Yousri Ouerhani

Maher Jridi

Ayman Alfalou

AREA-DELAY EFFICIENT FFT ARCHITECTURE USING PARALLEL PROCESSING AND NEW MEMORY SHARING TECHNIQUE

Keywords: Digital hardware implementation, VLSI, embedded signal processing

published or not. The documents may come

Introduction

The Discrete Fourier Transform (DFT) is one of the most important tools used in Digital signal and image processing applications. It has been widely implemented in digital communication systems such as Radars, Ultra Wide Band (UWB) receivers and many other image processing applications. The direct realization of this algorithm using Nsample input, requires a large number of operations (N 2 complex multiplications and N (N -1) complex additions). Since the DFT algorithm is computation-intensive, several improvements have been proposed in literature for computing it efficiently and rapidly. To reduce the number of operations a fast algorithm has been introduced by Cooley-Tukey 1 and called Fast Fourier Transform (FFT). The latter, consists on decomposing DFT computing into small building blocks called radix-2 by using efficiently the symmetry and the periodicity of the twiddle factors. This decomposition reduces complexity from O(N 2) to O(N logN). Since the work of Cooley-Tukey, several algorithms have been proposed to further reduce computational requirement including radix-4 2 , split radix [START_REF] Sorensen | On computing the split radix FFT[END_REF] , prime factor [START_REF] Kolba | A prime factor FFT algorithm using high-speed convolution[END_REF] . Due to the fact that radix-based FFT algorithms divide the computation into odd-and even-half parts recursively [START_REF] Chang | On the Fixed-Point Accuracy Analysis of FFT Algorithms[END_REF] , many block RAM are required to save these intermediate data.

FFT algorithm can be implemented on multiple software platforms including General Purpose Processor (GPPs) and Digital Signal Processors (DSPs) and in hardware circuits such as Field Programmable Gate Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs). FPGA design of FFT is often tailored to fit high speed on low-power specification due to the fact that FPGAs have grown in capacity and performance and 1 decreased in cost. In literature, several architectures for implementation FFT on FPGA have been proposed in order to improve speed and reduce the high memory usage. It is found that there are two main implementations of FFT on FPGA: memory-based design and pipelined architectures. Memory-based FFT uses only one butterfly and large memories for data storage. However, pipelined architecture uses many butterflies to improve speed. Several architectures have been proposed to implement both method (memory-based design and pipelined design) in order to improve speed and minimize area. In 6 authors present an FPGA implementation and a comparison of six memory-based architectures. The authors give the name of RX2-B1, RX4-B1, RX2-B2, RX4-B2, RX2-B4, MXRX-B4 for these architectures. Where the RX presents the radix used and Bi indicate that the architecture presents i outputs in parallel. The techniques used for each architecture are based on memory sharing 7 , Conflict free memory addressing 8 , In-place memory processing 9 10 , Continuous flow design 10 11 , N -word memory size, Fixed-point arithmetic and Pre-computed twiddle factors stored in ROM. It was found that the fastest processors are the RX2-B4 and MXRX-B4 processors which can process four data samples per clock cycle. Regarding the pipelined architectures, many works have presented optimizations to achieve high performance and low area occupation. The famous architectures of the pipeline implementation are Multi-path Delay Commutator (R2MDC) [START_REF] Rabiner | Theory and Application of Digital Signal Processing[END_REF] , Radix-2 Single-Path Delay Feedback 13 , Radix-4 Single-Path Delay Commutator 14 , and Radix-2 2 Single-Path Delay Feedback (R2 2 SDF) [START_REF] He | A new approach to pipeline FFT processor[END_REF] . The main difference between these architectures is about the number of inputs and outputs and the butterfly used. In [START_REF] Zhou | Pipeline FFT Architectures Optimized for FPGAs[END_REF] , an optimized implementations of two different pipelined FFT processors are proposed and validated on Xilinx Spartan-3 and Virtex-4 FPGAs. Although there have been several efficient designs, there is an inherent drawback to existing studies related to the area (and consequently power) overhead. In 17 , we presented an optimized architecture for low cost FPGA. The architecture proposed is based on modified radix-4 architecture and sharing memory between different blocks. In this paper, we present an extended work related to the optimization of this architecture to improve speed and throughput and to minimize the consumed silicon area. This paper is organized as follows. In section II, definition and architecture of N-point FFT based on radix-4 algorithm are introduced. Section III is devoted to the proposed architecture. We detail the principle of sharing memories between different stages and the structure of N-point FFT. Next, Section IV presents the complexity of the proposed architecture. Section V shows the implementation results and comparison with prior works. Finally, we summarize and conclude this paper in section VII.

