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This paper emphasises the interest of the Bond Graph approach for analysis and system design of heterogeneous and multi-field devices. In particular, the local stability analysis of non linear systems can be directly derived from the linearised Causal Bond

Graph. This method is applied to a typical electrical engineering system : a railway traction device involving electromechanical couplings. Validity, usefulness and originality of this approach are displayed.

I. INTRODUCTION

Electrical engineering systems are more and more complex and heterogeneous, being constituted by elements of different natures and different physical fields. In order to face these issues, a unified formalism is particularly useful : the Bond Graph (BG) [START_REF] Paynter | Analysis and Design of engineering systems[END_REF][START_REF] Karnopp | System Dynamics : Modelling and Simulation of Mechatronic Systems[END_REF][START_REF] Dauphin-Tanguy | Les Bond Graphs[END_REF] has been conceived in this way to represent power transfers by establishing energetic analogies between each field. The causality, essential property for power systems, is graphically represented in the BGs. Several interesting properties can be directly derived from the Causal Bond Graph in terms of system analysis and design:

Homogeneous modelling of a heterogeneous system makes easier coupling analysis by means of causal properties; Several analysis methods are directly applicable on BGs, such as structural or modal analysis [START_REF] Dauphin-Tanguy | Les Bond Graphs[END_REF][START_REF] Sueur | Bond-graph approach for structural analysis of MIMO linear systems[END_REF][START_REF] Dauphin-Tanguy | Bond graph aided design of controlled systems[END_REF], stability analysis, model simplification methods [START_REF] Sueur | Bond Graph Approach to Multi-time Scale Systems Analysis[END_REF][START_REF] Louca | A Physical-based Model reduction Metric with an Application to Vehicle Dynamics[END_REF][START_REF] Louca | Energy-based Model Reduction of Linear Systems[END_REF][START_REF] Gandanegara | Bond Graph Multi-time Scale Analysis of a Railway Traction System[END_REF][START_REF] Gandanegara | Modeling and Multi-time Scale Analysis of Railway Traction Systems Using Bond Graphs[END_REF][START_REF] Gandanegara | One Model for One Frequency Range : Comparison of Bond Graph Based Simplification Methods[END_REF][START_REF] Gandanegara | Methodologie de conception systémique en genie Electrique à l'aide de l'outil Bond Graph : Application à une chaîne de traction ferroviaire[END_REF]; An inverse modelling of the system can be obtained by means of bi-causality concept [START_REF] Gawthrop | Bicausal Bond Graph[END_REF] allowing to synthesize constraints relative to system requirements at each level of the BG. In this paper, a railway traction system is considered as case study. A bond graph model of this typical non linear system in electrical engineering allows to analyse the stability. For this purpose, the system is linearised thanks to the linearised BG [START_REF] Karnopp | Power and Energy in Linearised Physical Systems[END_REF]. This paper is divided in four sections:

-Firstly, a short review of the BG formalism is described.

-Several analysis techniques, directly applicable on BGs are presented in section III, in particular for the stability analysis. -The modelling of the railway traction device is presented in the fourth section : an original BG of AC induction motors is described especially when the system must be linearised around an operating point in order to achieve the stability analysis. -The fifth section shows the stability analysis of the obtained models.

II. BOND GRAPH BASIC PRINCIPLES

The BG formalism [START_REF] Paynter | Analysis and Design of engineering systems[END_REF][START_REF] Karnopp | System Dynamics : Modelling and Simulation of Mechatronic Systems[END_REF][START_REF] Dauphin-Tanguy | Les Bond Graphs[END_REF], introduced by H. Paynter in 1961 and formalised by Karnopp and Rosenberg in 1975, is now regularly used in many companies, particularly in automobile industry (PSA, Renault, Ford, Toyota, General Motors, …). This graphical method illustrates the energetic transfers in the system. The orientation of a half arrow indicates the power flow as expressed in Fig. 1. The primary characteristic of the BG is relative to its unified aspect through analogies summarised in Table 1. It obviously shows that this method can be applied to all physical domains by using generalised variables for : power : effort e (voltage in electricity) and flow f (current in electricity), energy : moment p (integral of effort) and displacement q (integral of flow). B Each bond brings simultaneously both information of effort and flow, where the product gives the transmitted power. Elements can be connected with 0-junctions (common effort), 1-junctions (common flow), transformers TF (relations effort-effort and flow-flow) and gyrators GY (relations effort-flow). These junctions are considered as power conservative. Active elements for effort and flow sources are added with three types of passive elements, each one representing storage or dissipative interactions between generalised variables as displayed by Paynter's tetrahedron in Fig. 2.

