
HAL Id: hal-00782649
https://hal.science/hal-00782649

Submitted on 30 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Specification Patterns and Tools
Nouha Abid, Silvano Dal Zilio, Didier Le Botlan

To cite this version:
Nouha Abid, Silvano Dal Zilio, Didier Le Botlan. Real-Time Specification Patterns and Tools. 17th
International Workshop on Formal Methods for Industrial Critical Systems, FMICS 2012, Aug 2012,
Paris, France. pp. 1-15, �10.1007/978-3-642-32469-7_1�. �hal-00782649�

https://hal.science/hal-00782649
https://hal.archives-ouvertes.fr

Real-Time Specification Patterns and Tools⋆

Nouha Abid1,2, Silvano Dal Zilio1,2, and Didier Le Botlan1,2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse France
2 Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. An issue limiting the adoption of model checking technolo-
gies by the industry is the ability, for non-experts, to express their re-
quirements using the property languages supported by verification tools.
This has motivated the definition of dedicated assertion languages for
expressing temporal properties at a higher level. However, only a limited
number of these formalisms support the definition of timing constraints.
In this paper, we propose a set of specification patterns that can be used
to express real-time requirements commonly found in the design of re-
active systems. We also provide an integrated model checking tool chain
for the verification of timed requirements on TTS, an extension of Timed
Petri Nets with data variables and priorities.

1 Introduction

An issue limiting the adoption of model checking technologies by the industry
is the difficulty, for non-experts, to express their requirements using the spec-
ification languages supported by the verification tools. Indeed, there is often a
significant gap between the boilerplates used in requirements statements and
the low-level formalisms used by model checking tools; the latter usually rely-
ing on temporal logic. This limitation has motivated the definition of dedicated
assertion languages for expressing properties at a higher level (see Section 5).
However, only a limited number of assertion languages support the definition
of timing constraints and even fewer are associated to an automatic verification
tool, such as a model checker.

In this paper, we propose a set of real-time specification patterns aimed at
the verification of reactive systems with hard real-time constraints. Our main ob-
jective is to propose an alternative to timed extensions of temporal logic during
model checking. Our patterns are designed to express general timing constraints
commonly found in the analysis of real-time systems (such as compliance to dead-
lines; event duration; bounds on the worst-case traversal time; etc.). They are
also designed to be simple in terms of both clarity and computational complex-
ity. In particular, each pattern should correspond to a decidable model checking
problem.

⋆ This work was partially supported by the JU Artemisia project CESAR and the
FNRAE project Quarteft

Our patterns can be viewed as a real-time extension of Dwyer’s specification
patterns [11]. In his seminal work, Dwyer shows through a study of 500 spec-
ification examples that 80% of the temporal requirements can be covered by a
small number of “pattern formulas”. We follow a similar philosophy and define
a list of patterns that takes into account timing constraints. At the syntactic
level, this is mostly obtained by extending Dwyer’s patterns with two kind of
timing modifiers: (1) P within I, which states that the delay between two events
declared in the pattern P must fit in the time interval I; and (2) P lasting D,
which states that a given condition in P must hold for at least duration D. For
example, we define a pattern Present A after B within]0, 4] to express that the
event A must occur within 4 units of time (u.t.) of the first occurrence of event
B, if any, and not simultaneously with it. Although seemingly innocuous, the
addition of these two modifiers has a great impact on the semantics of patterns
and on the verification techniques that are involved.

Our second contribution is an integrated model checking tool chain that
can be used to check timed requirements. We provide a compiler for Fiacre [6], a
formal modelling language for real-time systems, that we extended to support the
declaration of real-time patterns. In our tool chain, Fiacre is used to express the
model of the system while verification activities ultimately relies on Tina [3], the
TIme Petri Net Analyzer. This tool chain provides a reference implementation for
our patterns when the systems can be modeled using an extension of Time Petri
Nets with data variables and priorities that we call a TTS (see Sect. 2.1). This is
not a toy example; Fiacre is the intermediate language used for model verification
in Topcased [13], an Eclipse-based toolkit for system engineering, where it is used
as the target of model transformation engines for various high-level modelling
languages, such as SDL or AADL [4]. In each of these transformations, we have
been able to use our specification patterns as an intermediate format between
high-level requirements (expressed on the high-level models) and the low-level
input languages supported by the model checkers in Tina.

The rest of the paper is organized as follows. In the next section, we define
technical notations necessary to define the semantics of patterns. Section 3 gives
our catalog of real-time patterns. For each pattern, we give a simple definition
in natural language as well as an unambiguous, formal definition based on two
different approaches. Before concluding, we review the results of experiments
that have been performed using our verification tool chain in Sect. 4.

