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MODEL ADAPTATION FOR HYPERBOLIC SYSTEMS

WITH RELAXATION

H. MATHIS, C. CANCÈS, E. GODLEWSKI, N. SEGUIN

Abstract. In numerous applications, a hierarchy of models is available to de-

scribe the phenomenon under consideration. We focus in this work on general

hyperbolic systems with stiff relaxation source terms together with the corre-
sponding hyperbolic equilibrium systems. The goal is to determine the regions

of the computational domain where the relaxation model (so-called fine model)

can be replaced by the equilibrium model (so-called coarse model), in order to
simplify the computation while keeping the global numerical accuracy. With

this goal in mind, a numerical indicator which measures the difference between
the solutions of both models is developed, using a numerical Chapman-Enskog

expansion. The reliability of the adaptation procedure is assessed on various

test cases coming from two-phase flow modeling.

Key-words. Hyperbolic system, finite volume methods, relaxation, model adap-
tation, Chapman-Enskog expansion, two-phase flows.
Mathematics Subject Classification. 35L45, 65M08, 65M55, 35C20, 76T10

1. Introduction

Interface coupling of existing numerical codes. The problem we address en-
ters in the framework of modeling of complex flows arising in industry. The phe-
nomena we consider imply that we have to handle different scales both in time and
space. It leads to the use of a hierarchy of models which differ according to these
scales. As an example, one may think about water circuits in pressurized water
reactors (PWR). It is clear that a complex model of phase transition has to be used
in the steam generator or in the condenser while simpler models are sufficient to
describe the flow in most parts of the pipes. Besides, in the case of loss-of-coolant
accident, only much more accurate models should be able to describe these highly
heterogeneous flows.

A direct consequence of the use of different models and numerical codes in disjoint
parts of the computational domain is the development of theoretical and numer-
ical techniques of coupling. The coupling has to be non intrusive because of the
complexity of the codes under study, leading to methods which only make use of
boundary conditions. This has been the subject of a series of works where several
methods of coupling have been proposed for hyperbolic systems of partial differ-
ential equations [28, 27, 5, 4, 8, 16, 7, 6, 25, 13]. In all these works, the interface
of coupling which separates two different models is fixed. Since the models are
different, there is not a consensual way of coupling, it depends on conservation and
continuity principles which may be in contradiction (see for instance the examples
in [7, 5]). As a consequence, the results vary according to the method of coupling
and the more the flux is disturbed at the coupling interface, the greater is the sen-
sibility to the coupling method. In order to avoid the dependence of the results
on the interface coupling, it is natural to locate it where its impact is the most
reduced.
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Optimization of the position of the interface. We aim at providing new tools
to optimize the location of the interfaces, following the preliminary work [43]. The
context is the following: assume that the overall flow can be fully described by an
accurate model, the so-called fine model, which involves small scales. We aim at
detecting the regions of the computational domain where this fine model can be
replaced by a reduced one, the so-called coarse model, without deteriorating the
accuracy of the results. This model can be obtained by setting the small scales
to zero in the fine model. The whole procedure relies on the computation of a
(numerical) indicator, depending on time, that allows to perform the cutting of the
computational domain into fine and coarse sub-domains. Such an indicator has to
measure the difference between the solutions of the fine model and of the coarse
model. Therefore, being given a threshold, it suffices to check whether the indicator
is less than this threshold or not. In the first case, this means that replacing the
fine model by the coarse model is possible, without introducing too much error. In
the latter case, we continue to use the fine model.

Of course, the development of such an indicator depends on the models under
investigation. As mentioned above, we aim at applying our method to compressible
models of two-phase flows. Due to their complexity of the underlying PDE’s, see
for instance [34, 22], we are not able to derive robust and guaranteed criteria to
position the interface(s).

Nonlinear systems of balance laws and hyperbolic relaxation. We focus in
this paper on hyperbolic systems with relaxation. The fine model basically takes
the form

(1) ∂tW +

d∑
α=1

∂αFα(W ) =
1

ε
R(W ),

with the initial condition W (0, x) = W0(x), which governs the evolution of the
state vector W (x, t) : Rd × R+ → Ω. System (1) is the so-called fine model.
Following the pioneer works on hyperbolic systems with stiff relaxation [42, 17, 50],
we assume that there exists a linear operator P1 : Rn → Rk of rank k < n such
that P1R(W ) = 0 for all W . In other words, if we denote u = P1W , system (1)
includes k independent conservation laws

∂tu+

d∑
α=1

∂αP1Fα(W ) = 0.

