖v‖+ ‖∆v‖ for v.

12



To prove the density of the range of Bz we prove that the orthogonal of the range is {0}. We
recall the Green formula, if v and q are smooth functions in Ω we have

(v|∆q)− (∆v|q) = (v|∂νq)0 − (∂νv|q)0, (36)

where (·|·) is the inner product in Ω, (·|·)0 is the inner product on ∂Ω and ∂ν is the exterior normal
derivative on ∂Ω. Actually (36) is true if v smooth, q ∈ L2(Ω) and ∆q ∈ L2(Ω). Indeed, in this case
it is well known that q|∂Ω ∈ H−1/2(∂Ω) and ∂νq|∂Ω ∈ H−3/2(∂Ω) then we can find fn and gn smooth
functions such that fn goes to ∆q in L2(Ω) and gn goes to q|∂Ω. Let qn the solution of ∆qn = fn in Ω

and (qn)|∂Ω = gn, qn is a smooth function and by continuity (∂νqn)|∂Ω goes to ∂νq∂Ω in H−3/2(∂Ω).
Then we can pass to the limit in (36).

Let p, q ∈ L2(Ω) and u, v smooth functions in Ω, if (p, q) is in the orthogonal of the range we have

(∆u− z(1 +m)u+mv|p) + (∆v − zv|q) = 0. (37)

We take u, v ∈ C
∞
0 (Ω) in (37), by integrating by part in distribution sense we have

∆p− z̄(1 + m̄)p = 0 in Ω (38)

∆q − z̄q + m̄p = 0 in Ω. (39)

In particular ∆p and ∆q are in L2(Ω), then we can apply (36) to integrate by part in (37) if now
u, v are smooth functions up the boundary with u|∂Ω = ∂νu|∂Ω = 0. Using (38) and (39) we have

(v|∂νq)0 − (∂νv|q)0 = 0.

As v|∂Ω and ∂νv|∂Ω are arbitrary, we obtain q|∂Ω = ∂νq|∂Ω = 0. By (39), q satisfies a Dirichlet

boundary value problem and ∂νq|∂Ω = 0, then q ∈ H
2

0(Ω). By (38), ∆p ∈ L2(Ω) and p ∈ L2(Ω). We
deduce that (q, p) ∈ H2

0 (Ω)⊕ {v ∈ L2(Ω), ∆v ∈ L2(Ω} satisfies the same kind of equation as (u, v).
Then the inequalities (34) and (35) prove that p = q = 0. This acheives the proof of Theorem 1.

3.2 Proof of Theorem 2

Proof. We take the same z as in the proof of Theorem 1. We can apply Theorem 7 with s = 0 , we
obtain in classical norm

|z|2‖u‖L2(Ω) + |z|‖u‖
H

1
(Ω)

+ ‖u‖
H

2
(Ω)

+
1

|z|‖u‖H3
(Ω)

+
1

|z|2 ‖u‖H4
(Ω)

≤ C‖f‖
H

2
(Ω)

+
C

|z|2 ‖g‖L2(Ω),

‖v‖L2(Ω) +
C

|z|‖v‖H1
(Ω)

+
1

|z|2 ‖v‖H2
(Ω)

≤ C‖f‖
H

2
(Ω)

+
C

|z|2 ‖g‖L2(Ω). (40)

This proves that Rz : H
2
(Ω) ⊕ L2(Ω) → H

4
(Ω) ⊕H

2
(Ω), then Rz is compact from H

2
(Ω)⊕ L2(Ω)

to itself. We can apply the Riesz theory.

4 Spectral results

Here we prove how the regularity results obtained in the section 2 allow to prove the spectral results.
Actually the result obtained in Theorem 2 is not enough to prove that the spectrum is a countable set.
The theory given in Agmon [1] is based on the spectral decomposition of Hilbert-Schmidt operators.
We adapt two results given in Agmon to our case, the Lemma 4.1 and the Proposition 4.2. Following
these results we will prove the Theorems 3 and 4.

Let T an Hilbert-Schmidt operator from H
2
(Ω)⊕L2(Ω) to itself. We denote by |||T ||| the Hilbert-

Schmidt norm. Let (φj)j∈N a Hilbert basis on H
2
(Ω) and (ψk)k∈N a Hilbert basis on L2(Ω), then

((φj , 0))j∈N, ((0, ψk))k∈N is a Hilbert basis on H
2
(Ω) ⊕ L2(Ω). Let T (φj , 0) = uj = (u0j , u

1
j) and

T (0, ψk) = vk = (v0k, v
1
k). With these notations, we have |||T |||2 =

∑∞
j=0(‖u0j‖2H2

(Ω)
+ ‖v0j ‖2H2

(Ω)
+

‖u1j‖2L2(Ω) + ‖v1j ‖2L2(Ω)).

We denote by ‖T ‖j the operator norm from H
2
(Ω)⊕L2(Ω) → H

j+2
(Ω)⊕Hj

(Ω), where H
0
(Ω) =

L2(Ω).
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Lemma 4.1. Let m > n/2, there exists C > 0 such that if T is a bounded operator from H
2
(Ω) ⊕

L2(Ω) → H
m+2

(Ω)⊕H
m
(Ω), then T is a Hilbert-Schmidt operator and

|||T ||| ≤ C‖T ‖n/(2m)
m ‖T ‖1−n/(2m)

0 .

Proof. We follow the proof given by Agmon [1, Theorem 13.5].

Let u = T (
∑N

j=0 aj(φj , 0)) + T (
∑N

j=0 bj(0, ψj)) =
∑N

j=0 ajuj +
∑N

j=0 bjvj = (u0, u1). We have

uj = (u0j , u
1
j) and vj = (v0j , v

1
j ). We treat the term u0.