The FFT algorithm

For a given sequence x of n samples, the DFT frequency components X(k) may be defined by Eq. (1)

X(k) = N-1 n=0 x(n)W nk N (1)
where W N =e -2jπ N are the twiddle factor, n and k are respectively the time and frequency indexes, 0≤k≤ N-1 , 0≤n≤N-1 and N is the DFT length.

Radix-4 algorithm

It is obvious that the direct realization of N-point DFT in hardware device is inefficient.

To overcome this drawback we can use the principle of decomposing the FFT into sequences of smaller FFTs such as radix-2 1 , radix-4 2 , Split Radix 3 , prime factor [START_REF] Kolba | A prime factor FFT algorithm using high-speed convolution[END_REF] . In this work we are interested to the radix-4 architecture because it represent an efficient solution. In fact, not only it has a higher throughput since it permits to compute four outputs on the same time but also it has a fewer stages compared to radix-2 and split radix designs. However, to apply the radix-4 decomposition, N should be expressed as N = 4 v where v is an integer. The Processing Element (PE) of the radix-4-based FFT algorithms is the 4-point FFT. Fig. 1 illustrates the Signal Flow Graph (SFG) of the butterfly. The four butterfly Fig. 1. Radix-4 butterfly outputs (X(0), X(1), X(2) and X(3)) obtained using inputs (x(0), x(1), x(2) and x(3)) can be performed using Eq. (2):

X(0) = x(0) + x(2) + x(1) + x(3) X(1) = x(0) -x(2) -j(x(1) -x(3)) X(2) = x(0) + x(2) -x(1) -x(3) X(3) = x(0) -x(2) + jx(1) -jx(3) (2)

N-point FFT architecture based on radix-4 algorithm

When the decomposition in multiple building blocks is applied, the N -point FFT is realized by using several stages each one contains many butterflies. For N -point FFT, we need s = log 4 N stages and b = N 4 butterflies per stage. An example of 64-point Radix-4 FFT diagram is shown in Fig. 2 where s = 3 and b = 16. It can be seen that the computation of the FFTs in the second stage is dependent on the first stage computation. The same concept is applied to the computation of the third stage which depends on the second stage computation. More generally, the datadependant computation is observed between successive stages for N -point FFT. Therefore, two architectures are possible. The first one is a parallel realization. An example of that is shown in Fig. 2. For N-point FFT, we need N 4 log 4 N radix-4 butterflies which is equivalent to 3 N 4 log 4 (N) complex multipliers and 8 N 4 log 4 N complex adders. Although this solution does not make an efficient use of the resources, it is very simple and offers a higher throughput. The second realization is a recursive one. An example of the SFG is illustrated in Fig. 3 where the N-point FFT can be performed using one radix-4 butterfly. This architecture is interesting in terms of the use of arithmetic operators but suffers from a low operating frequency. We have made in [START_REF] Ouerhani | Implementation techniques of high-order FFT into low-cost FPGA[END_REF] , a compromise between architecture of Fig. 2 and Fig. 3. Our objective was to balance the memory size and the Maximum Operating Frequency (MOF) Fig. 3. SFG of 64-point FFT of the FFT design. The basic idea was to employ one butterfly per stage instead of N 4 log 4 N for the design of Fig. 2 or only one butterfly for the design of Fig. 3. This architecture is divided into four stages as mentioned in Fig. 4 for N = 256. Each stage is composed of one butterfly and one multiplier block. To store the outputs of each stage, the obvious idea consists in using one N -point memory after each stage. The basic novelty of the architecture proposed in [START_REF] Ouerhani | Implementation techniques of high-order FFT into low-cost FPGA[END_REF] is to use one N-point memory for the N -point FFT and to share this memory between all stages. Then, in order to reduce the number of simultaneous memory access (which consists on reducing the number of memories), we have modified the radix-4 architecture in order to use a serial-in serial-out PE. The memory is divided into 4 blocks and used to store intermediate data between stages. Another advantage of this modification consists on using only one constant complex multiplication with the generated phase (twiddle factor). We mentioned in [START_REF] Ouerhani | Implementation techniques of high-order FFT into low-cost FPGA[END_REF] that with this architecture, the area-delay product presents a slight decrease. To further improve the area-delay product of N-point FFT we propose to decrease the computation time of the radix-4 component by using a parallel data processing. This means that we use a parallel-in parallel-out systolic array for deriving the PE on each stage of the FFT. It is observed that the computation time decreases from 10 clock cycles 17 to 2 clock cycles. However, the gain in term of delay is relatively paid by an increase in the number of multipliers. In fact, to maintain the pipeline way, the block multiplier should compute four constant complex multiplications per clock cycle. This number of nontrivial complex multipliers is reduced to three since the first constant is equal to 1. Another drawback of the proposed delay minimization is related to the memory usage. To cope with this problem a novel memory sharing technique is proposed.

