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Abstract

This paper emphasises the interest of the Bond Graph approach for analysis and system design of

heterogeneous and multi-field devices. In particular, the local stability analysis of non linear

systems can be directly derived from the linearised Causal Bond Graph. This method is applied to a

typical electrical engineering system : a railway traction device involving electromechanical

couplings. Validity, usefulness and originality of this approach are displayed.

Keywords : Bond graph, system design, heterogeneous devices, modelling, stability.

I. INTRODUCTION

Electrical engineering systems are more and more complex and heterogeneous, being constituted by

elements of different natures and different physical fields. In order to face these issues, a unified

formalism is particularly useful : the Bond Graph (BG) [1-3] has been conceived in this way to
represent power transfers by establishing energetic analogies between each field. The causality,

essential property for power systems, is graphically represented in the BGs. Several interesting

properties can be directly derived from the Causal Bond Graph in terms of system analysis and design:

§ Homogeneous modelling of a heterogeneous system makes easier coupling analysis by means of
causal properties;

§ Several analysis methods are directly applicable on BGs, such as structural or modal analysis [3-

5], stability analysis, model simplification methods [6-12];

§ An inverse modelling of the system can be obtained by means of bi-causality concept [13]

allowing to synthesize constraints relative to system requirements at each level of the BG.

In this paper, a railway traction system is considered as case study. A bond graph model of this

typical non linear system in electrical engineering allows to analyse the stability. For this purpose, the
system is linearised thanks to the linearised BG [14]. This paper is divided in four sections:

- Firstly, a short review of the BG formalism is described.

- Several analysis techniques, directly applicable on BGs are presented in section III, in
particular for the stability analysis.

- The modelling of the railway traction device is presented in the fourth section : an original BG

of AC induction motors is described especially when the system must be linearised around an

operating point in order to achieve the stability analysis.

- The fifth section shows the stability analysis of the obtained models.
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II. BOND GRAPH BASIC PRINCIPLES

The BG formalism [1-3], introduced by H. Paynter in 1961 and formalised by Karnopp and

Rosenberg in 1975, is now regularly used in many companies, particularly in automobile industry
(PSA, Renault, Ford, Toyota, General Motors, …). This graphical method illustrates the energetic

transfers in the system. The orientation of a half arrow indicates the power flow as expressed in Fig. 1.

The primary characteristic of the BG is relative to its unified aspect through analogies summarised in
Table 1. It obviously shows that this method can be applied to all physical domains by using

generalised variables for :

§ power : effort e (voltage in electricity) and flow f (current in electricity),

§ energy : moment p (integral of effort) and displacement q (integral of flow).

Table 1. Generalised variables in several domains.

Field Effort e Flow f Moment p Displacement q

Electrical
Voltage

u

Current

i

Magnetic

flux Φ
Charge

q

Mechanical

Translation

Force

F
Speed

v

Impulse

p

Displacement

x

Mechanical

Rotation

Torque

Τ

Angular

Speed ω
Angular

impulse h

Angle

θ

Hydraulic
Pressure

P

Flow

Q

Pressure

impulse Γ
Volume

V

Chemical
Chemical

potential

Molar

flow
- Number of moles

Thermodynamic Temperature T
Entropy

flow
- Entropy
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e

f
A BAA BB

e

f

Fig. 1. Bond graph power transfer.
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Fig. 2. Paynter’s tetrahedron.

Each bond brings simultaneously both information of effort and flow, where the product gives the
transmitted power. Elements can be connected with 0-junctions (common effort),   1-junctions

(common flow), transformers TF (relations effort-effort and flow-flow) and gyrators GY (relations

effort-flow). These junctions are considered as power conservative. Active elements for effort and
flow sources are added with three types of passive elements, each one representing storage or

dissipative interactions between generalised variables as displayed by Paynter’s tetrahedron in Fig. 2.

One of the most important bond graph properties for system analysis and design is the causality. It

is graphically described by the “causal stroke” :

A B

e

f

A imposes its effort to B

whose the consequence is its flow

A B

e

f

A B

e

f

B imposes its effort to A

whose the consequence is its flow

Fig. 3. Causality assignments.

Properties of causal BGs are particularly rich in information :
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§ As power transfers are concerned, they indicate if basic physical rules have been fulfilled

when several elements are coupled. Indeed, respecting the integral causality ensures that the

association is physically (and energetically) convenient and then “numerically consistent”;

§ By following the causal loops and causal paths in the BGs, one can analyse couplings between

elements in spite of domain changes;

§ Many properties, useful for system analysis, can be extracted (see section III).