We also assume that the equilibrium R(W ) = 0 can be parameterized in terms of
u, that is to say there exists M : Rk → Rn such that for all u we have R(M(u)) = 0.
This leads to the definition of the equilibrium system

(2) ∂tu+

d∑
α=1

∂αP1Fα(M(u)) = 0.

This is the so-called coarse model. Additional assumptions ensure that the solutions
of the fine model tend to solutions of the coarse model when ε→ 0, see for instance
[42, 17, 50, 49], or in other words, that the leading order of the solutions of the fine
model (1) is governed by the coarse model (2).

As mentioned above, we aim at defining an indicator which measures the differ-
ence between the solution W of the fine model (1) and the solution u of the coarse
model (2). The main tool we use is based on the classical first-order Chapman-
Enskog expansion

(3) W = M(P1W ) + εW1
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which provides a representation formula of the first order term W1. As a result, for
some norm to be precised, ‖εW1‖ appears to be the right quantity for estimating
the difference between the fine model and the coarse model. At the numerical
level, the same method can be applied. On the basis of classical Finite Volume
schemes for the fine model (1), we perform a numerical Chapman-Enskog expansion
which provides the numerical counterpart of ‖εW1‖. Note that, since the source
term in (1) is approximated in an implicit way, the computation of the numerical
indicator ‖εW1‖ does not require to solve (1). Other indicators could be derived
from error estimates provided for instance in [49] between general balance laws
and their equilibrium counterpart and in [38] in a more academic case but also
accounting for the error due to the interface coupling. Such ideas will be used in
some forthcoming works.

Application to dynamical model adaptation. Let us now come back to our
original problem of coupling two models through a thin interface. If we have such
an indicator at our disposal, we may think that we are able to efficiently guess the
position of the interface. In order to assess the relevance of our indicator, we insert
it in a completely adaptive algorithm which automatically selects on-the-fly the
“good” model to use. More precisely, being given a threshold θ > 0, we compare in
each cell and at each time step our local indicator with θ: if it is greater than θ, we
conclude that the difference between the two models is large, then the fine model
is locally used; otherwise, we conclude that the coarse model can be used. Thus,
at each time step, the computational domain is divided in several parts where the
fine or the coarse model is used and at each interface, the two models are coupled.
It is clear that this method is much too complex to hope any CPU time saving in
the present form but we believe that this approach is a good test to understand the
relevance of the indicator we develop here.

Comparisons with related methods. Many numerical methods exist to address
model adaptation. However, our motivations prevent us from applying standard
multiscale techniques to our problem since we are in a situation where the numerical
methods are given and cannot be modified.

In particular, asymptotic preserving schemes (let us only refer to the pioneer
works [36, 40, 31] and the reviews [37, 30]) are designed to switch from a numerical
scheme for the fine model (1) to a numerical scheme for the coarse model (2) in such
a way that consistency, stability (thus convergence) and accuracy of these numerical
schemes are achieved independently of ε. Other similar techniques belong to the
class of heterogeneous multiscale methods and micro-macro decompositions. See
for instance [1, 39, 41] and also [23, 10, 14, 29, 19, 11, 38] for related works on
coupling models with different scales.

Outline of the paper. In Section 2 we present the hyperbolic model with re-
laxation we consider. Starting from the theory of Chen, Levermore and Liu [17],
we depict the general framework of hyperbolic systems with stiff relaxation. Per-
forming a Chapman-Enskog expansion, we show that the smooth solutions of the
relaxation system solve the associated equilibrium model up to second order terms.
Thus we obtain an explicit formula of the first order term of the expansion, which is
the indicator we use thereafter to perform the adaptation algorithm. The remaining
part of this section is dedicated to the numerical schemes for the fine model and
for the coarse model.

In Section 3 is presented the algorithm of model adaptation. The first step is
the construction of the indicator. It is obtained by performing the same Chapman-
Enskog expansion as in the previous section, but on the numerical scheme. As
the coarse model is the hyperbolic limit of the fine relaxation model, we assume
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that the numerical scheme we use preserves this asymptotic property, at least for
the algorithm we provide in this section (despite this condition is not necessarily
fulfilled in the examples proposed in Section 4). This section ends with a thorough
description of the algorithm for model adaptation.