One of the most important bond graph properties for system analysis and design is the causality. It is graphically described by the "causal stroke" : 

Properties of causal BGs are particularly rich in information :

As power transfers are concerned, they indicate if basic physical rules have been fulfilled when several elements are coupled. Indeed, respecting the integral causality ensures that the association is physically (and energetically) convenient and then "numerically consistent"; By following the causal loops and causal paths in the BGs, one can analyse couplings between elements in spite of domain changes; Many properties, useful for system analysis, can be extracted (see section III).

Simplified example :

Better than detailing the Bond Graph theory, which has been developed in several references [START_REF] Paynter | Analysis and Design of engineering systems[END_REF][START_REF] Karnopp | System Dynamics : Modelling and Simulation of Mechatronic Systems[END_REF][START_REF] Dauphin-Tanguy | Les Bond Graphs[END_REF], we illustrate this approach with the simple example of a DC traction system (see Fig. 4). The DC-DC converter is supposed to be perfect and power conservative. It can then be modelled as a modulated transformer ( MTF). If an instantaneous model is considered the modulation of the transformer is relative to the firing order state of the chopper (C H ). In average values, the gain is relative to the duty cycle following (eq. 1) :

m H Cf m I I V V α α = = (eq. 1)
where I H and V Cf denote the output current and voltage of the LCR filter, V m and I m represent the input current and voltage of the DC motor. The electromechanical coupling represented by (eq. 2) can be modelled by a gyrator (GY) crossing electrical effort (i.e. the emf E m ) with the mechanical flow (the rotation speed Ω m ) and the mechanical effort (i.e. the em torque T em ) with the flow (i.e. the current I m ) on the electrical side.
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m em m m I K T K E = Ω = (eq. 2)
The motor is coupled with a mechanical load through a reducer. The associated causal BG with integral (physical) causality is represented by Fig. 5. For example, the causal analysis of the input filter shows that the inductance L f imposes a common current (junction 1) in the E, R f , L f branch, while the capacitor (C f ) imposes its effort (voltage) to other elements placed in parallel (junction 0). 

II. BOND GRAPH BASED SYSTEM ANALYSIS METHODS

Several analysis can be directly applied on BGs :

Firstly, structural analysis as model order, observability and commandability, can be deduced from BGs [START_REF] Dauphin-Tanguy | Les Bond Graphs[END_REF]. Secondly, mathematical models such as transfer function and state equations can be directly derived from causal BGs [START_REF] Karnopp | System Dynamics : Modelling and Simulation of Mechatronic Systems[END_REF]. The model modes can then be determined. By analysing these modes associated with the parameters values, stability analysis or coupling analysis can be characterised.

Thirdly, several model simplification methods can be applied directly on BGs. One can speak about the Singular Perturbations Method (SPM) [START_REF] Sueur | Bond Graph Approach to Multi-time Scale Systems Analysis[END_REF][9-10], which is based on the element dynamics, and the Model Order Reduction Algorithm (MORA) based on the energetic transfers [7-8][10-12]. Finally, by using the concept of bicausality [START_REF] Gawthrop | Bicausal Bond Graph[END_REF], the inverse BG model can be determined to synthesize the constraints with respect to requirements.

In our research, we have mainly considered the issue of model simplification [START_REF] Gandanegara | Bond Graph Multi-time Scale Analysis of a Railway Traction System[END_REF][START_REF] Gandanegara | Modeling and Multi-time Scale Analysis of Railway Traction Systems Using Bond Graphs[END_REF][START_REF] Gandanegara | One Model for One Frequency Range : Comparison of Bond Graph Based Simplification Methods[END_REF] even if this paper is only focused on the stability analysis.

II.1. Bond Graph based Method for Local Stability Analysis

Analysing the system stability is of prime importance and the stability domain must be characterised to avoid risks of system damage. Being generally non linear, the system cannot be analysed on the whole range of parameters space. Thus, a linearised model around operating point has to be derived. In fact, all the variables of a non linear model can be written as :

X = X + ∆X U = U + ∆U (eq. 3)
where X and U represent respectively the values of state and input vectors at the operating point, while X ∆ and U ∆ are respectively their small variations.