2 Technical Background

Since patterns are used to express timing and behavioral constraints on the
execution of a system, we base the semantics of patterns on the notion of timed
traces, which are sequences mixing events and time delays, (see Def. 1 below).
We use a dense time model, meaning that we consider rational time delays and
work both with strict and non-strict time bounds.

The semantics of a pattern will be expressed as the set of all timed traces
where the pattern holds. We use two different approaches to define set of traces:

(1) Time Transition Systems (TTS), whose semantics relies on timed traces; and
(2) a timed extensions of Linear Temporal Logic, called MTL. In our verification
tool chain, both Fiacre and specification patterns are compiled into TTS.

2.1 Time Transition Systems and Timed Traces

Time Transition Systems (TTS) are a generalization of Time Petri Nets [17] with
priorities and data variables. We describe the semantics of TTS using a simple
example. Figure 1 gives a model for a simple airlock system consisting of two
doors (D1 and D2) and two buttons. At any time, at most one door can be open.
This constraint is modeled by the fact that at most one of the places D1isOpen

and D2isOpen may have a token. Additionally, an open door is automatically
closed after exactly 4 units of time (u.t.), followed by a ventilation procedure
that lasts 6 u.t. This behavior is modeled by adding timing constraints on the
transitions Open1, Open2 and Ventil. Moreover, requests to open the door D2

have higher priority than requests to open D1. This is modeled using a priority
(dashed arrow) from the transition Open2 to Open1. A shutdown command can
be triggered if no request is pending.

Idle

Shutdown
pre: ¬(req

1
∨ req

2
)

Ventil.

[6; 6]

Refresh

Close1

act: req1 := false

[4; 4]
D1isOpen

act: req2 := false

Close2

[4; 4]
D2isOpen

Open1

pre: req
1

[0, 0]

pre: req
2

Open2

[0, 0]

Button1
act: req1 := true

pre: ¬req
1

Button2
act: req2 := true

pre: ¬req
2

Fig. 1. A TTS model of an airlock system

To understand the model, the reader may, at first, ignore side conditions and
side effects (the pre and act expressions inside dotted rectangles). In this case,
a TTS is a standard Time Petri Net, where circles are places and rectangles
are transitions. A transition is enabled if there are enough tokens in its input
places. A time interval, such as I = [d1; d2[, indicates that the corresponding
transition must be fired if it has been enabled for d units of time with d ∈ I.
As a consequence, a transition associated to the time interval [0; 0] must fire
as soon as it is enabled. Our model includes two boolean variables, req1 and

req2, indicating whether a request to open door D1 (resp. D2) is pending. Those
variables are read by pre-conditions on transitions Openi, Buttoni, and Shutdown

and are modified by post-actions on transitions Buttoni and Closei. For instance,
the pre-condition ¬req2 on Button2 is used to disable the transition when the
door is already open. This implies that pressing the button while the door is
open has no further effect.

We introduce some basic notations used in the remainder of the paper. (A
complete, formal description of the TTS semantics can be found in [2].) Like with
Petri Nets, the state of a TTS depends on its marking, m, that is the number
of tokens in each place. We write M the set of markings. Since we manipulate
values, the state of a TTS also depends on its store, that is a mapping from
variable names to their respective values. We use the symbol s for a store and
write S for the set of stores. Finally, we use the symbol t for a transition and T
for the set of transitions of a TTS. The behavior of a TTS is defined by the set
of all its (timed) traces. In this particular case, a trace will contain information
about fired transitions (e.g. Open1), markings, the value of variables, and the
passing of time. Formally, we define an event ω as a triple (t, m, s) recording the
marking and store immediately after the transition t has been fired. We denote Ω
the set T ×M×S of events. The set of non-negative rational numbers is written
Q+.

Definition 1 (Timed trace). A timed trace σ is a possibly infinite sequence of
events ω ∈ Ω and durations d(δ) with δ ∈ Q+. Formally, σ is a partial mapping
from N to Ω∗ = Ω ∪ {d(δ) | δ ∈ Q+} such that σ(i) is defined whenever σ(j) is
defined and i ≤ j.

Given a finite trace σ and a—possibly infinite—trace σ′, we denote σσ′ the con-
catenation of σ and σ′. This operation is associative. The semantics of patterns
will be defined as a set of timed traces. Given a real-time pattern P , we say that
a TTS T satisfies the requirement P if all the traces of T hold for P .

2.2 Metric Temporal Logic and Formulas over Traces

Metric Temporal Logic (MTL) [16] is an extension of LTL where temporal
modalities can be constrained by a time interval. For instance, the MTL for-
mula A U[1,3[B states that in every execution of the system (in every trace),
the event B must occur at a time t0 ∈ [1, 3[and that A holds everywhere in
the interval [0, t0[. In the following, we will also use a weak version of the “until
modality”, denoted A W B, that does not require B to eventually occur. We
refer the reader to [18] for a presentation of the logic and a discussion on the
decidability of various fragments.

