
HAL Id: hal-00782711
https://hal.science/hal-00782711

Submitted on 31 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

AREA-DELAY EFFICIENT FFT ARCHITECTURE
USING PARALLEL PROCESSING AND NEW

MEMORY SHARING TECHNIQUE
Yousri Ouerhani, Maher Jridi, Ayman Alfalou

To cite this version:
Yousri Ouerhani, Maher Jridi, Ayman Alfalou. AREA-DELAY EFFICIENT FFT ARCHITECTURE
USING PARALLEL PROCESSING AND NEW MEMORY SHARING TECHNIQUE. Journal of
Circuits, Systems, and Computers, 2012, 21 (6), 1240018 (15 p.). �hal-00782711�

https://hal.science/hal-00782711
https://hal.archives-ouvertes.fr

Journal of Circuits, Systems, and Computers
c© World Scientific Publishing Company

AREA-DELAY EFFICIENT FFT ARCHITECTURE USING

PARALLEL PROCESSING AND NEW MEMORY SHARING

TECHNIQUE

YOUSRI OUERHANI, MAHER JRIDI and AYMAN ALFALOU

Equipe Vision, laboratoire L@bISEN de ISEN-Brest

20 Rue Cuirasse Bretagne, CS 42807, 29228 Brest Cedex 2, France.

In this paper we present a novel architecture for FFT implementation on FPGA. The
proposed architecture based on radix-4 algorithm presents the advantage of a higher
throughput and low area-delay product. In fact, the novelty consists on using a memory
sharing and dividing technique along with parallel-in parallel-out Processing Elements
(PE). The proposed architecture can perform N-point FFT using only 4/3N delay ele-
ments and involves a latency of N/4 cycles. Comparison in terms of hardware complexity
and area-delay product with recent works presented in the literature and commercial
IPs has been made to show the efficiency of the proposed design. Moreover, from the
experimental results obtained from a FPGA prototype we find that the proposed design
involves an execution time of 56% lower than that obtained with Xilinx IP core and an
increase of 19% in the throughput by area ratio for 256-point FFT.

Keywords: Digital hardware implementation; VLSI; embedded signal processing.

1. Introduction

The Discrete Fourier Transform (DFT) is one of the most important tools used in Digi-
tal signal and image processing applications. It has been widely implemented in digital
communication systems such as Radars, Ultra Wide Band (UWB) receivers and many
other image processing applications. The direct realization of this algorithm using N-
sample input, requires a large number of operations (N2 complex multiplications and
N(N−1) complex additions). Since the DFT algorithm is computation-intensive, several
improvements have been proposed in literature for computing it efficiently and rapidly.
To reduce the number of operations a fast algorithm has been introduced by Cooley-
Tukey1 and called Fast Fourier Transform (FFT). The latter, consists on decomposing
DFT computing into small building blocks called radix-2 by using efficiently the sym-
metry and the periodicity of the twiddle factors. This decomposition reduces complexity
from O(N2) to O(NlogN). Since the work of Cooley-Tukey, several algorithms have
been proposed to further reduce computational requirement including radix-4 2, split
radix 3, prime factor 4.
Due to the fact that radix-based FFT algorithms divide the computation into odd- and
even-half parts recursively 5, many block RAM are required to save these intermediate
data.
FFT algorithm can be implemented on multiple software platforms including General
Purpose Processor (GPPs) and Digital Signal Processors (DSPs) and in hardware circuits
such as Field Programmable Gate Arrays (FPGAs) and Application Specific Integrated
Circuits (ASICs). FPGA design of FFT is often tailored to fit high speed on low-power
specification due to the fact that FPGAs have grown in capacity and performance and

