
HAL Id: hal-00782740
https://hal.science/hal-00782740v1

Submitted on 30 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Face Recognition Approach Using a Graphical
Processing Unit ”GPU”

Yousri Ouerhani, Maher Jridi, Ayman Alfalou

To cite this version:
Yousri Ouerhani, Maher Jridi, Ayman Alfalou. Fast Face Recognition Approach Using a Graphical
Processing Unit ”GPU”. IEEE International Conference on Imaging Systems and Techniques, Jun
2010, Thessalonique, Greece. pp.80-84. �hal-00782740�

https://hal.science/hal-00782740v1
https://hal.archives-ouvertes.fr


Fast Face Recognition Approach Using a Graphical
Processing Unit ”GPU”

Yousri Ouerhani, Maher Jridi and Ayman AlFalou, Senior Member, IEEE
Département d’optoélectronique, Laboratoire L@bISEN

20 rue Cuirassé Bretagne CS 42807, 29228 Brest Cedex 2, France
e-mail: {yousri.ouerhani, maher.jridi and ayman.alfalou}@isen.fr

Abstract—In this manuscript, we present an implementation
of a correlation method for face recognition application on GPU.
Our correlator is based on the famous ”4f” setup and the
use of a Phase Only Filter (POF). Traditionally, the correlation
approach is implemented using optical components for real-time
application. Unfortunately, optical implementation is complex
and has exorbitant price. To cope with these drawbacks and in
order to benefit from the accuracy of the correlation method, we
propose in this work to implement the correlation using GPU. To
this end, we will take an interest in the mathematical aspect of the
correlation method to identify the processing to be implemented
on GPU. Simulations results about the implementation of the
face recognition application on GPU showed the efficiency of
our proposed design. Moreover, comparison between GPU and
CPU in terms of execution time have been made and shows that,
to identify one face among 4, GPU Nvidia Geforce 8400 GS is 3
times faster than the Intel Core 2 CPU 2.00 GHZ.

I. INTRODUCTION

Over the last few years, interest in face recognition has
increased for military and civil applications. The trend in
these applications is to realize the face recognition in a low
computing time. In this context, we have turned to techniques
such as optical correlation which benefit from parallelism
provided by optical components. In the literature, there have
been many approaches implementing face recognition methods
according to specific applications. In [1], the authors proposed
a tutorial on the various correlation techniques. It has been
shown that these techniques are efficient in terms of detection
(very good recognition rate with low false alarm rate) and low
computing time.
In [2], the authors use the correlation technique to recognize
the sign language and retranscribe it into a written or oral
language in order to make mobile communication possible
between a deaf-mute and people who don’t know the sign
language.
In some applications and for convenience and safety reasons
(recognition of people in the subway) the correlator must be
physically separated from cameras filming the scene. Thus it
is necessary to save and/or transmit images to the correla-
tor. However applying the conventional methods of images
compression and encryption is very restrictive because it
leads to decrease the correlator performances. To cope with
this problem, the authors in [3] proposed many compression
and encryption techniques adapted to face recognition using
correlation methods.

Traditionally, optical devices are used to achieve the corre-
lation. The low processing time is the major advantage of
these devices. These devices are not portable and have an
exorbitant price for civil applications. To solve this prob-
lem, we propose to implement this correlation method on
digital electronic components. In fact, algorithms of image
processing are implemented on different targets such as DSP,
CPU and GPU in order to obtain a high quality with a low
execution time. Unfortunately, it is often difficult to combine
the high resolution and the reduced execution time. In this
work a special interest is given to the implementation of
the correlation technique for the face recognition on GPU.
This kind of processor has been proposed for two reasons:
to solve the compromise quality/time and reduce the cost
of obtained circuit. In fact, results reported in several recent
scientific references for different applications show that the
parallel architecture of GPU allows pipelined computing and
consequently reduces constraints for real-time applications [4].
It should be outlined that the principle of the proposed face
recognition approach based on correlation technique is to com-
pare the degree of similarity between the target object (face
to recognize) with several references objects. The correlation
technique is performed using the mathematical model based
on Fourier Transform FT and detailed in [1].
This manuscript is organized as follows: in section II, a
performance comparison between GPUs and CPUs is made
to justify the choice of GPU. Section III is devoted to the
description of the Fast Fourier Transform (FFT) algorithm and
4f setup to be used in the correlation technique. In section IV,
GPU experimental results are presented in order to show the
efficiency of the proposed approach. Finally, we conclude this
paper by presenting new research directions to improve the
proposed design.