Simplified example :

Better than detailing the Bond Graph theory, which has been developed in several references [1-3],

we illustrate this approach with the simple example of a DC traction system (see Fig. 4). The DC-DC

converter is supposed to be perfect and power conservative. It can then be modelled as a modulated
transformer (MTF). If an instantaneous model is considered the modulation of the transformer is

relative to the firing order state of the chopper (CH). In average values, the gain is relative to the duty

cycle following (eq. 1) :

mH

Cfm

II

VV

α

α

=

=
(eq. 1)

where IH and VCf denote the output current and voltage of the LCR filter, Vm and Im represent the input

current and voltage of the DC motor.

E
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Rf Lf

Cf
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Fr
Ν = Ω1/Ω2
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T

DC-DC

converter

IH

Fig. 4. DC motor traction system.

The electromechanical coupling represented by (eq. 2) can be modelled by a gyrator (GY) crossing

electrical effort (i.e. the emf Em) with the mechanical flow (the rotation speed Ωm) and the mechanical

effort (i.e. the em torque Tem) with the flow (i.e. the current Im) on the electrical side.

mem

mm

IKT

KE

=

Ω=
(eq. 2)

The motor is coupled with a mechanical load through a reducer. The associated causal BG with
integral (physical) causality is represented by Fig. 5. For example, the causal analysis of the input

filter shows that the inductance Lf imposes a common current (junction 1) in the E, Rf, Lf branch, while

the capacitor (Cf) imposes its effort (voltage) to other elements placed in parallel (junction 0).
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Fig. 5. Bond graph of the DC motor traction system.

II. BOND GRAPH BASED SYSTEM ANALYSIS METHODS

Several analysis can be directly applied on BGs :

§ Firstly, structural analysis as model order, observability and commandability, can be deduced

from BGs [3].

§ Secondly, mathematical models such as transfer function and state equations can be directly

derived from causal BGs [2]. The model modes can then be determined. By analysing these

modes associated with the parameters values, stability analysis or coupling analysis can be
characterised.

§ Thirdly, several model simplification methods can be applied directly on BGs. One can speak

about the Singular Perturbations Method (SPM) [6][9-10], which is based on the element

dynamics, and the Model Order Reduction Algorithm (MORA) based on the energetic
transfers [7-8][10-12].

§ Finally, by using the concept of bicausality [13] , the inverse BG model can be determined to

synthesize the constraints with respect to requirements.

In our research, we have mainly considered the issue of model simplification [9-11] even if this

paper is only focused on the stability analysis.

II.1. Bond Graph based Method for Local Stability Analysis

Analysing the system stability is of prime importance and the stability domain must be
characterised to avoid risks of system damage. Being generally non linear, the system cannot be

analysed on the whole range of parameters space. Thus, a linearised model around operating point has

to be derived. In fact, all the variables of a non linear model can be written as :

X = X + ∆X

U = U + ∆U

(eq. 3)

where X  and U  represent respectively the values of state and input vectors at the operating point,

while X∆  and U∆  are respectively their small variations.

Classically, the small signal model can be derived from the state equations. But this linearisation
can also be directly applied on the BG by determining the linearised BG as presented in [12][14].

Several types of non linearities can exist :

- Non linear characteristics of passive (R, C, I) or active (Se, Sf) elements : for example, if an R

dissipative element involves a non linear :
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Fig. 6. Linearisation of an R element.

- Non linear variation of an element modulus or of modulated gain for a GY (gyrator) or TF

(transformer) junction :

§ Example of a non linear I element (integral causality) :

Non linear Linearised
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§ Example of a modulated transformer :
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It can be observed that the linearised elements strongly depend on the causality assignment.

Finally, the small signal model only includes small variations on control variables and on system

inputs.
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II.2. Example

To illustrate this method, we take the example of the DC traction system previously presented in

Section 0. The following linearised BG is derived from the causal BG of Fig. 5.
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Fig. 7. Linearised BG of the DC traction system..

The small signal state equations can be deduced from this BG. The stability analysis of the open
loop system can then be performed directly by analysing the root locus obtained from the linearised

state equation.

In fact, several modulated inputs (MSfα, MSeα) are relative to the control variations of the DC-DC

chopper (∆α : duty cycle small variations) :

αα

αα

α

α

∆−=∆−=

∆=∆=

..

..