1

2

decreased in cost.
In literature, several architectures for implementation FFT on FPGA have been proposed

in order to improve speed and reduce the high memory usage. It is found that there are
two main implementations of FFT on FPGA: memory-based design and pipelined ar-
chitectures. Memory-based FFT uses only one butterfly and large memories for data
storage. However, pipelined architecture uses many butterflies to improve speed. Several
architectures have been proposed to implement both method (memory-based design and
pipelined design) in order to improve speed and minimize area.
In6 authors present an FPGA implementation and a comparison of six memory-based
architectures. The authors give the name of RX2-B1, RX4-B1, RX2-B2, RX4-B2, RX2-
B4, MXRX-B4 for these architectures. Where the RX presents the radix used and Bi
indicate that the architecture presents i outputs in parallel. The techniques used for each
architecture are based on memory sharing7, Conflict free memory addressing8, In-place
memory processing9 10, Continuous flow design10 11, N-word memory size, Fixed-point
arithmetic and Pre-computed twiddle factors stored in ROM. It was found that the
fastest processors are the RX2-B4 and MXRX-B4 processors which can process four
data samples per clock cycle.
Regarding the pipelined architectures, many works have presented optimizations to
achieve high performance and low area occupation. The famous architectures of
the pipeline implementation are Multi-path Delay Commutator (R2MDC)12, Radix-2
Single-Path Delay Feedback 13, Radix-4 Single-Path Delay Commutator14, and Radix-
22 Single-Path Delay Feedback (R22SDF)15. The main difference between these archi-
tectures is about the number of inputs and outputs and the butterfly used. In16, an
optimized implementations of two different pipelined FFT processors are proposed and
validated on Xilinx Spartan-3 and Virtex-4 FPGAs.
Although there have been several efficient designs, there is an inherent drawback to ex-
isting studies related to the area (and consequently power) overhead.
In 17, we presented an optimized architecture for low cost FPGA. The architecture pro-
posed is based on modified radix-4 architecture and sharing memory between different
blocks. In this paper, we present an extended work related to the optimization of this
architecture to improve speed and throughput and to minimize the consumed silicon
area.
This paper is organized as follows. In section II, definition and architecture of N-point
FFT based on radix-4 algorithm are introduced. Section III is devoted to the proposed
architecture. We detail the principle of sharing memories between different stages and
the structure of N-point FFT. Next, Section IV presents the complexity of the proposed
architecture. Section V shows the implementation results and comparison with prior
works. Finally, we summarize and conclude this paper in section VII.

2. The FFT algorithm

For a given sequence x of n samples, the DFT frequency components X(k) may be
defined by Eq. (1)

X(k) =

N−1∑

n=0

x(n)Wnk
N (1)

where WN=e
−2jπ

N are the twiddle factor, n and k are respectively the time and fre-
quency indexes, 0≤k≤ N-1 , 0≤n≤N-1 and N is the DFT length.

2.1. Radix-4 algorithm

It is obvious that the direct realization of N-point DFT in hardware device is inefficient.
To overcome this drawback we can use the principle of decomposing the FFT into
sequences of smaller FFTs such as radix-21, radix-42, Split Radix3, prime factor4. In

3

this work we are interested to the radix-4 architecture because it represent an efficient
solution. In fact, not only it has a higher throughput since it permits to compute four

outputs on the same time but also it has a fewer stages compared to radix-2 and split
radix designs. However, to apply the radix-4 decomposition, N should be expressed as
N = 4v where v is an integer.
The Processing Element (PE) of the radix-4-based FFT algorithms is the 4-point FFT.
Fig. 1 illustrates the Signal Flow Graph (SFG) of the butterfly. The four butterfly

Fig. 1. Radix-4 butterfly

outputs (X(0), X(1), X(2) and X(3)) obtained using inputs (x(0), x(1), x(2) and x(3))
can be performed using Eq. (2):

X(0) = x(0) + x(2) + x(1) + x(3)

X(1) = x(0) − x(2)− j(x(1)− x(3))

X(2) = x(0) + x(2)− x(1)− x(3)

X(3) = x(0) − x(2) + jx(1)− jx(3)

(2)

2.2. N-point FFT architecture based on radix-4 algorithm

When the decomposition in multiple building blocks is applied, the N-point FFT is
realized by using several stages each one contains many butterflies. For N-point FFT,
we need s = log4N stages and b = N

4
butterflies per stage. An example of 64-point

Radix-4 FFT diagram is shown in Fig. 2 where s = 3 and b = 16.
It can be seen that the computation of the FFTs in the second stage is dependent on
the first stage computation. The same concept is applied to the computation of the
third stage which depends on the second stage computation. More generally, the data-
dependant computation is observed between successive stages for N-point FFT.
Therefore, two architectures are possible. The first one is a parallel realization. An
example of that is shown in Fig. 2. For N-point FFT, we need N

4
log4N radix-4 butterflies

which is equivalent to 3N
4
log4(N) complex multipliers and 8N

4
log4N complex adders.