Memory sharing technique

In the following, we detail the principle of the memory sharing and dividing techniques. The N inputs of N -point FFT are stored in a RAM called Memory 1 . As shown in Fig. 2, the first stage of N-point FFT uses N 4 butterflies. Let's b1 ∈ [0, N 4 -1] denotes the index of the butterfly of the stage 1. The input addresses of the butterfly b1 are b1, b1 + N 4 , b1 + N 2 and, b1 + 3 N 4 . In order to have a simultaneous access to these inputs, they should be stored in four different memories. For this reason, the Memory 1 is divided into 4 blocks. Moreover, the outputs of the first stage are stored in the same memory at the same addresses. This means that Memory 1 and Memory 2 are the same. The computation of the second stage is decomposed into 4 groups. In each group, the butterfly is used N 4 2 times (in Fig. 2, the butterflies of group 1 in stage 2 are used N 16 = 4 times). Let's b2 ∈ [0, N 16 -1] denotes the index of the butterfly of the group 1 of stage 2. The inputs addresses of that butterfly are b2, b2 + N 16 , b2 + N 8 and b2 + 3 N 16 (for example the addresses of the first butterfly of group 1 in Fig. 2 are 0, 4, 8, 12). Since we need to access to these inputs simultaneously, they should be localized in different memories. Hence, the first quarter of Memory 1 should be divided into 4 memories. According to this, the second, third and fourth quarter of Memory 1 are respectively divided into 4 memories to store outputs of the second, third and fourth group of stage 2. Consequently, the Memory 1 is divided into 16 small memories. On the other hand, the outputs of group 1 of stage 2 are stored in an N 4 -point memory called Memory 3 in Fig. 5. Hence, Memory 3 is used in write mode for the group 1 of stage 2. When the computation of group1 of stage 2 is finished, Memory 3 is used in both write and read mode. Indeed, stage 3 is divided into 16 groups each one is composed of 4 butterflies and 3 multipliers. The Memory 3 is used in write mode for 4 groups of stage 3 and in read mode for group2 of stage 2. When the computation of group1 to group4 of stage 3 is finished (which corresponds to the end of computation of group2 in stage2), the Memory 3 is used in write mode for group3 of stage 2 and in read mode for group5 to group8 of stage 3, and so one. Also, the same principle of dividing Memory 1 into 16 parts is applied again for Memory 3 . The goal is to minimize the latency without duplicating memories and increasing area and power consumption. Finally, the process of creating, dividing and sharing memories is repeated as necessary. Comparing to 17 the proposed technique consumes less than N 3 -point additional memory. However, the most relevant advantage is that it offers a reduced latency since the latency of PEs has been reduced.

Proposed architecture

One possible implementation of the proposed architecture based on the new sharing memory technique of Fig. 5 is depicted in Fig. 6 for N = 256. It consists of four stages

Timing and hardware complexity analysis

Timing analysis

In this section we will present the latency of the proposed architecture. Let's T A and T M represent the computation time of one adder and one multiplier respectively. Accordingly, the computation time of a butterfly block in stage 4 is equal to 2T A and the computation time of the butterfly and multiplier is about to 2T A + T M . Hence, for N -point-FFT we need ((log 4 (N)-1)×(2T A +T M)) for all the butterfly and multiplier bank. On the other hand, let's T M em represents the period of one delay element. The number of required delay elements can be expressed as:

3 N 16 + 3 N 64 + • • • + 3 N N = N -3 N 4 = N 4 .
We can compute the relative latency L as the time elapsed from the computation beginning to the first output. Under these conditions, L is expressed by:

L = N 4 T M em + (log 4 (N) -1) × (T M + 2T A) + 2T A (3)

Comparison with efficient designs

The hardware complexityto he proposed architecture is listed along with those of the existing structures in Table 1.