If m > n/2, H
m
(Ω) ⊂ L∞(Ω) and (see [1, Lemma 13.2]), for α ∈ Nn, |α| ≤ 2, there exists C > 0

such that
‖∂αv‖L∞(Ω) ≤ C‖v‖n/(2m)

H
m+|α|

(Ω)
‖v‖1−n/(2m)

H
|α|

(Ω)

By the property on T , we have

‖u0‖2
H

m+2
(Ω)

≤ C‖T ‖2m
N
∑

j=0

(|aj |2 + |bj |2) and ‖u0‖2
H

2
(Ω)

≤ C‖T ‖20
N
∑

j=0

(|aj |2 + |bj|2).

Let K = ‖T ‖n/(2m)
m ‖T ‖1−n/(2m)

0 thus we have for x ∈ Ω, and for α ∈ Nn, |α| ≤ 2, |∂αu0(x)|2 ≤
CK2

∑N
j=0(|aj |2+ |bj|2). We have ∂αu0(x) =

∑N
j=0(aj∂

αu0j(x)+ bj∂
αv0j (x)), we take in the previous

inequality aj = ∂αū0j(x) and bj = ∂αv̄0j (x), we sum on α, we obtain for all x ∈ Ω,

∑

|α|≤2





N
∑

j=0

(|∂αu0j(x)|2 + |∂αv0j (x)|2)





2

≤ CK2
∑

|α|≤2

N
∑

j=0

(|∂αu0j(x)|2 + |∂αv0j (x)|2).

Thus
∑

|α|≤2(|∂αu0j(x)|2 + |∂αv0j (x)|2)) ≤ CK2, integrating this on Ω (which is bounded) we find
∑N

j=0(‖u0j‖2H2
(Ω)

+ ‖v0j ‖2H2
(Ω)

) ≤ CK2. As the right hand side does not depend on N we can let

N goes to infinity. We can treat by the same method the terms
∑N

j=0(‖u1j‖2L2(Ω) + ‖v1j ‖2L2(Ω)), it

suffices to repeat the previous proof without the derivative terms. This means that |||T ||| is bounded

by CK = C‖T ‖n/(2m)
m ‖T ‖1−n/(2m)

0 .
We give here a small improvement of the Theorem 16.4 in [1].

We introduce some notations. The inner product in H
2
(Ω)⊕L2(Ω) will be denoted by (·|·). Let T

an operator from H
2
(Ω)⊕L2(Ω) to itself, if λ−1 is in the resolvent set of T , we set Tλ = T (I−λT )−1.

We remark that if T is the resolvent of P , that is PT = I, then Tλ is the resolvent of P −λI. Indeed,

(P − λI)Tλ = (P − λI)T (I − λT )−1 = (I − λT )−1 − λT (I − λT )−1 = (I − λT )−1(I − λT ) = I.

Proposition 4.2. Let T a Hilbert-Schmidt operator on H
2
(Ω)⊕L2(Ω). We assume that there exists

0 ≤ θ1 < θ2 < · · · < θN < 2π such that θk − θk−1 < π/2 for k = 2, · · · , N and 2π − θN + θ1 < π/2
satisfying there exist r0 > 0, C > 0 such that supr≥r0 ‖Treiθk ‖0 ≤ C, for k = 1, · · · , N . Moreover we

assume there exists (λj) such that |λj | → +∞ and for all f and g in H
2
(Ω)⊕L2(Ω), (Tλjf |g) → 0.

Then the space spanned by the non zero generalized eigenfunctions of T is dense in the adherence of

the range of T .

Proof. As in Agmon [1, page 284] we define F (λ) = (Tλf |g) where g is orthogonal to the
generalized eigenfunctions. The goal is to prove that F (0) = 0. As in Agmon we can prove that F (λ)
is analytic in C and bounded. Then F (λ) is constant by Liouville theorem and as (Tλjf |g) → 0 this
implies that F (λ) = 0.

Proof of Theorem 3.

Before the proof we give some results on the links between the spectral decomposition of S and

Sp, where S is an bounded operator on H
2
(Ω)⊕ L2(Ω).
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Let ωj for j = 1, · · · , p, the roots of zp = 1. We have zp − 1 =
∏p

j=1(z − ωj), in particular for

z = 0 we have −1 =
∏p

j=1(−ωj). Thus we have

zp − 1 =

p
∏

j=1

(z − ωj) =

p
∏

j=1

(−ωj)

p
∏

j=1

(1− ω−1
j z) = −

p
∏

j=1

(1− ωjz), (41)

as we have {ωj, j = 1, · · · , p} = {ω−1
j , j = 1, · · · , p}.

Applying (41) to zS, we obtain

(1− zpSp) =

p
∏

j=1

(1− ωjzS). (42)

If (I−ωjzS) is invertible for all j, this implies that (I−zpSp) is invertible. If for a fixed j, (I−ωjzS)
is not invertible, either ker(I − ωjzS) 6= {0} this implies ker(I − zpSp) 6= {0} or the range is not

H
2
(Ω)⊕ L2(Ω) this implies that the range of (I − zpSp) is not H

2
(Ω)⊕ L2(Ω). We deduce that

I − ωjzS is invertible for all j ⇔ I − zpSp is invertible.

If Sp is compact and I − zpSp is not invertible then by the Riesz theorem z−p is an eigenvalue of
Sp and there exists k such that ker(I − zpSp)k−1 6= ker(I − zpSp)k = ker(I − zpSp)k+1 and the
dimension of ker(I − zpSp)k is finite.

We will prove that all the eigenvalues of S have the form ωjz
−1. Indeed S is a operator on

ker(I − zpSp)k, then S admits a spectral decomposition on ker(I − zpSp)k. Let u 6= 0 and λ such
that u = λSu then zpu = (λzS)pu thus λkp(I − zpSp)ku = (λp − zp)ku and λp = zp this implies
λ = ωjz.

Now we prove that ker(I − ωjzS)
k = ker(I − ωjzS)

k+1. From (42), we have

u ∈ ker(I − ωjzS)
k+1 ⊂ ker(I − zpSp)k+1 = ker(I − zpSp)k.