Although this solution does not make an efficient use of the resources, it is very simple
and offers a higher throughput.
The second realization is a recursive one. An example of the SFG is illustrated in Fig. 3
where the N-point FFT can be performed using one radix-4 butterfly. This architecture
is interesting in terms of the use of arithmetic operators but suffers from a low operating
frequency.

4

Fig. 2. SFG of 64-point FFT

3. Proposed radix-4 based N-point FFT architecture

3.1. Prior work

We have made in 17, a compromise between architecture of Fig. 2 and Fig. 3. Our ob-
jective was to balance the memory size and the Maximum Operating Frequency (MOF)

5

Fig. 3. SFG of 64-point FFT

of the FFT design. The basic idea was to employ one butterfly per stage instead of
N
4
log4N for the design of Fig. 2 or only one butterfly for the design of Fig. 3. This

architecture is divided into four stages as mentioned in Fig. 4 for N = 256. Each stage is
composed of one butterfly and one multiplier block. To store the outputs of each stage,
the obvious idea consists in using one N-point memory after each stage. The basic nov-
elty of the architecture proposed in 17 is to use one N-point memory for the N-point
FFT and to share this memory between all stages. Then, in order to reduce the number
of simultaneous memory access (which consists on reducing the number of memories),
we have modified the radix-4 architecture in order to use a serial-in serial-out PE. The
memory is divided into 4 blocks and used to store intermediate data between stages.
Another advantage of this modification consists on using only one constant complex
multiplication with the generated phase (twiddle factor). We mentioned in 17 that with
this architecture, the area-delay product presents a slight decrease.

Fig. 4. 256-point FFT architecture proposed in17

6

3.2. Principle of the proposed architecture

3.2.1. Data management

To further improve the area-delay product of N-point FFT we propose to decrease the
computation time of the radix-4 component by using a parallel data processing. This
means that we use a parallel-in parallel-out systolic array for deriving the PE on each
stage of the FFT. It is observed that the computation time decreases from 10 clock cycles
17 to 2 clock cycles. However, the gain in term of delay is relatively paid by an increase
in the number of multipliers. In fact, to maintain the pipeline way, the block multiplier
should compute four constant complex multiplications per clock cycle. This number of
nontrivial complex multipliers is reduced to three since the first constant is equal to 1.
Another drawback of the proposed delay minimization is related to the memory usage.
To cope with this problem a novel memory sharing technique is proposed.

3.2.2. Memory sharing technique

In the following, we detail the principle of the memory sharing and dividing techniques.
The N inputs of N-point FFT are stored in a RAM called Memory1. As shown in Fig.
2, the first stage of N-point FFT uses N

4
butterflies. Let’s b1 ∈ [0, N

4
− 1] denotes the

index of the butterfly of the stage 1. The input addresses of the butterfly b1 are b1,
b1 + N

4
, b1 + N

2
and, b1 + 3N

4
. In order to have a simultaneous access to these inputs,

they should be stored in four different memories. For this reason, the Memory1 is divided
into 4 blocks. Moreover, the outputs of the first stage are stored in the same memory at
the same addresses. This means that Memory1 and Memory2 are the same. The com-
putation of the second stage is decomposed into 4 groups. In each group, the butterfly
is used N

42
times (in Fig. 2, the butterflies of group 1 in stage 2 are used N

16
= 4 times).