The table shows the tradeoff between area and timing performance. The area is mea- Radix-2 [START_REF] Despain | Fourier transform computer using CORDIC iterations[END_REF] Radix-4

log 2 N -2 2log 2 N N-1 1 N R2 2 SDF 15 log 4 N -1 4log 4 N N-1 1 N R2 2 SDF 18 log 4 N -1 log 2 N 2(N-1) 1 N FB Radix-2 19 log 4 N -1 2log 4 N 4 3 N 1 N R4SDF
log 4 N -1 8log 4 N N-1 1 N R4SDF 14 log 4 N -1 3log 4 N 2(N-1) 1 N R2MDC 12 Radix-2 log 2 N -2 2log 2 N 3 2 N-2 1 N FF Radix-2 21 Radix-2 2(log 4 N -2) 2log 2 N 4 N 2 N R4MDC 22 Radix-4 3(log 4 N -1) 8log 4 N 5 2 N-2 4 N FF Radix-4 21 3(log 4 N -1) 8log 4 N 8 3 N 4 N 3 Design of 17 log 4 N -1 8log 4 N N 1 N Proposed 3(log 4 N -1) 8log 4 N 4 3 N 4 N 4
sured by the number of complex multipliers, adders and memory size, whereas the timing performance is represented by the throughput and the latency. The structures presented in this table are parallel-in serial-out design 13 14 15 18 19 20 or parallel-in parallel-out design like the proposed one and designs of 22 12 21 . The number of complex multiplier and adder of the paralel-in serial-out designs is three times lower than parallel-in parallel-out designs. Compared with parallel-in parallel-out schemes, the proposed design provides a lower absolute latency. This latency is approximated without the number of order logN as in all references cited in Table . 1. Furthermore, the proposed architecture involves nearly half of memory size of 21 with same number of adders and multipliers.

Implementation results

Hardware complexity

In this section we describe the material complexity of FFT architectures detailed in section 2.2 and section 3. The basic criterion used for comparison is the area-delay product. The hardware and time complexities of the proposed structure using the parallel-in parallel-out radix-4 and the memory sharing technique are listed along with those of the existing structures in Table . 2. All the structures mentioned in Table . 2 are coded using the VHDL language and synthesized using Xilinx ISE and Spartan-3 FPGA device. Also, we used the propagation delay with the execution time as time complexity criteria. The execution time is defined by absolute latency and obtained by multiplying the relative latency by the duration of one cycle. The design of Fig. 2 is the direct realization of 64-point FFT using radix-4 PE. This structure involves the lowest execution time but the highest number of slices. On the other hand, the recursive structure of the memory-based design 6 has the highest execution time and a low number of slices. The proposed design and our design of [START_REF] Ouerhani | Implementation techniques of high-order FFT into low-cost FPGA[END_REF] have nearly the same propagation delay but the last one involves more than double the execution time.

Synthesis Results

To analyse show the efficiency of the proposed architecture, a comparison of the synthesis results obtained from a Spartan-3 implementation with several architectures has been made. It can be found that the proposed design involves an execution time about 56%, 36% and 26% lower than that of Xilinx IP core 23 , R2 2 SDC 16 and R4SDC [START_REF] Zhou | Pipeline FFT Architectures Optimized for FPGAs[END_REF] respectively for 256-point FFT. Regarding the area-delay product, it can be seen that the proposed architecture can achieve about 11% and 10% of reduction in the area-delay product compared to R4SDC 16 and R2 2 SDF 16 respectively and about 73% compared to MXRX-B4 6 for 256-point FFT. On the other hand, comparison in term of Throughput by Slice ratio between the pro-the truncation only for the constant multipliers (not for adders). In fact, input data are encoded using n bits. The computation of these inputs implies a bit growth of up to 2 bits after each butterfly block. However, for the multipliers, the output width is equal to the input width. Indeed, for a multiplication with twiddle factor encoded using c bits, we apply truncation by using c right shifts to the outputs. Consequently, the output width of the proposed N -point FFT architecture is equal to n + 2log 4 N bits. To evaluate the SQNR, we applied a sine wave with input frequency of 32 kHz and a sampling frequency of 100 kHz. Two FFTs have been computed. The "exact" FFT (X f l (k)) is with a floating-point arithmetic obtained by Matlab 64-bit precision. The second (X f x (k)) is with the proposed architecture. The SQNR is defined by: We present in Fig. 8 the SQNR evaluation versus FFT size and data width of inputs (the twiddle factor width is set to 12 bits). It can be clearly observed that larger is the input width higher is the SQNR. Moreover, for a large size of FFT the SQNR decrease. This is due to quantization noise propagation. Finally, it should be pointed out that the maximum Mean Square Error (MSE) between X f x and X f l obtained with 256-point FFT is about 1%.