An advantage of using MTL is that it provides a sound and unambiguous
framework for defining the meaning of patterns. Nonetheless, this partially de-
feats one of the original goal of patterns, that is to circumvent the use of temporal
logic in the first place. For this reason, we propose an alternative way for defin-
ing the semantics of patterns that relies on first-order formulas over traces. For
instance, when referring to a timed trace σ and an event A, we can define the

“scope” σ after A–that determines the part of σ located after the first occur-
rence of A–as the trace σ2 such that ∃σ1.σ = σ1Aσ2 ∧ A /∈ σ1. We believe that
this second approach may ease the work of engineers that are not trained with
formal verification techniques. Our experience shows that being able to confront
different definitions for the same pattern, using contrasting approaches, is useful
for teaching patterns.

2.3 Model checking, Observers and TTS

We have designed our patterns so that checking whether a system satisfies a
requirement is a decidable problem. We assume here that we work on discrete
models (with a continuous time semantics), such as timed automata or time
Petri Nets, and not on hybrid models. Since the model checking problem for
MTL is undecidable [18], it is not enough to simply translate each pattern into
a MTL formula to check whether a TTS satisfies a pattern. This situation can
be somehow alleviated. For instance, the problem is decidable if we disallow
simultaneous events in the system and if we disallow punctual timing constraints,
of the form [d, d]. Still, while we may rely on timed temporal logics as a way to
define the semantics of patterns, it is problematic to have to limit ourselves to
a decidable fragment of a particular logic–which may be too restrictive–or to
rely on multiple real-time model checking algorithms–that all have a very high
complexity in practice.

To solve this problem, we propose to rely on observers in order to reduce the
verification of timed patterns to the verification of LTL formulas. We provide
for each pattern, P , a pair (TP , φP) of a TTS model and a LTL formula such
that, for any TTS model T , we have that T satisfies P if and only if T ⊗ TP (the
composition of the two models T and TP) satisfies φP . The idea is not to provide
a generic way of obtaining the observer from a formal definition of the pattern.
Rather, we seek, for each pattern, to come up with the best possible observer
in practice. To this end, using our tool chain, we have compared the complexity
of different implementations on a fixed set of representative examples and for a
specific set of properties and kept the best candidates.

3 A Catalog of Real-Time Patterns

We describe our patterns using a hierarchical classification borrowed from
Dwyer [11] but adding the notion of “timing modifiers”. Patterns are built from
five categories, listed below, or from the composition of several patterns (see
Sect. 3.4):

– Existence Patterns (Present): for conditions that must eventually occur;
– Absence Patterns (Absent): for conditions that should not occur;
– Universality Patterns : for conditions that must occur throughout the

whole execution;
– Response Patterns (Response): for (trigger) conditions that must always

be followed by a given (response) condition;

– Precedence Patterns : for (signal) conditions that must always be pre-
ceded by a given (trigger) condition.

In each class, generic patterns may be specialized using one of five scope modifiers
that limit the range of the execution trace over which the pattern must hold:

– Global : the default scope modifier, that does not limit the range of the
pattern. The pattern must hold over the whole timed trace;

– Before R : limit the pattern to the beginning of a time trace, up to the
first occurrence of R;

– After Q : limit the pattern to the events following the first R;
– Between Q and R : limit the pattern to the events occurring between an

event Q and the following occurrence of an event R;
– After Q Until R : similar to the previous scope modifier, except that we

do not require that R must necessarily occur after a Q.

Finally, timed patterns are obtained using one of two possible kind of timing
modifiers that limit the possible dates of events referred in the pattern:

– Within I : to constraint the delay between two given events to belong to
the time interval I;

– Lasting D : to constraint the length of time during which a given condition
holds (without interruption) to be greater than D.

When defining patterns, the symbols A, B, . . . stand for predicates on events
ω ∈ Ω such as Open2 ∨ req2. In the definition of observers, a predicate A is
interpreted as the set of transitions of the system that match A. Due to the
somewhat large number of possible alternatives, we restrict this catalog to the
most important presence, absence and response patterns. Patterns that are not
described here can be found in a long version of this paper [1].

For each pattern, we give its denotational interpretation based on First-Order
formulas over Timed Traces (denoted FOTT in the following) and a logical
definition based on MTL. We provide also the observer and the LTL formula
that should be combined with the system in order to check the validity of the
pattern. We define some conventions on observers. In the following, Error, Start,
. . . are transitions that belong to the observer, whereas E1 (resp. E2) represents
all transitions of the system that match predicate A (resp. B). We also use
the symbol I as a shorthand for the time interval [d1, d2]. The observers for
the pattern obtained with other time intervals–such as]d1, d2],]d1, +∞[, or in
the case d1 = d2–are essentially the same, except for some priorities between
transitions that may change. By convention, the boolean variables used in the
definition of an observers are initially set to false.