The Section 4 is dedicated to numerical illustrations of model adaptation. We
present three different applications, where we compare the numerical solutions ob-
tained using the fine model, the coarse model and the model adaptation. The first
example is a direct application of previous sections. The systems are conservative
and the entropy is strictly convex and satisfies the assumptions of [17]. The com-
patibility of the numerical scheme (asymptotic preserving property) allows us to
perform the adaptation algorithm presented in Section 3. For this example, the
convergence of the dynamically adapted numerical solution towards the numerical
solution of the fine model is observed as the threshold parameter θ for model selec-
tion tends to 0. The second example models a phase transition flow. The entropy
of the model is not strictly convex which leads to a degeneracy of the indicator for
pure phases. The last example concerns the modeling of a compressible two-phase
flow described by the Baer-Nunziato model [9]. This test case does not enter the
frame of the previous sections since the fine model is not strictly hyperbolic and
non conservative. It also involves an nonlinear source term. The coarse model is
the so-called homogeneous two-fluid model, which is composed by four conserva-
tion laws (the Euler equations endowed with a transport equation on the fraction
of volume of one phase). Here, we choose to drop the compatibility between the
two numerical schemes. Thus we provide a numerical scheme for the coarse model
that is not derived from the fine one. This implies that the numerical indicator
cannot be deduced from a Chapman-Enskog expansion on the fine scheme, we thus
provide a classical discretization of the first order term obtained in the continuous
Chapman-Enskog expansion.

Remark 1.1. In view of the numerical experiments of the last section, the reader
could be surprised that the two last models do not enter into the framework de-
veloped in the rest of the paper, i.e. in Sections 2 and 3. Actually, for the sake
of conciseness, the models and methods are presented in the standard framework
defined in reference works, as [17]. But our approach easily extends to the applica-
tions we have in mind, which come from nuclear thermohydraulics, which lead to
quite complex systems (non conservative, non convex entropy...), so that they do
not fulfill the assumptions we make in Section 2.

2. Hyperbolic system with relaxation

2.1. Algebraic structure of relaxation. We consider the system of hyperbolic
equations with relaxation terms

(4) ∂tW +

d∑
α=1

∂αFα(W ) =
1

ε
R(W ),

with the initial condition W (0, x) = W0(x). The state vector W (x, t) : Rd×R+ → Ω
belongs to the convex set Ω ⊂ Rn of admissible states. The flux and the source
term Fα, R : Rn → Rn, α = 1, . . . , d are supposed to be smooth. System (4) will
be refereed in the sequel as the fine model.

We place ourselves inside the theoretical framework of Chen, Levermore and Liu
[17]. There exists a linear operator P1 : Rn → Rk of rank k, 1 ≤ k < n, such that

P1R(W ) = 0, ∀W ∈ Ω.
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The operator P1 defines k conserved quantities u = P1W that satisfy

∂tu+

d∑
α=1

∂αP1Fα(W ) = 0.

There also exists another linear operator P2 : Rn → Rn−k of rank n− k such that

the operator P =

(
P1

P2

)
is nonsingular. Defining ∀W ∈ Ω

f1(P1W,P2W ) = P1F (W ), f2(P1W,P2W ) = P2F (W ),

r(P1W,P2W ) = P2RF (W ),

and setting v = P2W we can rewrite the system (4) as

∂tu+

d∑
α=1

∂αf1,α(u, v) = 0,(5)

∂tv +

d∑
α=1

∂αf2,α(u, v) =
1

ε
r(u, v).(6)

The solutions of R(W ) = 0 are called equilibrium Maxwellians. The manifold of
Maxwellians M = {W ∈ Ω | R(W ) = 0} is parameterized in terms of the k con-
served quantities u = P1W and we can define a mapping M : P1Ω→M such that
u uniquely determines a local equilibrium value Weq = M(u) ∈M and P1M(u) = u
for all u ∈ Rk. Let us also introduce the smooth map veq : P1Ω→ P2Ω defined by
veq(u) = P2M(u). Then r(u, veq(u)) = 0, ∀u ∈ P1Ω. Furthermore we assume that
the mapping

(7) v 7−→ r(u, v)

is invertible on a neighborhood of veq(u).
When ε is small with respect to the characteristic variables of the system (4),

the dynamics are asymptotically described by the so-called equilibrium system of
conservation laws

∂tP1W +

d∑
α=1

∂αP1Fα(M(P1W )) = 0,

that can also be written

(8) ∂tu+

d∑
α=1

∂αf1,α(u, veq(u)) = 0.