II. WHY GPU?
A. Evolution

Today, CPU frequency no longer follows Moore’s law due
to the increase of the CPU consumed energy and physical
limitation [5]. To cope with this problem, researchers over the
word propose to use many parallel processors. One interesting
solution using multiprocessors for graphical processing is the
GPU. Since 2003, researchers have attempted to use GPU
originally designed for computing 3D functions. This includes
lighting effects, object transformations, and 3D motion [6].



Fig. 1. CPU versus GPU evolution

Today, GPU is used for intensive computing and can be consid-
ered as multiple cores with a software layer that allows parallel
computing. Contrary to CPU, the state of the art of GPU
shows that the performances in term of execution time are in
constant evolution. We extended the study of [7] to estimate
the performances of GPU and CPU in 2010. The results of
this study are summarized in figure 1 which shows that in
2010 the ratio between the GPU and CPU maximum operating
frequencies is more than 15. This means that image processing
through GPU is faster than on CPU. The computing speed
is measured by GFLOPS (Giga FLoating point Per Second)
which is equal to 109 floating-point arithmetic operations per
second. The GPU family used in this comparison is NVIDIA.

B. Architecture

GPU architecture is composed of several multiprocessors,
themselves containing several physical devices. For example,
the GPU card used in this work is an Nvidia 8400 GS
graphics card. As shown in figure 2, this GPU has only one
Stream Multiprocessor (SM) with 8 graphic processors named
Stream Processor (SP) and 2 Super Functions Unit (SFU)
which are specific units used to compute elementary functions
(exponential, logarithm, sine, cosine, ...). Each multiprocessor
(SM) can process parallel groups of threads, called warps. On
the other hand, each SM has a memory of 16 KB size that
is shared by the processors within the multiprocessor. The
instruction Fetch/Dispatch is a scheduler that dispatches in-
struction and data to be executed and saved on cache memory
Instruction L1 and Data L1. Each multiprocessor is based on
Single Input Multiple Data (SIMD) architecture, to perform
intensive computation of highly parallelizable algorithms. On
one clock cycle, each processor executes one instruction [8].
Consequently, the execution time of algorithms on GPU is
determined by (1).

Time =
Number of threads

number of processors
(1)

Finally, it is important to notice that to program the GPU,
we should use the development toolkit CUDA [9] that allows

Fig. 2. GPU Architecture

Fig. 3. 4f optical setup

Fig. 4. 4f setup

a massively parallel programming. The goal of the imple-
mentation of the face recognition on GPU is double: first,
we take advantage of the parallel processing to optimize
the execution time. Second, we ensure a high face detection
quality. Before detailing our numerically approach, we begin
by introducing the principle of the correlation method used to
face recognition.

III. FFT-4f SETUP: CORRELATION METHOD

A. Principle

One way of the realization of the 4f setup is the optical
one shown in figure 3. According to this figure, the 4f setup,
implementing the correlation, is an optical system composed
of two convergent lenses and three planes: input, Fourier
and (output) correlation planes. The 2D target-object O is
illuminated by a monochromatic wave. A first convergent
lens performs the Fourier transform S0 of the input object
at the Fourier plane. Then, a specific correlation filter H is
put using specific optoelectronic devices [10]. Next, a second
convergent lens performs the inverse Fourier transform (IFT)
at the output plane of the system to get the correlation plane.
As we said previously, in order to reduce the complexity of

the optical implementation and to ensure the configurability
of the correlation method this optical setup is replaced by a
digital one illustrated in figure 4. However, to implement the



TABLE I
PROCESSING TIME OF MATRIX MULTIPLICATION ON GPU (MS)

Matrix size 16x16 32x32 64x64 128x128 256x256

Execution Time 0.092 0.1121 0.2502 1.2713 9.1691

correlation setup on GPU we should examine the possibility
of implementing the 2D Fourier Transform. One well-known
algorithm of 2D-FT is the 2D Fast Fourier Transform 2D-
FFT. In order to simplify the study of this algorithm we take
an interest in the 1D-FFT defined by the next equation:

Fj =

n−1∑
k=0

xke
− 2iπ

n jk (2)

Where (x0, ..., xn−1) is the input vector and n is the length
of this vector. The form of (2) is equivalent to the matrix
multiplication form shown in (3) where w = e−

2iπ
n jk.