3.1 Existence patterns

An existence pattern is used to express that, in every trace of the system, some
events must occur.

Present A after B within I

Predicate A must hold between d1 and d2 units of time (u.t) after the first oc-
currence of B. The pattern is also satisfied if B never holds.

Example: present Ventil. after Open1 ∨ Open2 within [0, 10]

mtl def.: (¬B) W (B ∧ True UI A)

fott def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧ B /∈ σ1) ⇒ ∃σ3, σ4 . σ2 = σ3Aσ4 ∧ ∆(σ3) ∈ I

Observer:

act: foundB := true

E2 Start

pre: foundB

act: flag := true

[d1, d1]

act: if flag then

foundA := true

E1 Error

pre: foundB ∧¬ foundA

[d2, d2]

The associated ltl formula is []¬Error.

Explanation:

In this observer, transition Error is conditioned by the value of the shared boolean
variables foundA and foundB. Variable foundB is set to true after transition E2

and transition Error is enabled only if the predicate foundB ∧¬ foundA is true.
Transition Start is fired d1 u.t after an occurrence of E2 (because it is enabled
when foundB is true). Then, after the first occurrence of E1 and if flag is true,
foundA is set to true. This captures the first occurrence of E1 after Start has been
fired. After d2 u.t., in the absence E1, transition Error is fired. Therefore, the
verification of the pattern boils down to checking if the event Error is reachable.
The priority (dashed arrows) between Start, Error, and E1 is here necessary to
ensure that occurrences of E1 at precisely the date d1 or d2 are taken in account.

Present first A before B within I

The first occurrence of predicate A holds between d1 and d2 u.t. before the first
occurrence of B. The pattern is also satisfied if B never holds. (The difference
with Present B after A within I is that B should not occur before the first A.)

Example: present first Open1 ∨ Open2 before Ventil. within [0, 10]

mtl def.: (♦B) ⇒ ((¬A ∧ ¬B) U (A ∧ ¬B ∧ (¬B UI B)))

fott def.: ∀σ1, σ2 . (σ = σ1Bσ2 ∧ B /∈ σ1) ⇒ ∃σ3, σ4 . σ1 = σ3Aσ4 ∧ A /∈ σ3 ∧

∆(σ4) ∈ I

Observer:

act: foundA := true

E1 Start

pre: foundA

act: flag := true

[d1, d1]

act: foundB := true

E2 Error

pre: foundA ∧¬ foundB

[d2, d2]

The associated ltl formula is (♦B) ⇒ ¬♦(Error ∨ (foundB ∧ ¬flag)).

Explanation:

Like in the previous case, variables foundA and foundB are used to record the
occurrence of transitions E1 and E2. Transition Start is fired, and variable flag
is set to true, d1 u.t. after the first E1. Then transition Error is fired only if its
precondition—the predicate foundA ∧¬ foundB—is true for d2 u.t. Therefore
transition Error is fired if and only if there is an occurrence of E2 before E1

(because then foundB is true) or if the first occurrence of E2 is not within
[d1, d2] of the first occurrence of E1.

Present A lasting D

Starting from the first occurrence when the predicate A holds, it remains true for
at least duration D.

Comment: The pattern makes sense only if A is a predicate on states (that is, on
the marking or store); since transitions are instantaneous, they have no
duration.

Example: present Refresh lasting 6

mtl def.: (¬A) U (@[0,D]A)

fott def.: ∃σ1, σ2, σ3 . σ = σ1σ2σ3 ∧ A /∈ σ1 ∧ ∆(σ2) > D ∧ A(σ2)

Observer:

pre: A

act: win := true

OK [D, D]

pre: A ∧ ¬ foundA

act: foundA := true

Poll

pre: foundA ∧¬ win

Error [D, D]

The associated ltl formula is @¬Error.

Explanation:

Variable foundA is set to true when transition P oll is fired, that is when A
becomes true for the first time. Transition OK is used to set win to true if A
is true for duration D without interruption (otherwise its timing constraint is
resetted). Otherwise, if variable win is still false after D u.t., then transition
Error is fired. We use a priority between Error and OK to disambiguate the
behavior D u.t. after Poll is fired.

3.2 Absence patterns

Absence patterns are used to express that some condition should never occur.

Absent A after B for interval I

Predicate A must never hold between d1–d2 u.t. after the first occurrence of B.
Comment: This pattern is dual to Present A after B within I (it is not equivalent

to its negation because, in both patterns, B is not required to occur).