We have

(I − zpSp)k = (I − (I − (I − zωjS))
p
)
k
=

(

p(I − zωjS) +

p
∑

µ=2

Cµ(I − zωjS)
µ

)k

= pk(I − zωjS)
k

(

I +

p−1
∑

µ=1

C′
µ(I − zωjS)

µ

)k

,

this implies (I − zpSp)ku = pk(I − zωjS)
ku = 0, which is the claim.

Obviously we can find the spectral decomposition of Sp from the one of S. This proves that there
exists j such that ker(I − ωjzS)

k−1 6= ker(I − ωjzS)
k = ker(I − ωjzS)

k+1.
To prove the Theorem 3, we fix z as in the proof of Theorem 1, we denote by S = Rz and we

apply Proposition 4.2 to T = Sp = Rp
z , By Theorem 7 and Lemma 4.1, T : H

2
(Ω) ⊕ L2(Ω) →

H2+2p(Ω)⊕H2p(Ω) then T is an Hilbert-Schmidt operator as p > n/4. We remark that

Sλ = (Rz)λ = Rz(I − λRz)
−1 = (R−1

z − λ)−1 = (Bz − λ)−1 = (B0 − z − λ)−1 = Rz+λ. (43)

As Ce is a closed cone, if reiθ is not in Ce for all r large enough, then z + reiθ is not in Ce for all r
large enough (see (3) for the notation Ce).

Using the previous remark and the estimate (40) we have that ‖Sreiθ‖ = ‖Rz+reiθ‖0 is bounded
uniformly with respect r large enough, if θ 6= 0 and reiθ 6∈ Ce.

We prove the following formula

pzp−1Tzp =

p
∑

k=1

ωkSωkz. (44)
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Indeed we take the inverse of (42) when the formula make sense, we have

(1− zpSp)−1 =

p
∏

j=1

(1− ωjzS)
−1. (45)

Derivate (41) with respect z, we obtain

pzp−1 =

p
∑

k=1

ωk

p
∏

j=1,j 6=k

(1− ωjz).

We apply this formula to zS, we obtain

pzp−1Sp−1 =

p
∑

k=1

ωk

p
∏

j=1,j 6=k

(1 − ωjzS). (46)

We multiply term by term (46) and (45), multiplying the result by S, we obtain (44).
If Sωkz is bounded uniformly for r large enough and for all k, by (44) we have ‖Tzp‖0 ≤ C

|z|p−1 . If

we assume that Ce is contained in a sector less than θ with θ < π/2 and θ < 2π/p, the union of Ce

and Ce rotated by angle 2kπ/p does not give C and the Formula (44) proves that we can find the θj ’s
satisfying the assumption of Proposition 4.2. If p ≥ 2 the estimate on ‖Tzp‖0 is stronger than the
weak convergence. In case p = 1, we have by the Theorem 7 and Proposition 2.3 with the notation
f = (f1, f2),

‖Rzf‖H2
(Ω)⊕L2(Ω)

≤ C‖χδf1‖L2(Ω) + Cδ|z|−1‖f1‖H2
(Ω)

+ C|z|−2‖f2‖L2(Ω),

if |z| is large enough and z 6∈ Ce. For f1 and ε > 0 fixed we can choose δ > 0 such that
C‖χδf1‖L2(Ω) ≤ ε. Then it is easy to prove that if zj is on a line such that zj = rje

iθ with
rj → +∞ , we have lim sup ‖Rzjf‖H2

(Ω)⊕L2(Ω)
≤ ε. This prove that ‖Rzjf‖H2

(Ω)⊕L2(Ω)
→ 0 thus

‖Szj−zf‖H2
(Ω)⊕L2(Ω)

→ 0.

Now we prove that the adherence of Rz(H
2
(Ω)⊕ L2(Ω)) is H2

0 (Ω) ⊕ {v ∈ L2(Ω), ∆v ∈ L2(Ω)}.
Let (u, v) ∈ H2

0 (Ω) ⊕ {v ∈ L2(Ω), ∆v ∈ L2(Ω)} we have Bz(u, v) = (f, g) ∈ L2(Ω) ⊕ L2(Ω). Let

(fn, gn) ∈ H
2
(Ω) ⊕ L2(Ω) such that (fn, gn) → (f, g) in L2(Ω) ⊕ L2(Ω). We can take for instance

fn and gn in C ∞
0 (Ω). We have by continuity Rz(fn, gn) → Rz(f, g) = (u, v) in H2

0 (Ω) ⊕ {v ∈
L2(Ω), ∆v ∈ L2(Ω)} with the norm defined by ‖v‖L2(Ω) + ‖∆v‖L2(Ω) on {v ∈ L2(Ω), ∆v ∈ L2(Ω)}
and the usual norm on H2

0 (Ω).
Proof of Theorem 4. Using (43) as z is fixed, to estimate the number of eigenvalues less than

t2 is equivalent to estimate the number of eigenvalues λ such that z + λ is less than t2. That is in
the sequel we estimate the number of λ less than t2 such that λ−1 is a eigenvalue of S = Rz.

We have shown in the proof of Theorem 3 that ‖Tzp‖0 ≤ C
|z|p−1 if ωkz is on a line d(r0, θ) = {z ∈

C, z = reiθ , r ≥ r0} ⊂ Ce. As (1 − zpT )−1 = 1 + zpTzp , we obtain for |z| ≥ 1, ‖(1 − zpT )−1‖0 ≤
1 + |z|p‖Tzp‖0 ≤ C|z|.

We have, by ‖Tzp‖2p ≤ ‖T ‖2p‖(1− zpT )−1‖0 ≤ C|z|. We obtain from Lemma 4.1

|||Tzp ||| ≤ C‖Tzp‖n/(4p)2p ‖Tzp‖1−n/(4p)
0 ≤ C|z|1−p+n/4.