System (8) corresponds to what we call coarse model.
Assume now that the relaxation system (4) is endowed with a convex entropy

Φ : Ω→ R satisfying:

(i) ∂WWΦ(W )∂WF (W ) · ξ is symmetric ∀W ∈ Ω and ξ ∈ Rd,
(ii) ∂WΦ(W )R(W )≤0, ∀W ∈ Ω.

The condition (i) is the classical Lax condition for hyperbolic conservation laws. It
ensures the existence of an entropy flux Ψ : Ω→ Rd such that

(9) ∂WΦ(W )∂WF (W ) = ∂WΨ(W ), ∀W ∈ Ω.

Every classical solution of (4) satisfies

(10) ∂tΦ(W ) +

d∑
α=1

∂αΨα(W ) =
1

ε
∂WΦ(W ) ·R(W ),
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and the second condition (ii) implies that the relaxation system is entropy dissipa-
tive since the right-hand side of (10) is non-positive. Besides the restriction of the
entropy pair (Φ,Ψ) on the equilibrium manifold M

φ(u) := Φ(M(u)), ψ(u) := Ψ(M(u)),

gives an entropy pair (φ, ψ) for the system (8), so that the equilibrium system is
hyperbolic (see [17] for a detailed proof).

2.2. Chapman-Enskog expansion and dissipation. We now focus on the relax-
ation system (5-6). Let us recall the classical result based on the Chapman-Enskog
expansion.

Proposition 2.1. Up to ε2 terms, the smooth solutions of the relaxation system
(5-6) formally satisfy

∂tu+

d∑
α=1

∂αf1,α(u, veq(u)) = −ε

(
d∑

α=1

∂α∇vf1,α(u, veq(u))

)
v1,(11)

v = veq(u) + εv1,(12)

where

(13)

v1 =
(
∇vr(u, veq(u))

)−1
[ d∑
α=1

∂αf2,α(u, veq(u))

−∇veq(u)T
d∑

α=1

∂αf1,α(u, veq(u))

]
.

Proof. Let us consider the Chapman-Enskog expansion

vε = veq(u) + εv1 +O(ε2).

Plugging it into (5-6) leads to

∂tu+

d∑
α=1

∂αf1,α(u, veq(u)) = −ε

(
d∑

α=1

∂α∇vf1,α(u, veq(u))

)
v1 +O(ε2),

∂tveq(u) +

d∑
α=1

∂αf2,α(u, veq(u)) = −∇vr(u, veq(u))v1 +O(ε).

The first system of equations is exactly (11) up to ε2 terms. If we multiply it
by ∇veq(u)T and combine it with the second system of equation, we obtain the
expression of the first order correction term v1 (13). �

Note that the first order term v1 is merely an explicit function of u.
The system (11-13) is a closed system of order 2 which can be seen as an interme-

diate model between the fine model (5-6) and the equilibrium model (8): formally,
smooth solutions of (11-13) solve (5-6) up to ε2 and, on the other hand, when ε
tends to 0 one recovers the equilibrium model (8).

For stability reasons, one may expect that the second order term in (11-13) is
dissipative. Note that this hypothesis is not verified without further assumptions,
but following [12] and [17], the existence of a uniformly convex entropy satisfying
(i) and (ii) implies that the second order correction term of (11-13) is dissipative
(this is the so-called sub-characteristic condition).

Remark 2.1. Let us recall that the Chapman-Enskog expansion fails to be true
near discontinuities, the above calculus being valid only for smooth solutions.
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2.3. Numerical scheme. We now detail the scheme associated with the fine model
(5-6).

Let us consider a mesh Th of the computational domain D ⊂ Rd made of cells
K, that are polygonal disjoint open subsets. If K and L are two neighboring
cells (in the sequel we will use the notation L ∈ N (K)) their common face is
denoted eKL = K ∩ L and nKL is the outgoing unit normal to K. The notations
|K| and |eKL| refer to the volume of the cell K and the surface of the edge eKL
respectively. We denote ∆t the time step and the sequence of time steps (tn)n such
that tn+1 = tn + ∆t, ∀n ∈ N. We define the approximation of the initial data by

W 0
K =

∫
K

W0(x)dx.