Example: absent Open1 ∨ Open2 after Close1 ∨ Close2 for interval [0, 10]

mtl def.: ¬B W (B ∧ @I¬A)

fott def.: ∀σ1, σ2, σ3, ω . (σ = σ1Bσ2ωσ3 ∧ B /∈ σ1 ∧ ∆(σ2) ∈ I) ⇒ ¬A(ω)

Observer: We use the same observer as for Present A after B within I , but here
Error is the expected behavior.
The associated ltl formula is ♦B ⇒ ♦Error.

Explanation:

Same as the explanation for Present A after B within I.

Absent A before B for duration D

No A can occur less than D u.t. before the first occurrence of B. The pattern
holds if there are no occurrence of B.

Example: absent Open1 before Close1 for duration 3

mtl def.: ♦B ⇒ (A ⇒ (@[0,D]¬B)) U B

fott def.: ∀σ1, σ2, σ3, ω . (σ = σ1ωσ2Bσ3 ∧ B /∈ σ1ωσ2 ∧ ∆(σ2) 6 D) ⇒ ¬A(ω)

Observer:
E1

act: bad := true

foundB := false

E2

act: foundB := true

idle Reset

act: bad := false

[D, D]

The associated ltl formula is @¬(foundB ∧ bad).

Explanation:

Variable foundB is set to true after each occurrence of E2. Conversely, we
set the variables bad to true and foundB to false at each occurrence of E1.
Therefore foundB is true on every “time interval” between an E2 and an E1.
We use transition Reset to set bad to false if this interval is longer than D. As a
consequence, the pattern holds if we cannot find an occurrence of E2 (foundB
is true) while bad is true.

3.3 Response patterns

Response patterns are used to express “cause–effect” relationship, such as the
fact that an occurrence of a first kind of events must be followed by an occurrence
of a second kind of events.

A leadsto first B within I

Every occurrence of A must be followed by an occurrence of B within time in-
terval I (considering only the first occurrence of B after A).

Example: Button2 leadsto first Open2 within [0, 10]

mtl def.: @(A ⇒ (¬B) UI B)

fott def.: ∀σ1, σ2 . (σ = σ1Aσ2) ⇒ ∃σ3, σ4 . σ2 = σ3Bσ4 ∧ ∆(σ3) ∈ I ∧ B /∈ σ3

Observer:
E1

act: foundA := true

bad := true

Start

act: bad := false

[d1, d1]
E2

act: foundA := false

Error

pre: foundA

[d2, d2]

The associated ltl formula is (@¬Error) ∧ (@¬(B ∧ bad)).

Explanation:

After each occurrence of E1, variables foundA and bad are set to true and the
transition Start is enabled. Variable bad is used to control the beginning of the
time interval. After each occurrence of E2 variable foundA is set to false. Hence
Error is fired if there is an occurrence of E1 not followed by an occurrence of
E2 after d2 u.t. We use priorities to avoid errors when E2 occurs precisely at
time d1 or d2.

A leadsto first B within I before R

Before the first occurrence of R, each occurrence of A is followed by a B—and
these two events occur before R—in the time interval I. The pattern holds if R
never occur.

Example: Button2 leadsto first Open2 within [0, 10] before Shutdown

mtl def.: ♦R ⇒ (@(A ∧ ¬R ⇒ (¬B ∧ ¬R) UI B ∧ ¬R) U R

fott def.: ∀σ1, σ2, σ3 . (σ = σ1Aσ2Rσ3 ∧ R /∈ σ1Aσ2 ⇒ ∃σ4, σ5 . σ2 = σ4Bσ5 ∧

∆(σ4) ∈ I ∧ B /∈ σ4

Observer: E1

act: if ¬ foundR then foundA := true

bad := true

Start

act: bad := false

[d1, d1] Error

pre: foundA

]d2, ∞[

E2

act: if ¬ foundR then foundA := false

E3

act: foundR=true

The associated ltl formula is ♦R ⇒ (@¬Error ∧ @¬(B ∧ bad)).

Explanation:

Same explanation than for the previous case, but we only take into account
transitions E1 and E2 occurring before E3.

A leadsto first B within I after R

Same than with the pattern “A leadsto first B within I” but only considering
occurrences of A after the first R.

Example: Button2 leadsto first Open2 within [0, 10] after Shutdown

mtl def.: @(R ⇒ (@(A ⇒ (¬B) UI B)))

fott def.: ∀σ1, σ2 . (σ = σ1Rσ2Aσ3 ∧ R /∈ σ1) ⇒ ∃σ4, σ5 . σ3 = σ4Bσ5 ∧ ∆(σ4) ∈

I ∧ B /∈ σ4

Observer: It is similar to the observer of the pattern A leadsto first B within I before

R . We should just replace ¬foundR in transition E1 and E2 by foundR.
The associated ltl formula is ♦R ⇒ (@¬Error ∧ @¬(B ∧ bad)).