We remind [1, Theorem 12.14] if T is Hilbert-Schmidt, we have
∑ |µi|2 ≤ |||T |||2 where µj 6= 0

are the eigenvalues counted with multiplicities.
Let λj such that λ−1

j is a eigenvalue of S, we find that 1
λp
j−zp is a eigenvalue of Tzp . We obtain

∑

j

1

|λpj − zp|2 ≤ |||Tzp |||2 ≤ C|z|2−2p+n/2.

If |λj | ≤ t2 and taking z ∈ d(r0, θ) satisfying |z| = t2, we have |λpj − zp| ≤ 2t2p. Then we have

∑

|λj |≤t2

1

4t4p
≤
∑

j

1

|λpj − zp|2 ≤ |||Tzp |||2 ≤ Ct4−4p+n.

Then we obtain that N(t) ≤ Ct4+n.
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5 Estimate on the resolvent

5.1 Upper bound

In this section we prove the Theorem 5. We recall the well-known Green’s formula. For regular
functions u and v, we have

∫

Ω

(u∆v − v∆u)dx =

∫

∂Ω

(u∂νv − v∂νu)ds,

where ∂ν is the exterior normal derivative on ∂Ω and ds is the surface measure on ∂Ω. Here we work
with smooth functions. As the problem is well-posed by Theorem 1 we can apply the estimate for
non smooth functions by passing to the limit in the estimate.















∆w + k2n(x)w = f in Ω,
∆v + k2v = g in Ω,
w = v on ∂Ω,
∂νw = ∂νv on ∂Ω.

(47)

By Green’s formula and (47) we have

∫

Ω

(w∆w̄ − w̄∆w)dx =

∫

∂Ω

(w∂ν w̄ − w̄∂νw)ds

=

∫

Ω

[w(f̄ − k2n̄w̄)− w̄(f − k2nw)]dx

=

∫

Ω

[wf̄ − w̄f − 2ik2 Imn|w|2]dx,

and

∫

Ω

(v∆v̄ − v̄∆v)dx =

∫

∂Ω

(v∂ν v̄ − v̄∂νv)ds

=

∫

Ω

[v(ḡ − k2v̄)− v̄(g − k2v)]dx

=

∫

Ω

[vḡ − v̄g]dx.

Using the boundary condition in (47), we obtain,

∫

Ω

(wf̄ − w̄f)dx−
∫

Ω

(vḡ − v̄g)dx = 2i

∫

Ω

k2|w|2 Imndx.

Thus we deduce,

δ

∫

ω

k2|w|2 ≤ ‖v‖‖g‖+ ‖w‖‖f‖, (48)

where ω = {x ∈ Ω, Imn(x) ≥ δ}.

Remark 9. In the case where n = n1+in2/k we have Imn = n2/k, and in the previous computations
we must change the left hand side of (48) by δ

∫

ω
k|w|2 where ω = {x ∈ Ω, n2(x) ≥ δ}. We let to

the reader to check that the rest of the proof does not change with this new estimate. Indeed the
powers of k do not play any role with respect the estimates by eCk.

We recall the interpolation estimate. We can find this type of estimate in [18, Section 3, Formulas
(1) and (2)], [19, Theorem 3], [10, Proposition 1.2]. The estimate (49) does not appear in this
literature, but we can prove it following the same ways. Indeed in the Carleman estimate used
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to prove the interpolation estimates, we estimates also the boundary terms but in the previous
mentioned paper we did not need the boundary term in the interpolation estimates.

Let X = (−3, 3)× Ω, Y = (−2, 2)× Ω, and O = (−1, 1)× ω. We denote by ∂Y = (−2, 2)× ∂Ω.

Then there exist δ > 0 and C > 0 such that for all W ∈ H
1
(X) such that ∂2sW + ∆W ∈ L2(X),

W|∂Y ∈ H1(∂Y ), ∂νW|∂Y ∈ L2(∂Y ) , we have

‖W‖
H

1
(Y )

+ |W|∂Y |H1(∂Y )+ |∂νW|∂Y |L2(∂Y ) ≤C
(

‖∂2sW+∆W‖L2(X)+ ‖W‖L2(O)

)δ‖W‖1−δ

H
1
(X)

(49)

‖W‖
H

1
(Y )

≤C
(

‖∂2sW +∆W‖L2(X) + |W|∂Y |H1(∂Y ) + |∂νW|∂Y |L2(∂Y )

)δ‖W‖1−δ

H
1
(X)

, (50)

where s is an additional variable. This variable allows us to give an estimate uniform with respect
the large parameter k. We shall see that in the sequel.

Let W (s, x) = eskw(x) where ∆w + k2w = f in Ω. We have ∂2sW + ∆W = eskf and we can
obtain the following estimates for a C > 0,

‖w‖
H

1
(Ω)

≤ C‖W‖
H

1
(Y )

,

|w|∂Ω|H1(∂Ω) ≤ C|W|∂Y |H1
(∂Y )

,

|∂νw|∂Ω|L2(∂Ω) ≤ C|∂νW|∂Y |L2(∂Y ),

‖∂2sW +∆W‖L2(X) ≤ Ce3k‖f‖L2(Ω),

‖W‖L2(O) ≤ Cek‖w‖L2(ω),

‖W‖
H

1
(X)

≤ Ce4k‖w‖
H

1
(Ω)
.

By the interpolation estimate (49), there exists C > 0 such that for all w ∈ H
1
(Ω), satisfying

∂νw|∂Ω ∈ L2(∂Ω) and w|∂Ω ∈ H1(∂Ω) solution of ∆w + k2w = f in Ω, we have

|(∂νw)|∂Ω|L2(∂Ω) + |w|∂Ω|H1(∂Ω) + ‖w‖
H

1
(Ω)

≤ CeCk(‖w‖L2(ω) + ‖f‖). (51)

Using (48), (51) and CeCk‖w‖‖f‖ ≤ (1/2)‖w‖2 + C2e2Ck‖f‖2, we have for a C > 0

‖w‖2
H

1
(Ω)

≤ CeCk(‖f‖2 + ‖v‖‖g‖). (52)

Following the same way, we denote byW (s, x) = eskv(x) and we apply the interpolation estimate (50),
we obtain on v the estimate

‖v‖
H

1
(Ω)

≤ CeCk(‖g‖+ |v|∂Ω|H1(∂Ω) + |∂νv|∂Ω|L2(∂Ω)).