The finite volume formulation is obtained integrating the system (5-6) on the space-
time domain [tn, tn+1] ×K and we introduce the two numerical fluxes F1 and F2,
respectively consistent with the fluxes f1 and f2 in (5-6). The relaxation system is
approximated using a splitting strategy between the convective part and the source
term. Suppose the approximation Wn

K , ∀K ∈ Th, is known at time tn and let us
introduce the notation ZnK = (unk , v

n
K)T = PWn

K . For simplicity, the numerical
schemes is expressed in terms of ZnK instead of Wn

K . In a first step, from tn to an
intermediate time tn+1,−, the convective part is approximated by

un+1,−
K = unK −

∆t

|K|
∑

L∈N (K)

|eKL|F1(ZnK , Z
n
L, nKL),(14)

vn+1,−
K = vnK −

∆t

|K|
∑

L∈N (K)

|eKL|F2(ZnK , Z
n
L, nKL).(15)

Then the value Zn+1,−
K is taken as the initial data for solving the source term:

un+1
K = un+1,−

K ,(16)

vn+1
K = vn+1,−

K +
∆t

ε
r(un+1

K , vn+1
K ).(17)

The classical implicit Euler scheme is chosen in order to ensure the unconditional
stability of the second step. The key-point here is to assume that all the difficulty
of this method is due to this implicit part, so that the underlying resolution may
be costly and complex. For instance, alternative methods can be found in [24], and
in [21] for high order time discretizations.

One may easily deduce a numerical scheme for the coarse model (8). Let us
denote Zneq,K = PM(unK) = (unK , veq(u

n
K)). The first step remains unchanged with

ZnK = Zneq,K plugged into (14). The second step reduces to take v at equilibrium.
The resulting numerical scheme is simply

un+1
K = unK −

∆t

|K|
∑

L∈N (K)

|eKL|F1(Zneq,K , Z
n
eq,L, nKL),(18)

vn+1
K = veq(u

n+1
K ).(19)

The use of this numerical scheme avoids any computation of v: (15) is not used
and the stiff source term has not to be solved (17).

In practice, the numerical scheme for the coarse model (8) can be different (see
Section 4). Nonetheless, requiring the above compatibility between the two numer-
ical schemes enables us to define the adaptation algorithm in a simpler way.
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3. Model adaptation

As mentioned previously the problematic we are interested in is to guess where
the fine model can be replaced by the coarse model.

The cutting of the computational domain into a fine and a coarse sub-domain
relies on the use of an indicator. The computation of this indicator is described in
this section. It corresponds to a discretization of the first order correction term v1

resulting from the Chapman-Enskog expansion (see Section 2.2, proposition 2.1).
This indicator allows us to realize the dynamical cutting of the space and time
computational domain.

At the end of this section, we precise the adaptation algorithm based on the
coupling of the relaxation model and of the equilibrium one at each sub-domain
interfaces.

3.1. General ideas. At each time step, the strategy is to detect the sub-domain
(non necessarily connected) where the fine model can be replaced by the coarse one.
Let Df (t) (resp. Dc(t)) be the sub-domain where the fine model (resp. the coarse
model) has to be solved. We impose that the sub-partitions do not intersect:

Df (t) ∪ Dc(t) = D, Df (t) ∩ Dc(t) = ∅.

At the interfaces between the sub-domains Df (t)∩Dc(t) a coupling strategy has to
be applied.

The computation of the indicator is based on the Chapman-Enskog expansion
described in Proposition 2.1. We make the assumption that the difference between
the solution of the fine model (5-6) and the solution of the coarse model (8) can be
measured by some norm of εv1, defined by (12-13). Therefore, if ‖εv1‖ is less than
a given threshold, then the coarse model is solved and if ‖εv1‖ is larger, the fine
model is solved.

It is well-known that the Chapman-Enskog expansion is only valid for smooth
solutions and in the neighborhood of the equilibrium manifoldM. here, we suppose
that when the solution becomes discontinuous or far from M, the indicator ‖εv1‖
blows up. In these two cases, the model to solve is clearly the fine model.

A tolerance θ being given, the partitioning procedure reads as follow:

• The region where ‖εv1‖ ≤ θ is chosen to be Dc(t). In that domain the
error between the equilibrium model and the relaxed one is assumed to be
negligible, so that the coarse model (8) is applied.
• The domain Df (t) corresponds to the region where ‖εv1‖ > θ and the

relaxation model (5-6) is solved inside.
• At the interfaces separating the sub-domains Dc(t) and Df (t), a numerical

coupling method, like the ones developed in [7, 15], is used.

Remind that the indicator εv1 only depends on u (see (13)). Thus it is known on
the whole domain, because u is solved in the fine and the coarse model.

3.2. Numerical indicator. Let us now build the numerical indicator. To do so, we
use the Chapman-Enskog expansion at the discrete level on the numerical scheme
(14-17).