F0

F1

F2

...
Fn−1

 =


1 1 · · · 1
1 w · · · w(n−1)

1 w2 · · · w2(n−1)

...
...

. . .
...

1 w(n−1) · · · w(n−1)2




x0

x1

x2

...
xn−1


(3)

By using (3) we can reach to the 2D-FFT by replacing the
input vector by the image matrix and by computing two times
the multiplication of the input image by the matrix w.
To evaluate the performance, in term of computing time,
matrix multiplication for different matrix sizes applied to input
image and w matrix has been made. The computing times
(expressed in ms) of these multiplications are shown in Table I.
According to these results, for a 256x256 matrix multiplication
the execution time on GPU is about 9 ms. However, as we
said before, to implement the 4f setup on a GPU, one 2D-
FFT and one 2D-IFFT applied to image size of 256x256 are
required. Consequently, 4 matrix multiplications are required
and the total execution time reaches 36 ms. On the other
side, to implement the face recognition application, the matrix
multiplication is used with some additional processings related
to the decision of the recognition. Consequently, the overall
execution time is a heavy burden for real-time application. In
order to impove the algorithm computing time we use CUFFT
library provided by CUDA. In fact, CUDA FFT is based
on Fastest Fourier Transform in the West (FFTW) algorithm
[11]. The FFTW uses many algorithms such as Cooley-Tukey
algorithm [12], prime factor algorithm [13], Rader’s algorithm
for prime sizes [14] and split-radix algorithm [15] in order to
achieve best performances. By using this library, the 2D-FFT
followed by a 2D-IFFT execution time is less than 8 ms for
image size of 256x256. This algorithm will be used in the
implementation of the face recognition approach.

IV. FACE RECOGNITION

To validate the digital implementation of the correlation
method (4f setup), a face recognition application is considered.

Fig. 5. Face recognition algorithm

A. Principle algorithm

The principle of the adapted correlation algorithm imple-
menting the face recognition application on a GPU NVIDIA
is shown in figure 5. Basically, this technique is based on
the multiplication of the spectrum of the target image by a
correlation filter, made from a reference image. The result
is a more or less intense central correlation peak depending
on the degree of similarity between the target object and the
image reference [1]. Finally, to make a decision about the
recognition, the criterion called Peak to Correlation Energy
(PCE) is computed on the GPU and compared to a fixed
threshold. The PCE is defined as the ratio between correlation
peak energy and correlation plane energy [16].

PCE =
C2

ϕ∑
i C

2
xi

(4)

Where C2
ϕ is the correlation peak energy and

∑
i C

2
xi is the

correlation plane energy. Using the face recognition algorithm
two decisions are possible: if the PCE is superior to the
threshold K, the target face is recognized as the reference
face used to manufacture the correlation filter; otherwise, a
counter will increment the index of the correlation filter to be
used for the next correlation. This operation will continue until
obtaining index higher than the number of the filters saved in
the database. In this case, we get the following decision: the
target face is not contained in our database.

B. Test and validation

Implementation results are shown using only 4 images but
the proposed face recognition method can supports much more
images.
Many simulations have been conducted using 256x256 gray
scale images encoded on 8 bits. The first two images shown
in figure 6 are downloaded from [17].
In the case of successful recognition, an example of corre-



Fig. 6. Input images

Fig. 7. Correlation plane: target image is similar to the reference image

lation plane is shown in figure 7. In this output plane, i.e.,
correlation plane, we have an intense correlation peak located
at the center. That means a sharp depending on the degree of
similarity between the target and the reference images. In the
case of failed recognition (references images is not contained
in the data base) the correlation result is shown in figure 8.
In this correlation plane there is no correlation peak i.e. there
is no similarity between the target and the reference images.
In all cases, the execution time depends on the position of the
reference filter, i.e., index i of the filter in the database. In the
case of GPU implementation using 4 filters the computing
times vary between 10.34 ms and 28.99 ms. Moreover, to
show the speed-up using GPU, comparisons between GPU and
CPU implementation are done. To achieve this comparison,
a Matlab model for the face recognition algorithm has been
developed for the CPU implementation. Comparisons in terms
of execution time between these two implementations are
illustrated in figure 9. We can notice that the GPU Nvidia
Geforce 8400 GS execution is 3 times faster than an Intel
Core 2 CPU 2.00 GHZ and 2.5 times faster than a Pentium
Dual Core CPU 2.50 GHZ. An extended study of this method
applied to a database length of about 1000 images shows that

Fig. 8. Correlation plan for no similar images

Fig. 9. Comparison of processing time for face recognition on GPU Nvidia
Geforce 8400 GS and CPU

the execution time is lower than 6 s when the position of the
reference image is the last one or not contained in the database.