Taking account the boundary condition in (47) and (51) we have

‖v‖2
H

1
(Ω)

≤ CeCk(‖g‖2 + |w|∂Ω|2H1(∂Ω) + |∂νw∂Ω|2L2(∂Ω))

≤ CeCk(‖g‖2 + ‖f‖2 + ‖w‖2L2(ω))

≤ CeCk(‖g‖2 + ‖f‖2 + ‖v‖‖g‖+ ‖w‖‖f‖) by (48).

This estimate and (52) give

‖v‖
H

1
(Ω)

+ ‖w‖
H

1
(Ω)

≤ CeCk(‖f‖+ ‖g‖).

This implies the estimate on the L2 norm on v and w, which gives the Theorem 5 by density.

5.2 Lower bound

Here we use the results proved first by Davies [11] in one dimension, by Zworski [22] for Schrödinger
operators in n dimension and by Dencker, Sjöstrand and Zworski [12] for more general sub-elliptic
operators. This allows to obtain a lower bound on the resolvent.

We recall here the theorem given by Dencker, Sjöstrand and Zworski.
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Theorem 8 (Theorem 1.1 [12]). Let V ∈ C∞(Rn). Then, for any z ∈ {ξ2 + V (x), (x, ξ) ∈ Rn,

Im〈ξ, ∂xV (x)〉 6= 0}, there exists h0 > 0 such that for all h ∈ (0, h0), there exists u(h) ∈ L2(Rn) with

the property

‖(−h2∆+ V (x) − z)u(h)‖ = O(h∞)‖u(h)‖.
In addition, u(h) is localized to a point (x0, ξ0) in phase with ξ20 + V (x0) = z.

More precisely, WFh(u) = {(x0, ξ0)}, where WFh(u) is the semi-classical wave front set.

If the potential is real analytic, then we can replace h∞ by exp(−1/Ch).

A consequence of the microlocal localization of u, we can cut-off u such that its support is in a
neighborhood of x0. The Theorem 8 implies that if z is in the resolvent set, ‖(−h2∆+V (x)−z)−1‖ ≥
CNh

−N for all N , in C∞ case and ‖(−h2∆+ V (x) − z)−1‖ ≥ C exp(C/h) in analytic case.
Proof of Theorem 6. We set z0 = −(1+m(x0))

−1|ξ0|2, we set V (x) = z0(1+m(x)). We have
|ξ0|2 + V (x0) = 0 and

Im(ξ0∂xV (x0)) = Im(z0ξ0∂xm(x0)) = −|1 +m(x0)|−2|ξ0|2 Im((1 +m(x0))ξ0∂xm(x0))

= −|1 +m(x0)|−2|ξ0|2 Im(n̄(x0)ξ0∂xn(x0)) 6= 0,

by assumption. By Theorem 8 there exists u(h) such that ‖(−h2∆+V (x))u(h)‖ = O(h∞)‖u(h)‖
or = O(e−C/h)‖u(h)‖ if m is analytic. Define by f = ∆u(h) − h−2z0(1 + m(x))u(h), we have
R̃k2 (f, 0) = (u(h), 0) with k2 = −h−2z0. We remark that u(h) is localized in a neighborhood of x0,
in particular u(h) is null in a neighborhood of ∂Ω, then (u(h), 0) satisfies the boundary conditions.
This implies the Theorem 6.

A Notation and recall on pseudo-differential calculus

A.1 Sobolev spaces and pseudo-differential operators

We introduce some notation for the Sobolev spaces.
We denote the semi-classical Hs norm by ‖w‖2Hs

sc
=
∫

(1 + h2|ξ|2)s|û(ξ)|2dξ. On a compact
manifold we define the semi-classical Hs using local coordinates. To distinguish norm on spaces of
dimension n and dimension n−1, we denote the semi-classical Hs norm on ∂Ω by | · |Hs

sc(∂Ω). Let w a
distribution on Ω, we denote by ‖w‖Hs

sc(Ω) = inf{‖β‖Hs
sc
, where β|Ω = w}. We recall that we denote

by D = (h/i)∂, and if s is an integer the quantity
∑

|α|≤s ‖Dαw ‖2L2(Ω) is equivalent uniformly with

respect h to ‖w‖2
H

s
sc(Ω)

.

In the context of semi-classical Hs space we have the following trace formula, for s > 0, for all

w ∈ H
s+1/2

sc (Ω) we have
|w|∂Ω|Hs

sc(∂Ω) . h−1/2‖w‖
H

s+1/2
sc (Ω)

,

where w|∂Ω(x0) means the limit of w(x) when x ∈ Ω goes to x0.
We recall the pseudo-differential tools. Let a(x, ξ) in C ∞(Rn ×Rn) we say that a is a symbol of

order m if for all α, β ∈ Nn, there exist Cα,β > 0, such that

|∂αx ∂βξ a(x, ξ)| ≤ Cα,β〈ξ〉m−|β|,

where 〈ξ〉2 = 1 + |ξ|2. In particular a polynomial in ξ of order m with coefficients in C∞(Rn) with
all bounded derivatives, is a symbol of order m.

To a symbol we can associate an semi-classical operator by the following formula

Op(a)u = a(x,D)u =
1

(2π)n

∫

eixξa(x, hξ)û(ξ)dξ =
1

(2hπ)n

∫

eixξ/ha(x, ξ)û(ξ/h)dξ.