Proposition 3.1. Let us consider the numerical scheme (14-17). Then, up to ε2

terms, one has

(20) vn+1
K = veq(u

n+1
K ) + εvn+1

1,K ,



MODEL ADAPTATION FOR HYPERBOLIC SYSTEMS WITH RELAXATION 9

where

(21)
vn+1

1,K =
(
∇vr(un+1

K , veq(u
n+1
K ))

)−1 1

|K|
∑

L∈N (K)

|eKL|{
F2(Zneq,K , Z

n
eq,L, nKL) +∇veq(u)TF1(Zneq,K , Z

n
eq,L, nKL)

}
,

with Zneq,K = PM(unK) = (unK , veq(u
n
K))T and u satisfying

∇veq(u)T (un+1 − un) = veq(u
n+1)− veq(un).

The term vn+1
1,K is a first order approximation of v1 at time tn+1 in cell K.

Proof. We plug the ansatz (20) in the numerical scheme (14-17) and, noting Zn1,K =

(0Rk , v
n
1,K)T for all K ∈ Th, we obtain

(22)

un+1
K = unK +

∆t

|K|
∑

L∈N (K)

|eKL|
[
F1(Zneq,K , Z

n
eq,L, nKL)

+ ε
(
∇1F1(Zneq,K , Z

n
eq,L, nKL)

)T
Zn1,K

+ ε
(
∇2F1(Zneq,K , Z

n
eq,L, nKL)

)T
Zn1,L

]
+O(ε2),

where ∇βF1(Z1, Z2, n), β = 1, 2, is the partial derivative of F1 with respect to Zβ .
We also obtain

(23)

veq(u
n+1
K ) = veq(u

n
K) +

∆t

|K|
∑

L∈N (K)

|eKL|F2(Zneq,K , Z
n
eq,L, nKL)

+ ∆t
(
∇vr(un+1

K , veq(u
n+1
K ))

)T
vn+1

1,K +O(ε).

Since veq is smooth, there exists u(., .) such that:[
∇veq

(
u(un, un+1)

)]T
(un+1 − un) = veq(u

n+1)− veq(un).

Multiplying (22) by
[
∇veq(u(unK , u

n+1
K ))

]T
and dropping terms of order ε leads to

veq(u
n+1
K ) = veq(u

n
K)− ∆t

|K|
∇veq(u)T

∑
L∈N (K)

|eKL|F1(Zneq,K , Z
n
eq,L, nKL).

Combining with (23) and dropping terms of order ε provides (21). Using the con-
sistency of the numerical fluxes, it is easy to check that (21) is a consistent approx-
imation of the continuous formula (13). �

Note that replacing the terms vn1,K and vn1,L into (22) using the expression (21)

could allow us to determine the discrete counterpart of the parabolic system (11).
Moreover, one can check that, as at the continuous level, the zeroth order part of
(22) exactly is the coarse scheme (18-19).

In practice, the terms ∇veq(u(unK , u
n+1
K )) and (∇vr(un+1

K , veq(u
n+1
K )))−1 are re-

spectively approximated by ∇veq(unK) and (∇vr(unK , veq(unK)))−1 to make the com-
putation of the indicator fully explicit.

We deduce the following indicator:

(24)
En+1
K :=ε (∇vr(unK , veq(unK)))

−1 1

|K|
∑

L∈N (K)

|eKL|[
F2(Zneq,K , Z

n
eq,L, nKL) +∇veq(unK)TF1(Zneq,K , Z

n
eq,L, nKL)

]
.

This provides an indicator of the difference of the solutions given by the two schemes
at time tn+1, as an explicit function of the discrete solution (unK), ∀K ∈ Th, (at
time tn) that is known within the whole computational domain.
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3.3. Adapted model and coupling. In order to simplify the algorithm, the
model adaptation is performed at each time step tn. Assume that the subdivi-
sion of the computational domain into Df (tn) × (tn, tn+1) and Dc(tn) × (tn, tn+1)
is known. The adapted model is the following coupling problem ∀n ∈ N:

(4) solved in Df (tn)× (tn, tn+1),

(8) solved in Dc(tn)× (tn, tn+1),

coupling conditions in Df (tn) ∩ Dc(tn)× (tn, tn+1).