Let’s b2 ∈ [0, N
16

− 1] denotes the index of the butterfly of the group 1 of stage 2. The

inputs addresses of that butterfly are b2, b2+ N
16

, b2+ N
8

and b2+3N
16

(for example the
addresses of the first butterfly of group 1 in Fig. 2 are 0, 4, 8, 12). Since we need to access
to these inputs simultaneously, they should be localized in different memories. Hence,
the first quarter of Memory1 should be divided into 4 memories. According to this, the
second, third and fourth quarter of Memory1 are respectively divided into 4 memories
to store outputs of the second, third and fourth group of stage 2. Consequently, the
Memory1 is divided into 16 small memories.
On the other hand, the outputs of group 1 of stage 2 are stored in an N

4
-point mem-

ory called Memory3 in Fig. 5. Hence, Memory3 is used in write mode for the group 1 of
stage 2. When the computation of group1 of stage 2 is finished, Memory3 is used in both
write and read mode. Indeed, stage 3 is divided into 16 groups each one is composed of
4 butterflies and 3 multipliers. The Memory3 is used in write mode for 4 groups of stage
3 and in read mode for group2 of stage 2. When the computation of group1 to group4
of stage 3 is finished (which corresponds to the end of computation of group2 in stage2),
the Memory3 is used in write mode for group3 of stage 2 and in read mode for group5
to group8 of stage 3, and so one.
Also, the same principle of dividing Memory1 into 16 parts is applied again for Memory3.
The goal is to minimize the latency without duplicating memories and increasing area
and power consumption. Finally, the process of creating, dividing and sharing memories
is repeated as necessary. Comparing to 17 the proposed technique consumes less than
N
3
-point additional memory. However, the most relevant advantage is that it offers a

reduced latency since the latency of PEs has been reduced.

3.2.3. Proposed architecture

One possible implementation of the proposed architecture based on the new sharing
memory technique of Fig. 5 is depicted in Fig. 6 for N = 256. It consists of four stages

7

Fig. 5. Memory sharing principle for N=256

Fig. 6. 256-point FFT proposed architecture

containing three RAMs, one radix-4 (PE) and three blocks of butterfly and multiplier
bank. Input values are fed in parallel to the PE. It yields its first 4 outputs two cycles
after the first inputs arrive. PE’s outputs will be multiplied by a constant multiplication
by using a ROM of twiddle factors addressed by a control unit entity. Besides, the control
unit generates addresses to the RAM to indicate the position of multipliers outputs. All

these blocks are controlled by a global control unit.

4. Timing and hardware complexity analysis

4.1. Timing analysis

In this section we will present the latency of the proposed architecture. Let’s TA and TM

represent the computation time of one adder and one multiplier respectively. Accordingly,

8

the computation time of a butterfly block in stage 4 is equal to 2TA and the computation
time of the butterfly and multiplier is about to 2TA + TM . Hence, for N-point-FFT we

need ((log4(N)−1)×(2TA+TM)) for all the butterfly and multiplier bank. On the other
hand, let’s TMem represents the period of one delay element. The number of required
delay elements can be expressed as: 3N

16
+ 3N

64
+ · · · + 3N

N
= N − 3N

4
= N

4
. We can

compute the relative latency L as the time elapsed from the computation beginning to
the first output. Under these conditions, L is expressed by:

L =
N

4
TMem + (log4(N) − 1) × (TM + 2TA) + 2TA (3)

4.2. Comparison with efficient designs

The hardware complexityto he proposed architecture is listed along with those of the
existing structures in Table 1.
The table shows the tradeoff between area and timing performance. The area is mea-

Table 1. Hardware requirements ressources comparison of pipeline FFT architecture

References Structure Complex Complex Memory Nbr Absolute
Multipliers Adders size Samples/cycle Latency

R2SDF13 Radix-2 log2N-2 2log2N N-1 1 N
R22SDF15 log4N-1 4log4N N-1 1 N
R22SDF18 log4N-1 log2N 2(N-1) 1 N

FB Radix-219 log4N-1 2log4N
4

3
N 1 N

R4SDF20 Radix-4 log4N-1 8log4N N-1 1 N
R4SDF14 log4N-1 3log4N 2(N-1) 1 N

R2MDC12 Radix-2 log2N-2 2log2N
3

2
N-2 1 N

FF Radix-221 Radix-2 2(log4N-2) 2log2N 4 N 2 N

R4MDC22 Radix-4 3(log4N-1) 8log4N
5

2
N-2 4 N

FF Radix-421 3(log4N-1) 8log4N
8

3
N 4 N

3

Design of17 log4N-1 8log4N N 1 N

Proposed 3(log4N-1) 8log4N
4

3
N 4 N

4

sured by the number of complex multipliers, adders and memory size, whereas the timing
performance is represented by the throughput and the latency. The structures presented
in this table are parallel-in serial-out design 13 14 15 18 19 20 or parallel-in parallel-out de-
sign like the proposed one and designs of 22 12 21. The number of complex multiplier and
adder of the paralel-in serial-out designs is three times lower than parallel-in parallel-out
designs. Compared with parallel-in parallel-out schemes, the proposed design provides a
lower absolute latency. This latency is approximated without the number of order logN
as in all references cited in Table. 1. Furthermore, the proposed architecture involves
nearly half of memory size of 21 with same number of adders and multipliers.