Classically, the small signal model can be derived from the state equations. But this linearisation can also be directly applied on the BG by determining the linearised BG as presented in [START_REF] Gandanegara | Methodologie de conception systémique en genie Electrique à l'aide de l'outil Bond Graph : Application à une chaîne de traction ferroviaire[END_REF] [START_REF] Karnopp | Power and Energy in Linearised Physical Systems[END_REF]. Several types of non linearities can exist :

-Non linear characteristics of passive (R, C, I) or active (Se, Sf) elements : for example, if an R dissipative element involves a non linear : -Non linear variation of an element modulus or of modulated gain for a GY (gyrator) or TF (transformer) junction :

Example of a non linear I element (integral causality) :
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It can be observed that the linearised elements strongly depend on the causality assignment. Finally, the small signal model only includes small variations on control variables and on system inputs.

II.2. Example

To illustrate this method, we take the example of the DC traction system previously presented in Section 0. The following linearised BG is derived from the causal BG of Fig. 5. The small signal state equations can be deduced from this BG. The stability analysis of the open loop system can then be performed directly by analysing the root locus obtained from the linearised state equation.

In fact, several modulated inputs (MSf α , MSe α ) are relative to the control variations of the DC-DC chopper (∆α : duty cycle small variations) :

α α α α α α ∆ - = ∆ - = ∆ = ∆ = . . . . 9 7 5 6 m f L p f MSf C q e MSe (eq. 4)
The PI current controller can also be linearised to achieve the stability analysis of the closed loop system. From the controller equation :

( ) ( ) (
)
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The small signal variation of the duty cycle can be derived :

        ∆ + ∆ - ∆ - = ∆ 13 5 5 1 p J K C q q C ET m f f CL α α α & (eq. 6)
by assuming that the current reference is kept constant (

0 = ∆ = ref ref I I &
) and that the controller parameters K P and K I are adjusted to compensate the motor electric pole :

CL m I CL m P T R K T L K = = (eq. 7)
where CL T represent the desired time constant in closed loop.

Finally, (eq. 8) gives the small signal state equation corresponding with the closed loop system : where p 3 , p 9 , p 13 , p 18 and q 5 represent the generalised energy variables respectively associated with the L f , L m , J m , J l and C f elements.
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By using the numerical values, the root locus can be obtained, by considering a given operating point obtained with I ref = 100 A and the motor angular speed Ω m = 250 Rd/s. For example, the influence of the filter inductance L f on the pole locus is presented on Fig. 8. With the zoom, we see that for L f > 9 mH, there are poles in the positive real plan. It indicates that the poles are unstable. As we can see in Fig. 9 this analysis is validated by temporal simulations which also validate the proposed approach.

Let notice that this analysis process can be rather complex to handle, especially as the controlled system becomes complex itself. However, some software tools like ARCHER [START_REF] Azmani | ARCHER: a program for computer aided modelling and analysis[END_REF] provide the state equations from the BG. Furthermore, symbolic calculation tools like Maple, Mathematica or Matlab are useful to derive the linearised state equations of the control unit. In this case study, the root locus has been obtained from Matlab. 

III. MODELLING OF THE RAILWAY TRACTION SYSTEM

A BB36000 railway traction system, produced by Alstom, France, is considered [12][16]. In fact, this case study is typical of the stability issues due to the existence of an input filter whose the natural frequency interacts both with the vector control bandwidth and with the resonant frequency of the mechanical transmission line. Simplifying the approach, only a single motor and transmission line is considered as presented on the synoptic of Fig. 19. 

III.1. Power feeding

An ideal DC voltage source is considered and represented by an effort source Se : U cont . This source feds an LCR filter to reduce the harmonic currents produced by the traction system and to filter perturbations caused by the power network (see Fig. 12). A three-phase alternating current is provided by a classical PWM voltage source inverter. In this model, each inverter leg is modelled by a modulated transformer whose gain is given by a control signal η i (see Fig. 13). The PWM inverter can be modelled in average value (MTF modulated by the duty cycles) or in instantaneous value (MTF modulated by the conducting state of each leg). 