9
7

5
6

m

f

L

p
fMSf

C

q
eMSe

(eq. 4)

The PI current controller can also be linearised to achieve the stability analysis of the closed loop
system. From the controller equation :

( ) ( )( )mrefImrefP IIKIIK
E

−+−= &&&
1

α (eq. 5)

The small signal variation of the duty cycle can be derived :











∆+∆−∆−=∆ 13

5
5

1
p

J

K

C

q
q

CET mffCL

α
α

α& (eq. 6)

by assuming that the current reference is kept constant ( 0=∆= refref II& ) and that the controller

parameters KP and KI are adjusted to compensate the motor electric pole :

CL

m
I

CL

m

P

T

R
K

T

L
K

=

=

(eq. 7)

where CLT  represent the desired time constant in closed loop.

Finally, (eq. 8) gives the small signal state equation corresponding with the closed loop system :
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(eq. 8)

where p3, p9, p13, p18 and q5 represent the generalised energy variables respectively associated with the

Lf, Lm, Jm, Jl and Cf elements.

By using the numerical values, the root locus can be obtained, by considering a given operating

point obtained with Iref = 100 A and the motor angular speed Ωm = 250 Rd/s. For example, the
influence of the filter inductance Lf on the pole locus is presented on Fig. 8. With the zoom, we see

that for Lf > 9 mH, there are poles in the positive real plan. It indicates that the poles are unstable. As

we can see in Fig. 9 this analysis is validated by temporal simulations which also validate the proposed

approach.
Let notice that this analysis process can be rather complex to handle, especially as the controlled

system becomes complex itself. However, some software tools like ARCHER [15] provide the state

equations from the BG. Furthermore, symbolic calculation tools like Maple, Mathematica or Matlab
are useful to derive the linearised state equations of the control unit. In this case study, the root locus

has been obtained from Matlab.

Stability limit : mH9≈fL

Fig. 8. Poles analysis : influence of the filter inductance value Lf.
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Fig. 9. Influence of the filter inductance value Lf  on the motor current Im and on the motor angular speed Ωm :

(a) unstable case (Lf = 10 mH) and (b) stable case (Lf = 9 mH)

III. MODELLING OF THE RAILWAY TRACTION SYSTEM

A BB36000 railway traction system, produced by Alstom, France, is considered [12][16]. In fact,
this case study is typical of the stability issues due to the existence of an input filter whose the natural

frequency interacts both with the vector control bandwidth and with the resonant frequency of the

mechanical transmission line. Simplifying the approach, only a single motor and transmission line is
considered as presented on the synoptic of Fig. 19.
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Fig. 10. The BB36000 simplified bloc diagram.

III.1. Power feeding

An ideal DC voltage source is considered and represented by an effort source Se : Ucont. This source

feds an LCR filter to reduce the harmonic currents produced by the traction system and to filter
perturbations caused by the power network (see Fig. 12).

UcontSe:

Fig. 11. Bond graph of alimentation source.
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Fig. 12. Input filter : (a) electrical circuit and (b) associated bond graph.

A three-phase alternating current is provided by a classical PWM voltage source inverter. In this

model, each inverter leg is modelled by a modulated transformer whose gain is given by a control

signal ηi (see Fig. 13). The PWM inverter can be modelled in average value (MTF modulated by the

duty cycles) or in instantaneous value (MTF modulated by the conducting state of each leg).
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Fig. 13. BG model of the voltage source inverter.

III.2. Control unit

A classical Direct Field Oriented Control of the motor is used to independently regulate the rotor
flux and the electromagnetic torque. Choosing PI controllers to obtain zero-error at steady state, this

control unit is of order 2. The structure of the applied control is shown in Fig. 14. All variables are

represented in a Park’s reference frame (d,q) oriented along the rotor field.
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III.3. Induction motor

Squirrel cage induction motors drive the
locomotive. Several BG models can be

developed [9][12], following the considered

equivalent circuit or following the chosen
reference frame. Different reference frames are

illustrated in Fig. 15, where indexes Φ  and V are

respectively used for the reference frame

associated with the rotor flux and the stator
voltage vector.
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Fig. 15. Relations between reference frames.

Model A : Induction motor modelled in (α,β) fixed reference frame

To model the induction machine in a fixed reference frame, we have firstly chosen to totalise the

leakage inductances on the stator side, (Ls, Lr, Lm) being respectively the stator, rotor and magnetising

cyclic inductances and σ the leakage coefficient :
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Fig. 16. induction motor model with totalised leakages inductances :

(a) equivalent circuit brought to the stator side and (b) associated bond graph.