This formula makes sense for u ∈ S (Rn) and we can extend to u ∈ Hs. For a, a symbol of order m,
there exists C > 0 such that for all u ∈ Hs,

‖a(x,D)u‖Hs−m
sc

≤ C‖u‖Hs
sc
.
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We can compose the pseudo-differential operators, and we have the following result. Let a a
symbol of order m and b a symbol of order k, there exists c a symbol of order m + k such that
a(x,D) ◦ b(x,D) = c(x,D). Moreover there exists a symbol d of order m+ k− 1 such that c(x,D) =
(ab)(x,D) + hd(x,D). This means that up h the composition of two operators is the operators
associated with the product of symbols.

We can inverse the elliptic symbol, more precisely, let a a symbol of order m satisfying there
exists C > 0 such that for all (x, ξ) ∈ Rn × Rn we have |a(x, ξ)| ≥ C〈ξ〉m. Then for all N > 0 there
exist b a symbol of order −m and r a symbol of order −N such that b(x,D)◦a(x,D) = I+hr(x,D).
We can localized this result. Let K a closed set of Rn, we assume that there exists C > 0 such that
for all (x, ξ) ∈ K×Rn, |a(x, ξ)| ≥ C〈ξ〉m for all χ ∈ C∞

0 (Rn) supported in K, there exists b a symbol
of order −m and r a symbol of order −N such that b(x,D) ◦ a(x,D) = χ(x) + hr(x,D). In both
cases we say that b is a parametrix for a.

We can also define pseudo-differential on a smooth compact manifold without boundary. We
shall use freely the result on Rn in the context of manifolds. To distinguish both cases we denote
by Op a the operators on Rn and by op a the operators on a manifold of dimension n − 1 or on
Rn−1 ∼= {x ∈ Rn, xn = 0}.

We use also spaces H
s

sc and the pseudo-differential calculus on these spaces. In general that
requires introduction of the delicate notion of “transmission condition” (see Boutet de Monvel [2]), to
avoid that we follow the Hörmander’s strategy (see [15, Appendix B]) adapted for the parametrices
which are particular cases of operators satisfying the “transmission condition”. We recall some results
proved by Hörmander in the context of classical H

s
spaces. The adaptation to the H

s

sc spaces
is easy and we give here only the results and some ideas of proof. Here we give the result in
a half space Rn

+ = {x ∈ Rn, xn > 0}. For simplicity we denote by H
s

sc = H
s

sc(R
n
+). In the

proof we need introduce a space H
m,s

sc . First we say that u ∈ Hm,s
sc (Rn) = Hm,s

sc if ‖u‖2Hm,s
sc

=
∫

〈hξ〉2m〈hξ′〉2s|u(ξ)|2dξ < ∞ where ξ = (ξ′, ξn). As for the Hs space we say that u ∈ H
m,s

sc

where u is a distribution in D ′(Rn
+) if there exists v ∈ Hm,s

sc such that u = v|xn>0 and we denote
‖u‖Hm,s

sc
= inf{‖v‖Hm,s

sc
, where v ∈ Hm,s, such that v|xn>0 = u}.

We can easily see that if u ∈ H
0,s

sc then u ∈ H0,s
sc and ‖u‖

H
0,s
sc

= ‖u‖H0,s
sc

, (see (13) for the

definition of u).
We can extend the Theorem B.2.3 given by Hörmander [15]

u ∈ H
m,s

sc ⇔ Dxnu ∈ H
m−1,s

sc and u ∈ H
m−1,s+1

sc

⇔ D2
xn
u ∈ H

m−2,s

sc , Dxnu ∈ H
m−2,s+1

sc and u ∈ H
m−2,s+2

sc . (53)

Of course the natural norms on these spaces are equivalent.
We can use the Theorem B.2.9 from [15] in the following form adapted to our context. We denote

by P = D2
xn

+R(x,D′) + α(x)Dxn a differential operator of second order. We have for all k ∈ R,

u ∈ H
m−k,s+k

sc and Pu ∈ H
m−2,s

sc ⇒ u ∈ H
m,s

sc . (54)

Of course this is trivial if k ≤ 0. For k > 0 we can prove this by recurrence on k. The idea is the
following, we can write D2

xn
u = Pu − R(x,D′)u − αDxnu and for k = 1 this formula implies that

D2
xn
u ∈ H

m−2,s

sc . Then we can apply (53) to obtain the result in this case. The recurrence is easy.
The previous results are useful to prove that the parametrix of a elliptic operator is a mapping

on the H
s

space.
Let P a differential operator of second order, elliptic, i.e. there exists C > 0 such that ∀x ∈ Rn,

∀ξ ∈ Rn, |p(x, ξ)| ≥ C〈ξ〉2, and let Q a parametrix such that QP = Id + hK where K is of order
−N where N > 0. For a distribution w in R

n, we denote by rw = w|xn>0. The action of Q on H
s

sc

is given by the formula rQu which make sense if u make sense (it is the case for if u ∈ L2(Ω)). We
have the following result. If s ∈ [0, N ], there exists C > 0 such that for all u ∈ H

s

sc, we have

‖rQu‖
H

s+2
sc

≤ C‖u‖Hs
sc
. (55)
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Remark, here u is at least in L2 so rQu make sense. First we prove that rQu ∈ H
s+2−k,k

sc where

k ≥ s. It is enough to prove that for all α ∈ Nn−1, |α| ≤ k, D′αQu ∈ H
s+2−k

sc . By pseudo-differential
calculus we have D′αQ =

∑

|β|≤|α|QβD
′β , where Qβ is of order −2. We have

‖rD′αQu‖
H

s+2−k
sc

≤
∑

|β|≤|α|
‖QβD

′βu‖Hs+2−k
sc

≤ C
∑

|β|≤|α|
‖D′βu‖Hs−k

sc
≤ C‖ u‖Hs−k,k

sc

≤ C‖ u‖H0,s
sc

≤ C‖u‖
H

0,s
sc

≤ C‖u‖Hs
sc
.