U cont

Se:

U cont V Cf R f L f C f U cont V Cf R f L f C f U cont V Cf R f L f C f V Cf 0 1 U cont C :Cf I : L f R :Rf (a) (b)
0 MTF MTF MTF V 3 V 2 V1 1/η 1 1/η2 1/η 3 V Cf

III.2. Control unit

A classical Direct Field Oriented Control of the motor is used to independently regulate the rotor flux and the electromagnetic torque. Choosing PI controllers to obtain zero-error at steady state, this control unit is of order 2. The structure of the applied control is shown in Fig. 14. All variables are represented in a Park's reference frame (d,q) oriented along the rotor field. 
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III.3. Induction motor

Squirrel cage induction motors drive the locomotive. Several BG models can be developed [START_REF] Gandanegara | Bond Graph Multi-time Scale Analysis of a Railway Traction System[END_REF] [START_REF] Gandanegara | Methodologie de conception systémique en genie Electrique à l'aide de l'outil Bond Graph : Application à une chaîne de traction ferroviaire[END_REF], following the considered equivalent circuit or following the chosen reference frame. Different reference frames are illustrated in Fig. 15, where indexes Φ and V are respectively used for the reference frame associated with the rotor flux and the stator voltage vector. 

α β Φ r d Φ q Φ d V q V V s ρ δ ϕ

Model A : Induction motor modelled in (α,β) fixed reference frame

To model the induction machine in a fixed reference frame, we have firstly chosen to totalise the leakage inductances on the stator side, (L s , L r , L m ) being respectively the stator, rotor and magnetising cyclic inductances and σ the leakage coefficient : 

V s E r ' R s σL s R r ' L m 2 L r Φ r ' Φ s I s I r ' V s E r ' R s σL s R r ' L m 2 L r Φ r ' Φ s I s I r ' r r m r r s m R L L R L L L 2 ' 2 1         = - = σ

Model B : Induction motor model in (d V ,q V ) reference frame linked to the stator voltage

The model previously presented was established in a fixed reference frame which involves alternating waves for electromagnetic variables. As the stability analysis issue is concerned, we have seen (cf. section III) that a small signal model must be set around a given operating point. Thus, when alternating variables are considered, as for an induction motor modelled in the (α,β) fixed reference frame, the small signal linear model cannot be obtained because no operating point can be set, except of zero.

Therefore, an induction motor model established in a rotational reference frame must be considered. Classically, this can be made thanks to the Park's transformation. However, linearising the model including this latter transformation leads to linearise non linear cosine and sine terms which makes the approach more complex. In order to solve this issue, an original model of the induction motor has been set by considering an orientation of the rotating reference frame (d V ,q V ) along the stator voltage vector : V s = V sdV , V sqV = 0. This model depends on 2 inputs : the amplitude of stator voltage V sdV and its pulsation ω s . The first one can be determined from the inverter and its control. The last one can be calculated if we know the stator voltage phase ϕ s . Note that the derivation of the stator pulsation (ω s ) limits the utilisation of this model. Indeed, an instantaneous model of the inverter does not allow derivation of the phase angle which changes brutally. Thus, only an inverter modelled in average value can be associated with this particular model of the machine.

The interest of this modelling is that the inverter can be represented by only one modulated transformer (see Fig. 17) whose the gain η d is calculated as shown in Table 2. The input current of this converter is then the consequence of the power balance :

sdV d c I I . η = .
The associated bond graph of the induction machine modelled in this reference frame is displayed in Fig. 18. 

Stator voltage PWM inverter model

Modelling in (α,β) reference frame Modelling in (d,q) reference frame associated with the stator voltage vector 
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III.4. Mechanical transmission line

The mechanical transmission line is constituted of 2 couplings. The motor inertia, followed by a first coupling on the primary shaft supplies a mobile reducer which is fixed on the locomotive body through a track link. At the reducer output, another coupling element, namely Jacquemin, is present before the wheel inertia. A complete description of the mechanical transmission line can be found in more details in [START_REF] Gandanegara | Modeling and Multi-time Scale Analysis of Railway Traction Systems Using Bond Graphs[END_REF] [START_REF] Lochot | High speed railway traction system modelling for simulating electromechanical interactions[END_REF]. A reduced BG model can be obtained for the low frequencies [START_REF] Gandanegara | Bond Graph Multi-time Scale Analysis of a Railway Traction System[END_REF][START_REF] Gandanegara | Modeling and Multi-time Scale Analysis of Railway Traction Systems Using Bond Graphs[END_REF]. The synoptic of this line is presented in Fig. 19. The associated BG model is displayed in Fig. 20. In our modelling, we do not consider the wheel-rail contact which is modelled without sliding. With this hypothesis, the model is of 11 th order. 

III.5. Validations by simulations

We validate our models by simulations. In particular, the two models of the induction machine are compared :

Model A is the one with an induction motor modelled in the (α,β) fixed reference frame with leakage totalised on the stator side, Model B, is the one modelled in the rotating reference frame linked to the voltage (d V ,q V ).