Model B : Induction motor model in (dV,qV) reference frame linked to the stator voltage

The model previously presented was established in a fixed reference frame which involves

alternating waves for electromagnetic variables. As the stability analysis issue is concerned, we have

seen (cf. section III) that a small signal model must be set around a given operating point. Thus, when

alternating variables are considered, as for an induction motor modelled in the (α,β) fixed reference
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frame, the small signal linear model cannot be obtained because no operating point can be set, except

of zero.

Therefore, an induction motor model established in a rotational reference frame must be
considered. Classically, this can be made thanks to the Park’s transformation. However, linearising the

model including this latter transformation leads to linearise non linear cosine and sine terms which

makes the approach more complex. In order to solve this issue, an original model of the induction
motor has been set by considering an orientation of the rotating reference frame (dV,qV) along the

stator voltage vector : Vs = VsdV, VsqV = 0.

This model depends on 2 inputs : the amplitude of stator voltage VsdV and its pulsation ωs. The first

one can be determined from the inverter and its control. The last one can be calculated if we know the

stator voltage phase ϕs. Note that the derivation of the stator pulsation (ωs) limits the utilisation of this
model. Indeed, an instantaneous model of the inverter does not allow derivation of the phase angle

which changes brutally. Thus, only an inverter modelled in average value can be associated with this

particular model of the machine.
The interest of this modelling is that the inverter can be represented by only one modulated

transformer (see Fig. 17) whose the gain ηd is calculated as shown in Table 2. The input current of this

converter is then the consequence of the power balance : sdVdc II .η= .

The associated bond graph of the induction machine modelled in this reference frame is displayed

in Fig. 18.

Table 2. Stator voltage on the inverter output.

Stator voltage

PWM inverter model
Modelling in (α,β) reference frame

Modelling in (d,q) reference frame

associated with the stator voltage vector
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Fig. 17. Simple BG of the inverter for the induction motor modelled on the (dV,qV) reference frame.
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Fig. 18. Bond graph of induction motor modelled in the (dV,qV) reference frame.

III.4. Mechanical transmission line

The mechanical transmission line is constituted of 2 couplings. The motor inertia, followed by a

first coupling on the primary shaft supplies a mobile reducer which is fixed on the locomotive body

through a track link. At the reducer output, another coupling element, namely Jacquemin, is present

before the wheel inertia. A complete description of the mechanical transmission line can be found in
more details in [10][16]. A reduced BG model can be obtained for the low frequencies [9-10]. The

synoptic of this line is presented in Fig. 19. The associated BG model is displayed in Fig. 20. In our

modelling, we do not consider the wheel-rail contact which is modelled without sliding. With this
hypothesis, the model is of 11

th
 order.

1st Coupling Reducer
Jacquemin

coupling
Wheel

Tem Force

on the wheel

Fig. 19. Synoptic of the mechanical transmission line.
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III.5. Validations by simulations

We validate our models by simulations. In particular, the two models of the induction machine are

compared :

§ Model A is the one with an induction motor modelled in the (α,β) fixed reference frame with

leakage totalised on the stator side,

§ Model B, is the one modelled in the rotating reference frame linked to the voltage (dV,qV).

For all models, 2 different cases are examined :

§ a normal operating mode (system starting),

§ a degraded operating mode obtained by short-circuiting one leg of the inverter.

Every model is simulated with the PWM inverter modelled in average value because the second

model (B) is not valid for instantaneous operations. Fig. 21 and Fig. 22 show that all models have

similar responses in a normal and a degraded operating mode which validates the original approach

proposed for Model B.
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IV. STABILITY ANALYSIS OF THE RAILWAY TRACTION MODELS

IV.1. BG based stability analysis procedure

We apply the stability analysis procedure previously presented in Section II. We have explained in

Section III.3 that the models of the induction motor in the (α,β) reference frame can not be linearised.

Therefore, we consider the induction motor modelled in the (dV,qV) reference frame linked to the

voltage vector for the stability analysis of the railway traction system. To simplify the analysis, the

mechanical part is here represented only by an inertia Jm (equivalent to the I6), a friction f and a load
torque Tl.