It is well-known that we have also PQ = Id+hK̃ where K̃ is of order −N . Indeed there exists a
Q̃ such that PQ̃ = Id+hK̃ where K̃ is of order −N and it is easy to prove that Q = Q̃+hK ′ where
K ′ is of order −N − 2. Thus we have, as P is a differential operator, PrQu = rPQu = ru+hrK̃u =
u + hrK̃u. As ‖ K̃u‖HN ≤ C‖u‖L2 ≤ ‖u‖Hs

sc
, we obtain for s ∈ [0, N ], ‖PrQu‖Hs

sc
≤ C‖u‖Hs

sc
.

Then we have rQu ∈ H
s+2−k,k

sc and PrQu ∈ H
s

sc then from (54) this implies ‖rQu‖
H

s+2
sc

≤ C‖u‖Hs
sc

.

We need also regularity results for rQ(γ ⊗ Dk
xn
δxn=0), where γ ∈ Hs

sc(R
n−1). First we remark

∫

h2k|ξn|2k(1 + h2|ξn|2 + |ξ′|2)νdξn ≤ C〈ξ′〉2k+2ν+1/h if ν + k < −1/2, then by direct computation
we have for all γ ∈ Hs(Rn−1), ‖γ⊗Dk

xn
δxn=0‖Hν−k−1/2,s−ν ≤ C√

h
|γ|Hs(Rn−1), if ν < k. For j ∈ N, we

have if s− k < j, following the same computation as for computing rQu,

‖Q(γ ⊗Dk
xn
δxn=0)‖Hs−j−k+3/2,j ≤ C‖γ ⊗Dk

xn
δxn=0‖Hs−j−k−1/2,j ≤ C√

h
|γ|Hs(Rn−1).

As r(γ ⊗Dk
xn
δxn=0) = 0 we have PrQ(γ ⊗Dk

xn
δxn=0) = hrK(γ ⊗Dk

xn
δxn=0). We deduce,

‖PrQ(γ ⊗Dk
xn
δxn=0)‖Hs−k−1/2

sc

≤ C‖γ ⊗Dk
xn
δxn=0‖Hs−k−N−1/2

sc
≤ C√

h
|γ|Hs(Rn−1),

if s− k < N . Thus from (54) we obtain if s− k < N ,

‖rQ(γ ⊗Dk
xn
δxn=0)‖Hs−k+3/2

(Rn
+)

≤ C√
h
|γ|Hs(Rn−1). (56)

Remark 10. In the section 2.3 we apply the previous result to a local parametrix. Indeed we can
construct the local parametrix with a global parametrix. We can extend P to have a global elliptic
operator P̃ such that P̃ = P in a domain W where P is elliptic. Let Q a parametrix of P̃ such that
QP̃ = Id + hK where K is an operator of order −N . Let χ1 and χ2 functions in C∞ compactly
supported in W such that χ2 = 1 on the support of χ1. By pseudo-differential calculus, we have
χ1Qχ2 = χ1Q + hK ′ where K ′ is an operator of order −N − 2. Then we have χ1QP̃ = χ1 + hχ1K
and χ1QP̃ = χ1Qχ2P̃ −hK ′P̃ . As P̃ = P on the support of χ2 we have χ1Qχ2P = χ1+hK ′′ where
K ′′ is an operator of order −N . Then χ1Qχ2 is a local parametrix of P . It is easy to see that we
can replace Q by χ1Qχ2 in (55) and in (56).

A.2 Properties on the roots and parametrices

We use some properties of the roots of ξ2n+R(x, ξ
′)−µ and a(ξ2n+R(x, ξ

′))−µ. By assumption these
polynomials have not real roots and it is easy to see that for ξ′ large enough the imaginary parts have
different signs. In particular the roots are simple thus smooth and the roots are symbols of order 1.
Actually, for instance for ξ2n+R(x, ξ

′)−µ, (the proof for a(ξ2n+R(x, ξ
′))−µ is similar and left to the

reader) the roots have, for |ξ′| large enough, the following form ±i
√

R(x, ξ′) + z±(µ, 1/
√

R(x, ξ′)),
where z± is a solution to z± ∓ iz2±s/2 + iµs/2 = 0 in a neighborhood of s = 0. This expression
implies that the roots are symbols of order 1.

The parametrices used, denoted by Q and Q̃ have a particular structure we give here. The symbol
of P is a polynomial having the following form, p2 + hp1 where pj are polynomial of degree j. We
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seek a parametrix with symbol given formally by q = q−2 + hq−3 + h2q−4 + · · · , where qj are symbol
of order j. If we denote by q ◦ p the asymptotic expansion of the symbol of Op(q)Op(p), we have,

q ◦ p = q−2p2 +
∑ hk−j+|α|

α!i|α|
∂αξ q−k∂

α
x pj,

where in the sum we have j = 2 or 1, k ≥ 2, α ∈ Nn and, |α| ≥ 1 or j = 1. In particular we have
k − j + |α| ≥ 1. We choose q−2 = 1/p2, and to cancel the terms with the same power in h we have

q−ν−2 =
1

p2

∑ 1

α!i|α|
∂αξ q−k∂

α
x pj, (57)

where ν ≥ 1, k− j+ |α| = ν, j = 2, 1, k ≥ 2, α ∈ Nn, |α| ≥ 1 or j = 1. In particular the sum is finite
and k ≤ ν + 1. We claim now that

q−ν =
S3ν−6

p2ν−3
2

for ν ≥ 2,

where Sµ is a polynomial of degree µ.