5. Implementation results

5.1. Hardware complexity

In this section we describe the material complexity of FFT architectures detailed in
section 2.2 and section 3. The basic criterion used for comparison is the area-delay prod-
uct. The hardware and time complexities of the proposed structure using the parallel-in
parallel-out radix-4 and the memory sharing technique are listed along with those of
the existing structures in Table. 2. All the structures mentioned in Table. 2 are coded

9

using the VHDL language and synthesized using Xilinx ISE and Spartan-3 FPGA de-
vice. Also, we used the propagation delay with the execution time as time complexity

criteria. The execution time is defined by absolute latency and obtained by multiplying
the relative latency by the duration of one cycle.
The design of Fig. 2 is the direct realization of 64-point FFT using radix-4 PE. This
structure involves the lowest execution time but the highest number of slices. On the
other hand, the recursive structure of the memory-based design6 has the highest exe-
cution time and a low number of slices. The proposed design and our design of17 have
nearly the same propagation delay but the last one involves more than double the exe-
cution time.

Table 2. Area-delay comparison

Architecture Slices Propagation Execution Slice-Delay
Delay (ns) time(s) product (Slice.s)

Design of Fig. 2 43623 15.3 0.15 6543.4
Memory-based6 2281 30.3 8.3 18932.3
Design of 17 1155 9.4 2.03 2344.6
Proposed 2345 8.4 0.8 1876

5.2. Synthesis Results

To analyse show the efficiency of the proposed architecture, a comparison of the syn-
thesis results obtained from a Spartan-3 implementation with several architectures has
been made. Table. 3 and Table 4 present a comparison with prior art of the pipelined
architectures, based-memory architectures and Xilinx IP core. The performance of dif-
ferent architectures is analyzed in terms of area (slice number), Maximum Operating
Frequency (MOF), throughput (M samples/s), execution time and area-delay product.

Table 3. Synthesis results of 64-point FFT

Architecture Structure Slices MOF Throughput Execution Area-Delay
(MHz) (MS/s) time(s) product Slice.µs

R4SDC16 Radix-4 2662 107 107 1.2 3194
R2SDF16 Radix-2 2520 98 98 1.4 3528
RX4-B16 Radix-4 2281 33 33 8.3 18932
RX4-B26 Radix-4 3323 33 66 4.6 15285

MXRX-B46 Split-Radix 6655 33 132 2.69 17901
Xilinx IP23 Radix-2 1477 152 152 1.68 2481
Design of17 Radix-4 1155 106 106 2.03 2344
Proposed Radix-4 2345 118 472 0.8 1876

It can be found that the proposed design involves an execution time about 56%,
36% and 26% lower than that of Xilinx IP core23, R22SDC16 and R4SDC16 respectively
for 256-point FFT. Regarding the area-delay product, it can be seen that the proposed
architecture can achieve about 11% and 10% of reduction in the area-delay product com-
pared to R4SDC16 and R22SDF16 respectively and about 73% compared to MXRX-B46

for 256-point FFT.
On the other hand, comparison in term of Throughput by Slice ratio between the pro-

10

Table 4. Synthesis results of 256-point FFT

Architecture Structure Slices MOF Throughput Execution Area-Delay
(MHz) (MS/s) time(s) product Slice.µs

R4SDC16 Radix-4 4555 111 111 4.6 20953
R22SDF16 Radix-2 3868 98 98 5.36 20732
RX4-B16 Radix-4 2281 33 33 39.3 89643
RX4-B26 Radix-4 3323 33 66 20 66460