ACKNOWLEDGEMENT

The authors thank Dominique Maratray for her help and
advice.

V. CONCLUSION

Through this paper, we have proposed and validated an
approach implementing the correlation method digitally on a
GPU NIVIDIA for a face recognition application. The choice
of GPU target is comforted by comparisons between a GPU
and CPU implementations. It has been shown that the execu-
tion time using GPU manufactured in 2006 is three times lower
than recent CPU. This speed-up grows exponentially with the
image sizes. Our future works for the digital implementation
of face recognition will be devoted to FPGA implementation
to take benefits from the speed and the configurability.



REFERENCES

[1] A. Alfalou and C. Brosseau, Understanding Correlation Techniques
for Face Recognition: From Basics to Applications, in Face Recognition,
In-Tech, ISBN 978-953-7619-00-X, 2010.

[2] M. Elbouz, A. Alfalou and H. Hamam, Mobil phone camera Recognition
Sign Language using a segmented multidecision filter adapted to the Par-
allel virtual machine (PVM), International Journal of Hybrid Information
Technology : IJHIT Journal, vol. 1, No 2, pp. 101-108, 2008.

[3] A. Alfalou, M. Elbouz, M. Jridi and A. Loussert, A new simultaneous
compression and encryption method for images suitable to optical corre-
lation, Optics and Photonics for Counterterrorism and Crime Fighting V,
edited by Colin Lewis, Proc. of SPIE, vol. 7486, 74860J-1-8, 2009.

[4] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone and J.C.
Phillips, GPU Computing, Proc. of IEEE, vol. 96, pp. 879-899, May 2008.

[5] S.H. Park, D.R. Shires and B.J. Henz, Coprocessor Computing with
FPGA and GPU, 3rd ed. DoD HPCMP Users Group Conference. Seattle,
WA, pp. 366-370, July 2008.

[6] K. Moreland and E. Angel, The FFT on a GPU, Proc. of Graphics
Hardware, pp. 112-136, 2003.

[7] E Stephanie and K. Ronan, Etat de l’art des processeurs du marche
dans le contexte du codec H.264, Technical report Projet TransMedi@,
Institut Telecom/Telecom-Bretagne, Departement Informatique, Ver. 1.0,
May 2009.

[8] C. Deqi, L. Ningfang and C. Weiliang Study of ARFTIS reconstruction
model on GPU, ISECS International Colloquium on Computing, Com-
munication, Control and Management, vol. 2, pp. 192 - 195, 8-9 Aug.
2009.

[9] NVIDIA, NVIDIA CUDA Programming guide version 2.0, Available on
: http://www.developer.download.nvidia.com

[10] A. Alfalou, G.Keryer and J. L. de Bougrenet, Optical implementation
of segmented composite filtering, Applied Optics, vol. 38, pp. 6129-6135,
1999.

[11] M. Frigo and S.G. Johnson, The Design and Implementation of FFTW3,
Proc. of IEEE, vol. 93, no. 2, pp. 216-231, 2005.

[12] J.W. Cooley and J.W. Tukey, An algorithm for the machine computation
of the complex Fourier series, Mathematics of Computation, vol. 19, pp.
297-301, April 1965.

[13] A.V. Oppenheim and R.W. Schafer, Discrete-time Signal Processing,
Englewood Cliffs, NJ 07632: Prentice-Hall, 1989.

[14] C.M. Rader, Discrete Fourier transforms when the number of data
samples is prime, Proc. of IEEE, vol. 56, pp. 1107-1108, June 1968.

[15] P. Duhamel and M. Vetterli, Fast Fourier transforms: a tutorial review
and a state of the art, Signal Processing, vol. 19, pp. 259-299, April
1990.

[16] J.L. Horner, Metrics for assessing pattern-recognition performance,
Applied Optics, vol. 31, pp. 165-166, 5 March 1991.

[17] Face Databases From Other Research Groups, Available on :
http://www.ecse.rpi.edu/%7Ecvrl/database/other Face Databases.htm