SQN R = k |X f x (k)| 2 k (|X f l (k)| -|X f x (k)|) 2

Conclusion

In this paper we have proposed a novel architecture of N-point FFT based on radix-4 algorithm suitable for FPGA implementation. The novelty of the proposed architecture consists on using the memory sharing and dividing techniques along with parallel-in parallel-out processing in order to reduce latency and minimize the area occupation. We compared favorably our proposed architecture with some recent works quoated in litterature. We find that the proposed architecture has several advantages in terms of speed and throughput performances and saving of silicon area. Power consumption should be evaluated, which is being studied.

Fig. 2 .

 2 Fig. 2. SFG of 64-point FFT

Fig. 4 .

 4 Fig. 4. 256-point FFT architecture proposed in 17

Fig. 5 .

 5 Fig. 5. Memory sharing principle for N=256

Fig. 8 .

 8 Fig. 8. SQNR variation for different FFT size and different input width

Table 1 .

 1 Hardware requirements ressources comparison of pipeline FFT architecture

	References	Structure	Complex	Complex	Memory	Nbr	Absolute
			Multipliers	Adders	size	Samples/cycle	Latency
	R2SDF 13						

Table 2 .

 2 Area-delay comparison

	Architecture	Slices	Propagation	Execution	Slice-Delay
			Delay (ns)	time(s)	product (Slice.s)
	Design of Fig. 2	43623	15.3	0.15	6543.4
	Memory-based 6	2281	30.3	8.3	18932.3
	Design of 17	1155	9.4	2.03	2344.6
	Proposed	2345	8.4	0.8	1876

Table 3 .

 3 Table. 3 and Table 4 present a comparison with prior art of the pipelined architectures, based-memory architectures and Xilinx IP core. The performance of different architectures is analyzed in terms of area (slice number), Maximum Operating Frequency (MOF), throughput (M samples/s), execution time and area-delay product. Synthesis results of 64-point FFT

	Architecture	Structure	Slices	MOF	Throughput	Execution	Area-Delay
				(MHz)	(MS/s)	time(s)	product Slice.µs
	R4SDC 16	Radix-4	2662	107	107	1.2	3194
	R2SDF 16	Radix-2	2520	98	98	1.4	3528
	RX4-B1 6	Radix-4	2281	33	33	8.3	18932
	RX4-B2 6	Radix-4	3323	33	66	4.6	15285
	MXRX-B4 6	Split-Radix	6655	33	132	2.69	17901
	Xilinx IP 23	Radix-2	1477	152	152	1.68	2481
	Design of 17	Radix-4	1155	106	106	2.03	2344
	Proposed	Radix-4	2345	118	472	0.8	1876

Acknowledgments

This research was supported by a grant from the Interface Concept Company. For more details, please consult http://www.interfaceconcept.com.

 7. It is indicated that our design still has advantage over the others. In fact, our proposed design present an increase of 26% and 19% in term of throughput by slice ratio compared to the architecture proposed on [START_REF] Ouerhani | Implementation techniques of high-order FFT into low-cost FPGA[END_REF] and to Xilinx IP [START_REF]Xilinx Product Specification, High perfomance Complex FFT/IFFT V.7.0[END_REF] for 256-point FFT.

Signal-to-quantization noise ratio (SQNR)

Since we use fixed-point operators, some truncations are needed to maintain the dynamic range of intermediate signals and outputs. These truncations can affect the accuracy of the FFT algorithm by introducing the quantization noise. It is thus necessary to evaluate this noise and to compute the Signal to Quantization Noise Ratio (SQNR). Many research have been treated the problems of truncation noise for fixed-point operators used in orthogonal transforms as in FFT 5 , DCT [START_REF] Tan | Oversampling Technique for Obtaining Higher Order Derivative of Low-Frequency Signals[END_REF] and FIR [START_REF] Hassan | FPGA Implementation of an ASIP for high throughput DFT/DCT 1D/2D engine[END_REF] . Our objective in this section is to evaluate the effects of truncation. For our implementation, we have performed