Explanation:

Same explanation than in the previous case, but we only take into account
transitions E1 and E2 occurring after an E3.

3.4 Composite Patterns

Patterns can be easily combined together using the usual boolean connectives.
For example, the pattern “P1 and P2” holds for all the traces where P1 and P2

both hold. To check a composed pattern, we use a combination of the respective
observers, as well as a combination of the respective LTL formulas. For instance,
if (T1, φ1) and (T2, φ2) are the observers and LTL formulas corresponding to the
patterns P1 and P2, then the composite pattern P1 and P2 is checked using
the LTL formula φ1 ∧ φ2. Similarly, if we check the LTL formula φ1 ⇒ φ2

(implication) then we obtain a composite pattern P1 ⊸ P2 that is satisfied by
systems T such that, for all traces of T , the pattern P2 holds whenever P1 holds.

4 Use Cases and Experimental Results

In this section, we report on three experiments that have been performed using
an extension of a Fiacre compiler that automatically compose a system with

the necessary observers. In case the system does not meet its specification, we
obtain a counter-example that can be converted into a timed sequence of events
exhibiting a problematic scenario. This sequence can be played back using play
and nd, two Time Petri Nets animators provided with Tina.

Avionic Protocol and AADL. Our first example is a network avionic protocol
(NPL) which includes several functions allowing the pilot and ground stations
to receive and send information relative to the plane: weather, speed, . . . AADL
has been used to model the dynamic architecture for this demonstrator [5].
The AADL model includes several threads that exchange information through
shared memory data and amounts to about 8 diagrams and 800 lines of code
(using AADL textual syntax). The AADL code specifies both the hardware
and software architecture of the system and defines the real time properties of
threads, like for instance their dispatch protocol (periodic or sporadic) or their
periods.

We used the AADL2Fiacre plug-in of Topcased to check properties on the
NPL specification. The Fiacre model obtained after transformation takes into
account the complete behavior described in the AADL model but also the whole
language execution model, meaning that our interpretation takes fully into ac-
count the scheduling semantics as specified in the AADL standard. The abstract
state space for the TTS generated from Fiacre has about 120 000 states and
180 000 transitions and can be generated in less than 12s on a typical devel-
opment computer (Intel dual-core processor at 2GHz with 2Gb of RAM). On
examples of this size, our model checker is able to prove formal properties in a
few seconds. We checked a set of 22 requirements that were given together with
the description of the system, all expressed using a natural language description
and, in one case, a scenario based on a UML sequence diagram. Of these 22
requirements, 18 where instances of “untimed patterns”, such as checking the
absence of deadlock or that threads are resettable. The four remaining require-
ments where “response patterns” of the kind A leadsto first B within [0, d]. Using
patterns, we were able to check the 22 patterns in less than 5min.

Service Oriented Applications. We consider models obtained from the composi-
tion of services expressed using a timed extension of BPEL, the Business Process
Execution Language. Our example models a scenario from the health-care do-
main related to patient handling during a medical examination. The scenario
involves three entities, each one managed by a service: a Clinic Service (CS); a
Medical Analysis Service (MAS); and a Pharmacy Service (PS). When a patient
arrives in clinic, a doctor should check with the MCS whether its social secu-
rity number is valid. If so, the doctor may order some medical analyses from
the MAS and, after analyzing the results, he can order drugs through the PS.
Timing constraints can be added to this scenario by associating a duration to
each activity of the workflow and a delay to each service invocation.

We use our patterns to express different requirements on this system. An
example involving the absence pattern is that we cannot have two medical anal-
yses for a patient in less than 10 days (240 hours): absent MAS.medicalAnalysis

after MAS.medicalAnalysis for interval]0, 240]. A more complicated example of
requirement is to impose that if a doctor does not cancel a drug order within 6
hours, then it should not cancel drugs for another 48 hours. This requirement
can be expressed using the composition of two absence patterns (see Sect. 3.4):

(absent MCS.drugsChanging after MCS.drugsAsking for interval [0; 6])
⊸ (absent MCS.drugsChanging after MCS.drugsAsking for interval [0; 54]).

Finally, using the notation S.init and S.end to refer to a start (resp. end) event
in the service S, we can express that drugs must be delivered within 48 hours
of the medical examination start: MCS.init leadsto PS.sendDrugsOrder within
[0; 48].

The complete scenario is given in [9], where we describe a transformation tool
chain from Timed BPEL processes to Fiacre. For a more complex version of the
health care scenario, with seven different services and more concurrent activities,
the state graph for the TTS generated from Fiacre is quite small, with only 886
states and 2476 transitions. The generation of the Fiacre specification and its
corresponding state space takes less than a second. For examples of this size, the
verification time for checking a requirement is negligible (half a second).