Several coupling conditions can be considered. In the following we favor state
coupling [15, 7]. Let K be a cell belonging to the fine domain Df (tn) and L
its neighbor belonging to the coarse domain Dc(tn). Then at the edge eKL, we
impose (unL, veq(u

n
L)) as Dirichlet boundary condition for the fine model and unK as

Dirichlet boundary condition for the coarse model: if K ∈ Df (tn) and L ∈ Dc(tn),
the numerical fluxes are

(C1)
(
F1(ZnK , Z

n
eq,L, nKL), F2(ZnK , Z

n
eq,L, nKL)

)
for the computation of Zn+1,−

K by

the fine scheme (14-15),
(C2) F1(Zneq,L, Z

n
eq,K , nLK) for the computation of Zn+1

L by the coarse scheme (18),
written on cell L.

This amounts to impose the continuity of u and v = veq(u) through the coupling
interface.

Remark 3.1. One may impose other coupling constraints. For instance the equa-
tion on u being solved everywhere, one may impose the continuity of the flux f1

through the interface eKL. This strategy of flux coupling is not tested here but may
have special interest in some cases (see for instance Section 4). However at the
interface the fine and the coarse models are mostly equivalent, the fine model be-
ing close to equilibrium, thus all the coupling strategies may be supposed to provide
similar results.

3.4. Adaptation algorithm. We now detail the general algorithm of the dynam-
ical coupling between the fine and the coarse models. Let Wn

K be the solution in
the cell K known at time tn to be updated to time tn+1. The algorithm reads as
follows:

A) For all cell K ∈ Th, compute the numerical error En+1
K given by (24)

B) For all cell K ∈ Th, if [|En+1
K | > θ] then

- K ∈ Df (tn)
Else

- K ∈ Dc(tn)

C) At this stage, Df (tn) ∪ Dc(tn) = D.
For all cell K ∈ Th:

- If [K ∈ Df (tn) and ∀L ∈ N (K), L ∈ Df (tn)]

- Compute Wn+1
K using the numerical scheme (14-17).

- If [K ∈ Dc(tn) and ∀L ∈ N (K), L ∈ Dc(tn)]
- Compute Wn+1

K using the numerical scheme (18-19).
- Else

- Compute Wn+1
K using the state coupling method (C1-C2).

4. Numerical applications

We provide in this section some numerical examples to illustrate the reliability of
the indicator (24), by applying it to the algorithm for model adaptation. We make a
point of giving different models which present various pathologies. Indeed, we could
have chosen to restrict ourselves to models which strictly fulfill the assumptions we
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made. However, we prefer to address more complex systems which do not fully
enter into the framework described in the previous sections, by applying the same
ideas to problems which are more closely related to the applications we have in
mind, which come from thermohydraulics in the context of nuclear reactors.

First we consider the academic case of the Chaplygin gas model, that consists
in the barotropic Euler equations with relaxation. The simple form of the source
term allows us to exhibit a dissipative convex entropy.

Then we consider a phase transition model. In that case the entropy is no longer
strictly convex and the Chapman-Enskog expansion may not be valid. In particular,
the indicator (24) vanishes in pure phases.

Finally we address the approximation of the solutions of the compressible seven-
equation two-phase flow model. Although this model does not enter the frame of the
section 2 (non convex entropy, non-strictly hyperbolic and non conservative model,
incompatible numerical schemes for the fine and coarse models...), the adaptation
process is carried out, providing a slightly different adaptation algorithm.

4.1. Chaplygin gas model. We first consider the academic model of the Chap-
lygin gas [47]. The one-dimensional problem we address corresponds to a fluid flow
governed by the relaxation system

(25)

∂tτ − ∂xu = 0,

∂tu+ ∂xΠ = 0,

∂tT =
1

ε
(τ − T ).

This model is also derived from the works of Suliciu [48]. The state variable τ and
u stand for the specific volume and the velocity while T is a perturbed specific
volume. The extended pressure law Π is defined by

Π(τ, T ) = p(T ) + a2(T − τ),

where p follows a perfect gas law p = p(τ) = τ−γ , γ > 1.
The associated equilibrium system is obtained setting T = τ and corresponds to

the barotropic Euler equations in Lagrangian coordinates:

(26)
∂tτ − ∂xu = 0,

∂tu+ ∂xp = 0.

A convex entropy of the Suliciu system is (see [18]):

Φ(τ, u, T ) =
1

2
|u|2 +

1

1− γ
T 1−γ +

a2

2
(T 2 − τ2) + (T −γ + a2T )(τ − T ).

The entropy is strictly convex and dissipative with respect to the source term under
the so-called Whitham’s condition

a2 > max
s

(−p′(s)).