MXRX-B46 Split-Radix 6655 33 132 10.2 67881
Xilinx IP23 Radix-2 2455 148 148 7.6 18854
Design of17 Radix-4 1924 91 91 10.1 19432
Proposed Radix-4 5525 103 412 3.4 18785

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

T
hr

ou
gh

pu
t b

y
S

lic
e(

M
s/

s/
sl

ic
e)

256−point FFT
64−point FFT

R4SDC R2²SDC RX4−B1 RX4−B2 MXRX−B5 Proposed

Architectures

 [17] Xilinx IP

Fig. 7. Throughput by Slice ratio comparison

posed architecture and those listed in table 3 for 64-point and 256-point FFT is presented
in Fig. 7. It is indicated that our design still has advantage over the others. In fact, our
proposed design present an increase of 26% and 19% in term of throughput by slice ratio
compared to the architecture proposed on17 and to Xilinx IP23 for 256-point FFT.

5.3. Signal-to-quantization noise ratio (SQNR)

Since we use fixed-point operators, some truncations are needed to maintain the dynamic
range of intermediate signals and outputs. These truncations can affect the accuracy of
the FFT algorithm by introducing the quantization noise. It is thus necessary to eval-
uate this noise and to compute the Signal to Quantization Noise Ratio (SQNR). Many
research have been treated the problems of truncation noise for fixed-point operators
used in orthogonal transforms as in FFT5, DCT24 and FIR25. Our objective in this sec-
tion is to evaluate the effects of truncation. For our implementation, we have performed

11

the truncation only for the constant multipliers (not for adders). In fact, input data are
encoded using n bits. The computation of these inputs implies a bit growth of up to 2

bits after each butterfly block. However, for the multipliers, the output width is equal to
the input width. Indeed, for a multiplication with twiddle factor encoded using c bits,
we apply truncation by using c right shifts to the outputs. Consequently, the output
width of the proposed N-point FFT architecture is equal to n+ 2log4N bits.
To evaluate the SQNR, we applied a sine wave with input frequency of 32 kHz and
a sampling frequency of 100 kHz. Two FFTs have been computed. The ”exact” FFT
(Xfl(k)) is with a floating-point arithmetic obtained by Matlab 64-bit precision. The
second (Xfx(k)) is with the proposed architecture. The SQNR is defined by:

SQNR =

∑
k |Xfx(k)|

2

∑
k(|Xfl(k)| − |Xfx(k)|)2

(4)

8 10 12 14 16
40

50

60

70

80

90

100

Input Width

S
Q

N
R

(d
B

)

64−point FFT
16−point FFT
256−point FFT
4−point FFT

Fig. 8. SQNR variation for different FFT size and different input width

We present in Fig. 8 the SQNR evaluation versus FFT size and data width of inputs
(the twiddle factor width is set to 12 bits). It can be clearly observed that larger is the
input width higher is the SQNR. Moreover, for a large size of FFT the SQNR decrease.
This is due to quantization noise propagation. Finally, it should be pointed out that the
maximum Mean Square Error (MSE) between Xfx and Xfl obtained with 256-point
FFT is about 1%.

6. Conclusion

In this paper we have proposed a novel architecture of N-point FFT based on radix-4
algorithm suitable for FPGA implementation. The novelty of the proposed architecture

12

consists on using the memory sharing and dividing techniques along with parallel-in
parallel-out processing in order to reduce latency and minimize the area occupation. We

compared favorably our proposed architecture with some recent works quoated in litter-
ature. We find that the proposed architecture has several advantages in terms of speed
and throughput performances and saving of silicon area. Power consumption should be
evaluated, which is being studied.

Acknowledgments

This research was supported by a grant from the Interface Concept Company. For more
details, please consult http://www.interfaceconcept.com.

References

1. J. W. Cooley and J. Tukey, An algorithm for the machine calculation of Complex
Fourier series, Math. Comput., vol. 19, April 1965, pp. 297–301.

2. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, (1998).

3. H. Sorensen, M. Heindeman, and C. Burrus, On computing the split radix FFT, IEEE
Trans. Acoustics, Speech, Signal Process, vol.34, (1986), pp. 152-156.

4. D. Kolba, T. Parks, A prime factor FFT algorithm using high-speed convolution, IEEE
Trans. Acoustics, Speech and Signal Processing, vol.25, no.4, Aug 1977 pp. 281- 294.