Transportation Systems. Our final example is an automated railcar system, taken
from [10], that was directly modeled using Fiacre. The system is composed of
four terminals connected by rail tracks in a cyclic network. Several railcars,
operated from a central control center, are available to transport passengers
between terminals. When a car approaches its destination, it sends a request to
signal its arrival to the terminal. This system has several real-time constraints:
the terminal must be ready to accommodate an incoming car in 5s; a car arriving
in a terminal leaves its door open for exactly 10s; passengers entering a car have
5s to choose their destination; etc. There are three key requirements:

(P1) when a passenger arrives in a terminal, a car must be ready to transport
him within 15s. This property can be expressed with a response pattern, where
Passenger/sndReq is the state where the passenger requests a car and Car/ack-
Term is the state where it is served:

Passenger/sendReq leadsto Car/ackTerm within [0, 15]

(P2) When the car starts moving, the door must be closed:

present CarDoor/closeDoor after CarHandler/moving within [0, 10]

(P3) When a passenger select a destination (in the car), a signal should stay
illuminated until the car is arrived:

absent Terminal/buttonOff before Control/ackTerm for duration 10

We can prove that these three patterns are valid on our Fiacre model. Con-
cerning the performances, we are able to generate the complete state space of

the railcar system in 310ms, using 400kB of memory. This gives an upper-bound
to the complexity of checking simple (untimed) reachability properties on the
system, like for instance the absence of deadlocks. The three patterns can all
be checked in under 1.5s. For instance, we observed that checking property
(P1) is not more complex than exploring the complete system: the property is
checked in 450ms, using 780kB of memory. Also, this is roughly the same com-
plexity than checking the corresponding untimed requirement in LTL that is:
@ (Passenger/sendReq ⇒ ♦Control/ackTerm).

Conclusion. In other benchmarks, we have often found that the complexity of
checking timed patterns is in the same order of magnitude than checking their
untimed temporal logic equivalent. An exception to this observation is when the
temporal values used in the patterns are far different from those found in the
system; for example if checking a periodic system, with a period in the order
of the milliseconds, against a requirement using an interval in the order of the
minutes. More results on the complexity of our approach can be found in [2].
These experimentation, while still modest in size, gives a good appraisal of the
use of formal verification techniques for real industrial software.

These experimental results are very encouraging. In particular, we can real-
istically envisage that system engineers could evaluate different design choices
in a very short time cycle and test the safety of their solutions at each iteration.

5 Related Work and Contributions

We base our approach on the original catalog of specification patterns defined by
Dwyer [11]. This work essentially study the expressiveness of their approach and
define patterns using different logical framework (LTL, CTL, Quantified Regular
Expressions, etc.). As a consequence, they do not need to consider the problem of
checking requirements as they can readily rely on existing model checkers. Their
patterns language is still supported, with several tools, an online repository of
examples [12] and the definition of the Bandera Specification Language [8] that
provides a structured-English language front-end. A recent study by Bianculli et
al. [7] show the relevance of this pattern-based approach in an industrial context.

Some works consider the extension of patterns with hard real-time con-
straints. Konrad et al. [15] extend the patterns language with time constraints
and give a mapping from timed pattern to TCTL and MTL. Nonetheless, they
do not consider the complexity of the verification problem (the implementabil-
ity of their approach). Another related work is [14], where the authors define
observers based on Timed Automata for each pattern. However, they consider a
less expressive set of patterns (without the lasting modifier) and they have not
integrated their language inside a tool chain or proved the correctness of their
observers. By contrast, we have defined a formal framework that has been used
to prove the correctness of some of our observers [2]. Work is currently under
way to mechanize these proofs using the Coq interactive theorem prover.

Our patterns can be viewed as a subset of the Contracts Specification Lan-
guage (CSL), defined in the context of the SPEEDS project [19], which is in-
tended as a pragmatic proposal for specifying contract assertions on HRC mod-
els. While the semantics for HRC is based on hybrid automata, the only auto-
matic verification tools available for CSL use a discrete time model. Therefore,
our verification tool chain provides a partial implementation for CSL (the part
concerned by timing constraints) for a dense time model. This is an important
result since more conception errors can be captured using a dense rather than a
discrete time model.