For all models, 2 different cases are examined : a normal operating mode (system starting), a degraded operating mode obtained by short-circuiting one leg of the inverter.

Every model is simulated with the PWM inverter modelled in average value because the second model (B) is not valid for instantaneous operations. Fig. 21 and Fig. 22 show that all models have similar responses in a normal and a degraded operating mode which validates the original approach proposed for Model B. 

IV. STABILITY ANALYSIS OF THE RAILWAY TRACTION MODELS

IV.1. BG based stability analysis procedure

We apply the stability analysis procedure previously presented in Section II. We have explained in Section III.3 that the models of the induction motor in the (α,β) reference frame can not be linearised. Therefore, we consider the induction motor modelled in the (d V ,q V ) reference frame linked to the voltage vector for the stability analysis of the railway traction system. To simplify the analysis, the mechanical part is here represented only by an inertia J m (equivalent to the I 6 ), a friction f and a load torque T l .

st step : Small signal BG derivation

As for the example of the DC traction system (see section II) the linearised BG of the railway traction system can be directly derived from the causal BG (see Fig. 23).

Se : ' 8

Control inputs

The inputs of this linearised (small signal) BG are relative to the control unit (i.e. ∆η d , ∆ω s ).

nd step : Stability analysis of the open loop system

The stability of the open loop system can be analysed from that small signal BG by deducing the state equations. This can be made by means of the ARCHER software. When a simplified mechanical system is considered only including an inertia, a viscous friction and a load torque, the open loop system is of order 7. The state vector is then composed of :

[ ] T rqV rdV sqV sdV Cf Lf I I V I ∆Ω ∆Φ ∆Φ ∆ ∆ ∆ ∆ = ∆X (eq. 9)
Finally, the analysis of the root locus allows to determine the stability domain.

rd step : Stability analysis of the closed loop system

However, for such systems, the control bandwidth strongly influences the stability. Thus, closed loop operation must be considered by including the control unit in the analysis as presented in the example of the DC traction system (see section III). For that purpose, the control outputs (∆η d , ∆ω s ) have to be calculated from the control equations.

-Calculation of

d η ∆ : 2 . Cf Cf sdV Cf sdV Cf sdV d V V V V V V V ∆ - ∆ =         ∆ = ∆η (eq. 10)
The motor input voltage is defined as :

2 2 Φ Φ + = sqref sdref sdV V V V (eq. 11)
The linearisation of this voltage then leads to :

( ) Φ Φ Φ Φ ∆ + ∆ = ∆ sqref sqref sdref sdref sdV sdV V V V V V V . . 1 (eq. 12)
Thus, the small signal state equations can be established as (eq. 13). The inputs of this latter model are (∆U cont , ∆V sdref Φ , ∆V sqrefΦ , ∆ω s ). The control inputs (∆V sdrefΦ , ∆V sqrefΦ , ∆ω s ) can also be developed. In our case study, the field oriented control strategy involves control variables operating in another (d Φ ,q Φ ) reference frame linked to the rotor field. A classical strategy of rotor flux oriented control presented on Fig. 14 is considered. However, in order to simplify the complex development leading to the linearised control, we have neglected the electromotive forces (E d and E q ) which decouple the current controllers (see Fig. 14). Then, the control state equations can be expressed as (eq. 14), where T ref and Φ ref represent the reference values of the electromagnetic torque and the rotor flux, and the Φ r term is defined as By using autopiloting equation, the pulsation ω ρ can be formulated as : The angle δ * can be calculated from (eq. 17).
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Its derivation, the * δ ω term, can be defined as :

( ) ( ) 2 2 * Φ Φ Φ Φ Φ Φ + - = sqref sdref sdref sqref sqref sdref V V V dt d V V dt d V δ ω (eq. 18)
By using (eq. 15), (eq. 16) and (eq. 18), we obtain the angular velocity ω s . The variation of this pulsation can then be deduced.

The complex linearisation of these expressions is detailed in [START_REF] Gandanegara | Methodologie de conception systémique en genie Electrique à l'aide de l'outil Bond Graph : Application à une chaîne de traction ferroviaire[END_REF]. It allows to enhance the order of the state equation (9 th order) as :

[ ] T sqref sdref rqV rdV sqV sdV Cf Lf V V I I V I Φ Φ ∆ ∆ ∆Ω ∆Φ ∆Φ ∆ ∆ ∆ ∆ = ∆X (eq. 19)
This small signal model depends on the physical system parameters but also on the control requirement through the controller parameters (K P and K I ).