§ 1
st
 step : Small signal BG derivation

As for the example of the DC traction system (see section II) the linearised BG of the railway traction
system can be directly derived from the causal BG (see Fig. 23).
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Fig. 23. Linearised BG of the railway traction system

On this BG, the elements MSe and MSf are associated with :
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dsdd IMSf ηη ∆−= . ssdMSe ω∆Φ−= .4

'

9 .. rqpMSe ∆ΦΩ−=

dCfd VMSe ηη ∆= .
'

5 . rqsMSe ∆Φ= ω
'

10 .. rdpMSe ∆ΦΩ=

sqsMSe ∆Φ= .1 ω
srqMSe ω∆Φ= .

'

6

'

11 .. rqrdIpMSe ∆Φ=

ssqMSe ω∆Φ= .2

'

7 . rdsMSe ∆Φ−= ω
'

12 .. rdrqIpMSe ∆Φ−=

sdsMSe ∆Φ−= .3 ω
srdMSe ω∆Φ−= .

'

8

             Control inputs

The inputs of this linearised (small signal) BG are relative to the control unit (i.e. ∆ηd, ∆ωs).

§ 2
nd

 step : Stability analysis of the open loop system

The stability of the open loop system can be analysed from that small signal BG by deducing the state

equations. This can be made by means of the ARCHER software. When a simplified mechanical

system is considered only including an inertia, a viscous friction and a load torque, the open loop
system is of order 7. The state vector is then composed of :

[ ]T

rqVrdVsqVsdVCfLf IIVI ∆Ω∆Φ∆Φ∆∆∆∆=∆X (eq. 9)

Finally, the analysis of the root locus allows to determine the stability domain.

§ 3
rd

 step : Stability analysis of the closed loop system

However, for such systems, the control bandwidth strongly influences the stability. Thus, closed loop

operation must be considered by including the control unit in the analysis as presented in the example

of the DC traction system (see section III).

For that purpose, the control outputs (∆ηd, ∆ωs) have to be calculated from the control equations.

- Calculation of dη∆  :

2

.

Cf

CfsdV

Cf

sdV

Cf

sdV
d

V

VV

V

V

V

V ∆
−

∆
=










∆=∆η (eq. 10)

The motor input voltage is defined as :

22

ΦΦ += sqrefsdrefsdV VVV (eq. 11)

The linearisation of this voltage then leads to :

( )ΦΦΦΦ ∆+∆=∆ sqrefsqrefsdrefsdref

sdV

sdV VVVV
V

V ..
1

(eq. 12)

Thus, the small signal state equations can be established as (eq. 13). The inputs of this latter model are

(∆Ucont, ∆VsdrefΦ , ∆VsqrefΦ , ∆ωs). The control inputs (∆VsdrefΦ , ∆VsqrefΦ , ∆ωs) can also be developed. In

our case study, the field oriented control strategy involves control variables operating in another

(dΦ ,qΦ) reference frame linked to the rotor field. A classical strategy of rotor flux oriented control

presented on Fig. 14 is considered. However, in order to simplify the complex development leading to
the linearised control, we have neglected the electromotive forces (Ed and Eq) which decouple the

current controllers (see Fig. 14). Then, the control state equations can be expressed as (eq. 14), where

Tref and Φref represent the reference values of the electromagnetic torque and the rotor flux, and the Φ r

term is defined as 
22

rqVrdVr Φ+Φ=Φ .
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(eq. 14)

- Calculation of sω∆  :

The pulsation ωs is the angular velocity of the angle ϕs, where 
*δρϕ +=S . Then,

µ

dt

d

dt

d

dt

d
ss δρ ωωδρϕω +=+== * (eq. 15)

By using autopiloting equation, the pulsation ωρ can be formulated as :
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rr
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ωω ρ (eq. 16)

The angle δ*
 can be calculated from (eq. 17).











=

Φ

Φ

sdref

sqref

V

V
arctan

*δ (eq. 17)

Its derivation, the *δ
ω  term, can be defined as :

( ) ( )
22*

ΦΦ
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+

−
=

sqrefsdref

sdrefsqrefsqrefsdref

VV

V
dt

d
VV

dt

d
V

δ
ω (eq. 18)

By using (eq. 15), (eq. 16) and (eq. 18), we obtain the angular velocity ωs. The variation of this

pulsation can then be deduced.

The complex linearisation of these expressions is detailed in [12]. It allows to enhance the order of

the state equation (9
th

 order) as :

[ ]T

sqrefsdrefrqVrdVsqVsdVCfLf VVIIVI ΦΦ ∆∆∆Ω∆Φ∆Φ∆∆∆∆=∆X (eq. 19)

This small signal model depends on the physical system parameters but also on the control
requirement through the controller parameters (KP and KI).