Compared to these related works, we make several contributions. We ex-
tend the specification patterns language of Dwyer et al. with two modifiers for
real-time constraints. We also address the problem of checking the validity of
a pattern on a real-time system using model-based techniques: our verification
approach is based on a set of observers, that are described in Sect. 3. Using this
approach, we reduce the problem of checking real-time properties to the problem
of checking simpler LTL properties on the composition of the system with an
observer. Another contribution is the definition of a formal framework to prove
that observers are correct and non-intrusive, meaning that they do not affect the
system under observation. This framework is useful for proving the soundness of
optimization. Due to space limitations, we concentrate on the definition of the
patterns and their semantics in this paper, while most of the theoretical results
are presented in a companion research report [2]. Finally, concerning tooling, we
offer an EMF-based meta-model for our specification patterns that allow its in-
tegration within a model-driven engineering development: our work is integrated
in a complete verification tool chain for the Fiacre modelling language and can
therefore be used in conjunction with Topcased [13], an Eclipse based toolkit for
system engineering.

6 Conclusion and Perspectives

We define a set of high-level specification patterns for expressing requirements
on systems with hard real-time constraints. Our approach eliminates the need
to rely on model checking algorithms for timed extensions of temporal logics
that—when decidable—are very complex and time-consuming. While we have
concentrated our attention on model checking—and although we only provide
an implementation for TTS models—we believe our notation is interesting in its
own right and can be reused in different contexts.

There are several directions for future works. We plan to define a compo-
sitional patterns inspired by the “denotational interpretation” used in the def-
inition of patterns. The idea is to define a lower-level pattern language, with
more composition operators, that is amenable to an automatic translation into
observers (and therefore can dispose with the need to manually prove the cor-
rectness of our interpretation). In parallel, we plan to define a new modelling
language for observers—adapted from the TTS framework—together with spe-
cific optimization techniques and easier soundness proofs. This language, which

has nearly reached completion, would be used as a new target for implementing
patterns verification.

References

1. N. Abid, S. Dal Zilio, and D. Le Botlan. A Real-Time Specification Patterns
Language. Technical Report 11364, LAAS, 2011.

2. N. Abid, S. Dal Zilio, and D. Le Botlan. Verification of Real-Time Specification
Patterns on Time Transitions Systems. Technical Report 11365, LAAS, 2011.

3. B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool tina – construction of
abstract state spaces for Petri nets and time Petri nets. International Journal of

Production Research, 42:14, 2004.
4. B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal Zilio, M. Filali, and F. Vernadat.

Formal verification of AADL specifications in the Topcased environment. In Proc.

of Ada-Europe, vol. 5570 of LNCS. Springer, 2009.
5. B. Berthomieu, J.-P. Bodeveix, C. Chaudet, S. Dal Zilio, P. Dissaux, M. Filali,

S. Heim, P. Gaufillet and F. Vernadat. Formal Verification of AADL models with
Fiacre and Tina. In Proc. of ERTSS 2010–5th International Congress and Exhibi-

tion on Embedded Real-Time Software and Systems, 2010.
6. B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet,

F. Lang, and F. Vernadat. Fiacre: an Intermediate Language for Model Verifi-
cation in the Topcased Environment. In Proc. of ERTS, 2008.

7. D. Bianculli and C. Ghezzi and C. Pautasso and P. Senti. Specification Patterns
from Research to Industry: a Case Study in Service-based Applications. In the

34th International Conference on Software Engineering. IEEE, 2012.
8. J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A language framework for

expressing checkable properties of dynamic software. In SPIN Software Model

Checking Workshop, vol. 1885 of LNCS. Springer, 2000.
9. N. Guermouche, and S. DalZilio . Formal Requirement Verification for Timed

Choreographies. Technical Report HAL 578436, 2011.
10. J. S. Dong, P. Hao, S. C. Qin, J. Sun, and W. Yi. Timed automata patterns. IEEE

Transactions on Software Engineering, 52(1), 2008.
11. M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications

for finite-state verification. In Proc. of ICSE, 1999.
12. M. B. Dwyer, L. Dillon. Online Repository of Specification Patterns. At http:

//patterns.projects.cis.ksu.edu/
13. P. Farail, P. Gaufillet, A. Canals, C. Le Camus, D. Sciamma, P. Michel, X. Crégut,

and M. Pantel. The TOPCASED project: a Toolkit in Open source for Critical
Aeronautic SystEms Design. In Proc. of ERTS, 2006.

14. V. Gruhn and R. Laue. Patterns for timed property specifications. Electr. Notes

Theor. Comput. Sci., 153(2):117–133, 2006.
15. S. Konrad and B. H. C. Cheng. Real-time specification patterns. In Proc. of ICSE,

ACM, 2005.
16. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time

Syst., 2:255–299, October 1990.
17. P. M. Merlin. A study of the recoverability of computing systems. PhD thesis, 1974.
18. J. Ouaknine and J. Worrell. On the decidability and complexity of metric temporal

logic over finite words. In Logical Methods in Computer Science, vol. 3, 2007.
19. V. Gafni. Contract Specification Language (CSL). In Speeds D2.5.4–Speculative

and Exploratory Design in Systems Engineering, 2008.