5. W-H. Chang, T. Q. Nguyen, On the Fixed-Point Accuracy Analysis of FFT Algorithms,
IEEE Trans. Signal Processing, vol.56, no.10, Oct. 2008, pp. 4673-4682.

6. H.G. Yeh, G. Truong, Speed and Area Analysis of Memory Based FFT Processors in
a FPGA, Wireless Telecommunications Symp., (2007), pp. 1-6.

7. B. S. Son, B. G. Jo, M. H. Sunwoo, and Y. S. Kim, A High-Speed FFT Processor
For OFDM Systems, in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 3,
(2002), pp. 281-284.

8. L. G. Johnson, Conflict free memory addressing for dedicated FFT hardware, IEEE
trans. Circuits Syst. II., Analog Digital Signal Processing, vol. 39, no. 5, May 1992, pp.
312- 316.

9. K. L. Heo, J. H. Baek, M. H. Sunwoo, B. G. Jo, and B. S. Son, New in-place strategy for
a mixed-radix FFT processor, in Proc. IEEE Int. [Systems-on-Chip] SOC Conference,
(2003), pp. 81 - 84.

10. B.G. Jo and M.H. Sunwoo, New Continuous-flow mixedradix (CFMR) FFT Processor
using novel in-place strategy, IEEE Trans. Circuits Sys.- I., vol. 52, May 2005, pp. 911
- 919.

11. R. Radhouane, P. Liu, and C. Modlin, Minimizing the memory requirement for con-
tinuous flow FFT implementation: continuous flow mixed mode FFT (CFMM-FFT),
in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 1, (2000), pp. 116-119.

12. L.R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall, Inc., (1975).

13. E. H. Wold and A.M. Despain, Pipeline and parallel-pipeline FFT processors for VLSI
implementation, IEEE Trans. Computers, vol. C-33, no. 5, 1984, pp. 414-426.

14. G. Bi and E.V. Jones, A pipelined FFT processor for word-sequential data, IEEE
Trans. on Acoustics, Speech, and Signal Processing, vol. 37, no. 12, 1989, pp. 1982-
1985.

15. S. He and M. Torkelson, A new approach to pipeline FFT processor, Int. Parallel
Processing Symposium (IPPS ’96), Apr. 1996, pp. 766-770.

16. B. Zhou, Y. Peng, D. Hwang, Pipeline FFT Architectures Optimized for FPGAs, Int.
Journal of Reconfigurable Computing, 2009.

13

17. Y. Ouerhani, M. Jridi, A. Alfalou, Implementation techniques of high-order FFT
into low-cost FPGA, 2011 IEEE 54th International Midwest Symposium Circuits and
Systems (MWSCAS), Aug. 2011, pp. 1-4.

18. G. Bi; G. Li, Pipelined structure based on radix-22 FFT algorithm, IEEE Conference
on Industrial Electronics and Applications (ICIEA), 21-23 June 2011, pp. 2530-2533.

19. L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, An efficient locally pipelined
FFT processor, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 7, Jul. 2006,
pp. 585-589.

20. A. M. Despain, Fourier transform computer using CORDIC iterations, IEEE Trans.
Comput., C-23(10):993-1001, Oct. 1974.

21. M. A. Snchez, M. Garrido, M. L. Lpez, and J. Grajal, Implementing the FFT algo-
rithm on FPGA platforms: A comparative study of parallel architectures, Int. Conf.
Design Circuits Integr., Syst. (2004).

22. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,
Prentice-Hall, Inc., (1975).

23. Xilinx Product Specification, High perfomance Complex FFT/IFFT V.7.0, (2009)
[online]. Available on: http://www.xilinx.com/ipcenter.

24. L. Tan, L. Wang, Oversampling Technique for Obtaining Higher Order Derivative
of Low-Frequency Signals, IEEE Trans. on Instrumentation and Measurement, vol.60,
no.11,Nov. 2011, pp.3677-3684.

25. M. Hassan, F. Shalash, FPGA Implementation of an ASIP for high throughput
DFT/DCT 1D/2D engine, Circuits and Systems (ISCAS), May 2011, pp. 1255-1258.