By means of the Matlab
©
 software, the stability domain can be characterised by analyzing the root

locus of the closed loop system linearised around an operating point defined by the reference

parameters (Tref,  Φref) and of the load (Tl).

In the following simulations, the rated operating point is defined by : Tref = 5 kNm, Φ ref =6 Wb et
Tl = 4998 Nm, which sets the motor angular speed at 20 rad/s.

IV.2. Analysis results of the railway traction system stability

§ Influence of the filter capacitor value Cf

We have firstly investigated the stability of the operating point as a function of the filter capacitor

value Cf  which varies here between 1 and 100 mF. Fig. 24 presents the poles locus. The arrows show

the poles propagation direction when the Cf value increases. For this particular operating point

(Tref = 5 kNm, Ω = 20 Rd/s, Power = 100 kW), it can be seen that the model is unstable for
Cf < 1.3 mF.
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Fig. 24. Influence of the filter capacitor value C f.

§ Influence of the control bandwidth

We examine the influence of this parameter value by setting the closed loop time constant from
TCL = 1 ms to TCL = 100 ms. In this range, and for the rated filter capacitor of 17mF, we do not find

unstable zones. However, reducing this latter parameters or varying the rotation speed could lead to

unstability.
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Fig. 25. Influence of the controller time constant value TCL.

§ Influence of the mechanical angular speed Ω

The investigated range of this latter parameter is between 0 and 100 Rd/s. For a rated value of the

filter capacitor (Cf = 17 mF), the model is always stable. However, when we use a reduced value of

filter capacitor (Cf = 3 mF), there is an unstable domain when Ω > 51 Rd/s.
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Fig. 26. Influence of the motor mechanical angular speed Ω.

IV.3. Validation of the analysis procedure

In this section, we verify the stability analysis procedure by simulating the non linear BG model of

the traction system. A reduced value of the filter capacitor (Cf = 3 mF) is set. Four different states are
simulated (see Fig. 27) :

§ State 1 : the angular speed is null (a null load torque is applied).

§ State 2 : the angular speed increases with an important gradient (first transient state) because we

use only one tenth of the train mass to accelerate the simulation.
§ State 3 : it is the second transient state where we use the whole train inertia.

§ State 4 : the desired load is applied to set the operating point at steady state of the speed.

We present in Fig. 27 the simulation results for the motor mechanical angular speed Ω = 60 Rd/s.

These figures show the instability where oscillation variables are amplified.
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Fig. 27. Influence of the motor mechanical angular speed Ω : unstable operating points.

For the mechanical speed of Ω = 55 Rd/s, it can be seen from the zoom on the capacitor voltage

that an unstable behaviour is obtained. The system is stable for Ω = 50 Rd/s.
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Note that equivalent results have been obtained thanks to the previous stability analysis procedure

based on the BG approach, which proves its validity.

For mF17=fC , we have verified by simulations that the system is always stable as indicated in

the analysis procedure.

V. CONCLUSIONS

In this paper, a homogeneous BG model of a railway traction system has been presented allowing

to emphasise the electromechanical couplings. We have mainly focused our attention on a stability

analysis procedure that can be directly deduced from the BG model. For that purpose, the BG has to be
linearised around an operating point. We have also proposed an original model of the induction motor,

represented in the (dV,qV) rotating reference frame related to the stator voltage vector. This model

allows to avoid the non linear Park’s transformation which makes easier to linearise the BG and to

obtain a small signal model. The influence of system parameters on the stability has then be
investigated and validated by simulations on the non linear model.

This work is a contribution showing how the Bond Graph formalism is useful for modelling and

analysing electrical engineering multi-field systems. Indeed, obtaining a homogeneous modelling
greatly facilitates the system approach by emphasising couplings in spite of physical fields crossing.

More particularly, we have shown in this contribution, how this methodology is convenient for the

local stability analysis. Of course, the same kind of analysis could be done from the state model
through its linearisation around the same operating point. The Bond Graph formalism can then be seen

as a powerful alternative allowing a systematic and structured approach from which the linearised

model of an energetic system can be systematically deduced. As the stability analysis of a closed loop

controlled system is concerned, a signal part (control part) is associated with the causal Bond Graph
(energetic part). The linearisation of the signal part can only be done by means of state equations

derivation of the control strategy, which greatly contributes to the complexity of the analysis as it was

emphasised on the typical example of a railway traction system.
More generally, this contribution on system stability is a complement of other studies dedicated to

model reduction and other issues particularly useful for system design.
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