Clearly this is true for ν = 2. We verify that for k ≤ ν + 1, ∂αξ q−k =
S̃3k−6+|α|

p
2k−3+|α|
2

, where S̃µ is a

polynomial of degree µ. The parameters satisfy j ≤ 2, k− j+ |α| = ν and k ≤ ν +1, then the power
of p2 in (57) is 2k − 2 + |α| = ν + k + j − 2 ≤ 2ν + j − 1 ≤ 2ν + 1 = 2(ν + 2)− 3. The degree of the
numerator is 3k − 6 + |α|+ 2j = ν + 2k − 6 + 2j ≤ 3ν − 4 + 2j ≤ 3ν = 3(ν + 2)− 6. This gives the
claim.

We need to compute for γ(x′),

[

Q

(

h

i
γ ⊗Dk

xn
δxn=0

)]

|xn=0

=
1

(2hπ)n−1

∫

eix
′ξ′/hq̃(x′, ξ′)γ̂(ξ′/h)dξ′, (58)

where formally q̃(x′, ξ′) =
(

1
2iπ

∫

R
eixnξn/hq(x, ξ)ξkndξn

)

|xn=0
. It is not clear that q̃ is well defined

in general but in the following lemma we prove this is true if q is a rational function, and in this
case (58) make sense.

Lemma A.1. Let ν ∈ N∗, let Sν(x, ξ) a polynomial of order ν with respect ξn and we assume that

the coefficient of ξjn is a symbol in ξ′ of order ν− j. Let p a polynomial of degree d in ξ and a symbol

of order d. We assume that p(x, ξ) = ξdn +
∑d−1

j=0 ξ
j
nad−j(x, ξ

′) where ad−j are polynomials of order

d− j. Moreover we assume there exists δ > 0 such that ∀x ∈ Rn, ∀ξ ∈ Rn, |p(x, ξ)| ≥ δ〈ξ〉d. Then
(∫

R

ei
xn
h ξn

Sν(x, ξ)

p(x, ξ)
dξn

)

|xn=0

,

is a symbol of order ν − d+ 1.

Proof. The integral
∫

R
ei

xn
h ξn Sν(x,ξ)

p(x,ξ) dξn converges for xn > 0. For (x, ξ′) fixed, we can change

the integration contour by Γ = [−D〈ξ′〉D〈ξ′〉] ∪ {z ∈ C, |z| = D〈ξ′〉, Im z > 0}, where D will
be chosen later. Indeed the integral does not depend of D if D large enough and the integral on
{z ∈ C, |z| = D〈ξ′〉, Im z > 0} goes to 0 if D goes to +∞. Now we integrate on a compact set and
we can take the limit when xn goes to 0+. We have the following quantity to control.

A =

(∫

Γ

Sν(0, x
′, ξ)

p(0, x′, ξ)
dξn

)

.

On Γ we have |Sν(0, x
′, ξ)| ≤ C〈ξ′〉ν . For ξn ∈ {z ∈ C, |z| = D〈ξ′〉, Im z > 0} we have

|p(0, x′, ξ)| ≥ |ξn|d −
∑d−1

j=0 |ξn|j |ad−j(0, x
′, ξ′)| ≥ Dd〈ξ′〉d(1 − dD−1C) ≥ 〈ξ′〉dDd/2, where we have

|ad−j(0, x
′, ξ′)| ≤ C〈ξ′〉d−j and chosen D such that D ≥ max(1, 2dC). Then by assumption for all

ξn ∈ Γ we have |p(0, x′, ξ)| ≥ δ′〈ξ′〉. As the length of γ is less than K〈ξ′〉 we obtain A ≤ K ′〈ξ′〉ν−d+1.
We can obtain the estimates on the derivative by the same way because we can derive A and we
obtain the same type of quantities to estimate.

Now we compute the boundary symbol obtained in (20) and (23).
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Lemma A.2. Let k = 0, 1 and Im ρ1 > 0, Im ρ2 < 0, we have

(∫

R

ei
xn
h ξn ξkn

(ξn − ρ1)(ξn − ρ2)
dξn

)

|xn=0

= 2iπ
ρk1

ρ1 − ρ2
,

Proof. As in the proof of Lemma A.1, we can integrate on Γ and this integral is equal to 2iπ

times the residu at ρ1. It is easy to see that the residu is
ρk
1

ρ1−ρ2
.

Lemma A.3. Let k = 0, 1 and Imλ1 > 0, Imλ2 < 0, Im ρ1 > 0, Im ρ2 < 0, we have

(∫

R

ei
xn
h ξn

ξkn
(ξn − λ1)(ξn − λ2)(ξn − ρ1)(ξn − ρ2)

dξn

)

|xn=0

= 2iπAk,

where

Ak =















ρ2 − ρ1 + λ2 − λ1
(λ1 − λ2)(λ1 − ρ2)(ρ1 − λ2)(ρ1 − ρ2)

if k = 0

λ2ρ2 − λ1ρ1
(λ1 − λ2)(λ1 − ρ2)(ρ1 − λ2)(ρ1 − ρ2)

if k = 1.

Proof. Clearly both sides of the equality are continuous with respect (λ1, ρ1) then it is sufficient
to prove the case λ1 6= ρ1.

As in the proof of Lemma A.1, we can integrate on Γ and the result is 2iπ times the sum of the
residues in half plane Im z > 0. We obtain

λk1
(λ1 − λ2)(λ1 − ρ1)(λ1 − ρ2)

+
ρk1

(ρ1 − λ1)(ρ1 − λ2)(ρ1 − ρ2)

=
λk1(ρ1 − λ2)(ρ1 − ρ2)− ρk1(λ1 − λ2)(λ1 − ρ2)

(λ1 − λ2)(λ1 − ρ1)(λ1 − ρ2)(ρ1 − λ2)(ρ1 − ρ2)
.

Clearly the numerator is null if ρ1 = λ1. By a straightforward computation, if k = 0 the numerator
is (λ1 − ρ1)(ρ2 − ρ1 + λ2 − λ1). If k = 1 the numerator is (λ1 − ρ1)(λ2ρ2 − λ1ρ1). This gives the
Lemma.
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