By means of the Matlab © software, the stability domain can be characterised by analyzing the root locus of the closed loop system linearised around an operating point defined by the reference parameters (T ref , Φ ref ) and of the load (T l ).

In the following simulations, the rated operating point is defined by : T ref = 5 kNm, Φ ref =6 Wb et T l = 4998 Nm, which sets the motor angular speed at 20 rad/s.

IV.2. Analysis results of the railway traction system stability

Influence of the filter capacitor value C f

We have firstly investigated the stability of the operating point as a function of the filter capacitor value C f which varies here between 1 and 100 mF. Fig. 24 presents the poles locus. The arrows show the poles propagation direction when the C f value increases. For this particular operating point (T ref = 5 kNm, Ω = 20 Rd/s, Power = 100 kW), it can be seen that the model is unstable for C f < 1.3 mF. 

Influence of the control bandwidth

We examine the influence of this parameter value by setting the closed loop time constant from T CL = 1 ms to T C L = 100 ms. In this range, and for the rated filter capacitor of 17mF, we do not find unstable zones. However, reducing this latter parameters or varying the rotation speed could lead to unstability. 

Influence of the mechanical angular speed Ω

The investigated range of this latter parameter is between 0 and 100 Rd/s. For a rated value of the filter capacitor (C f = 17 mF), the model is always stable. However, when we use a reduced value of filter capacitor (C f = 3 mF), there is an unstable doma in when Ω > 51 Rd/s. 

IV.3. Validation of the analysis procedure

In this section, we verify the stability analysis procedure by simulating the non linear BG model of the traction system. A reduced value of the filter capacitor (C f = 3 mF) is set. Four different states are simulated (see Fig. 27) We present in Fig. 27 the simulation results for the motor mechanical angular speed Ω = 60 Rd/s. These figures show the instability where oscillation variables are amplified. For the mechanical speed of Ω = 55 Rd/s, it can be seen from the zoom on the capacitor voltage that an unstable behaviour is obtained. The system is stable for Ω = 50 Rd/s. Note that equivalent results have been obtained thanks to the previous stability analysis procedure based on the BG approach, which proves its validity.

For mF 17 = f C , we have verified by simulations that the system is always stable as indicated in the analysis procedure.

V. CONCLUSIONS

In this paper, a homogeneous BG model of a railway traction system has been presented allowing to emphasise the electromechanical couplings. We have mainly focused our attention on a stability analysis procedure that can be directly deduced from the BG model. For that purpose, the BG has to be linearised around an operating point. We have also proposed an original model of the induction motor, represented in the (d V ,q V ) rotating reference frame related to the stator voltage vector. This model allows to avoid the non linear Park's transformation which makes easier to linearise the BG and to obtain a small signal model. The influence of system parameters on the stability has then be investigated and validated by simulations on the non linear model.

This work is a contribution showing how the Bond Graph formalism is useful for modelling and analysing electrical engineering multi-field systems. Indeed, obtaining a homogeneous modelling greatly facilitates the system approach by emphasising couplings in spite of physical fields crossing. More particularly, we have shown in this contribution, how this methodology is convenient for the local stability analysis. Of course, the same kind of analysis could be done from the state model through its linearisation around the same operating point. The Bond Graph formalism can then be seen as a powerful alternative allowing a systematic and structured approach from which the linearised model of an energetic system can be systematically deduced. As the stability analysis of a closed loop controlled system is concerned, a signal part (control part) is associated with the causal Bond Graph (energetic part). The linearisation of the signal part can only be done by means of state equations derivation of the control strategy, which greatly contributes to the complexity of the analysis as it was emphasised on the typical example of a railway traction system.

More generally, this contribution on system stability is a complement of other studies dedicated to model reduction and other issues particularly useful for system design.
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  Fig. 23. Linearised BG of the railway traction system On this BG, the elements MSe and MSf are associated with :

:

  The pulsation ω s is the angular velocity of the angle ϕ s , where *
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 28 Fig. 28. Tests for : (a) Ω (static) = 55 Rd/s and (b) Ω (static) = 50 Rd/s.

Table 2 .

 2 Stator voltage on the inverter output.

:

  State 1 : the angular speed is null (a null load torque is applied). State 2 : the angular speed increases with an important gradient (first transient state) because we use only one tenth of the train mass to accelerate the simulation. State 3 : it is the second transient state where we use the whole train inertia. State 4 : the desired load is applied to set the operating point at steady state of the speed.
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