This condition also implies that the Chapman-Enskog expansion is dissipative, see
for instance [12]. We consider Rusanov numerical fluxes [44] and, using the previous
computations, we obtain the following numerical indicator

En+1
K := εTn+1

1,K =− ε 1

2∆x
(p(τnK+1) + p(τnK)− aK+1/2(unK+1 − unK)

− p(τnK)− p(τnK−1) + aK−1/2(unK − unK−1)).
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Figure 1. Density 1/τ (top) and velocity (bottom) with 200 cells
at time T = 0.5. The indicator corresponds to the characteristic
function of Df (T ).

Figure 2. Error between model (R) and the model adaptation,
w.r.t. θ: specific volume τ (left) and velocity (right)

Test case. Figure 1 presents the density and the velocity profiles for γ = 1.4 and
a = 1.5. The initial data are τL = 1, uL = 0.75, τR = 8, uR = 0 and the
discontinuity is applied at x = 0. The relaxation parameter is ε = 10−6. The
mesh contains 200 cells and threshold for the adaptation is θ = 10−6. One may
check that our method of adaptation only uses the fine model in the regions of large
variations of the solution. The results are very close to those with the fine model.
One may also note that the results of the coarse model are quite different with: less
diffusion and a different intermediate state.

In order to measure the sensitivity of the numerical results, the same test case
is performed with different values of θ. In Figure 2, the L1 norm of the difference
between the adaptation algorithm and the fine model is plotted (red curves). The
behavior is very satisfying: the error due to the adaptation tends to 0 as θ tends
to 0. Of course, the error of the adaptation algorithm is bounded by the error of
the coarse model (blue curves), which confirms that the adaptation method does
not introduce additional numerical error, which could be caused by the interface
couplings.

4.2. Phase transition model. We now address the numerical approximation of
a liquid-vapor compressible flow. Each phase, denoted β = 1 or 2, is described
by its own Equation of State (EoS) and thermodynamical quantities: ρβ denotes
the density, τβ = 1/ρβ the specific volume, eβ the internal energy. We assume
that both phases are described by a perfect gas law, such that the pressure pβ , the
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temperature Tβ and the entropy of each phase are classically given by:

pβ(ρβ , eβ) = (γβ − 1)ρβeβ ,

Tβ = eβ ,

sβ = ln
(
eβρ

γβ−1
β

)
,

where γβ > 1 stands for the polytropic exponent. We also introduce the chemical

potential gβ =
pβ
ρβ
− Tβsβ + eβ .

The density of the fluid is related to those of both phases by the following
relations

ρ = αρ1 + (1− α)ρ2,

(ρ−1 =) τ = ϕτ1 + (1− ϕ)τ2,

where α and ϕ denote respectively the volume fraction and the mass fraction of the
gaseous phase. The thermodynamical equilibrium of both phases corresponds to
the equality of pressures, temperatures and chemical potentials. It is characterized
by the following fractions at equilibrium:

ϕe(ρ) =
τ − τ∗2
τ∗1 − τ∗2

, αe(ρ) =
ρ− ρ∗2
ρ∗1 − ρ∗2

, τ∗1 =
1

ρ∗1
, τ∗2 =

1

ρ∗2
,

together with

ρ∗1 = exp(−1)

(
γ2 − 1

γ1 − 1

) γ2

γ2 − γ1 , ρ∗2 = exp(−1)

(
γ2 − 1

γ1 − 1

) γ1

γ2 − γ1 .

These two constant densities define the saturation states. The fine model we con-
sider corresponds to the Euler’s equations coupled with a transport equation of the
mass fraction (here in one dimension):

(27)

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,

∂t(ρϕ) + ∂x(ρuϕ) =
1

ε
(ϕeq(ρ)− ϕ),

where E = e + u2/2 stands for the total energy of the fluid and the complete
equilibrium mass fraction is defined by

ϕeq(ρ) =


1 if ρ ≤ ρ∗1,
ϕe(ρ) if ρ∗1 ≤ ρ ≤ ρ∗2,
0 if ρ∗2 ≤ ρ.

To close the system, we consider the EoS

p = p(ρ, e, ϕ) = (γ(ϕ)− 1)ρe,

where γ(ϕ) = γ1ϕ+ γ2(1− ϕ).

Remark 4.1. The entropy of the system is not strictly convex, as shown in [35,
33, 2, 32]. In particular, the source term in (27) vanishes when ρ 6∈ [ρ∗1, ρ

∗
2]. As a

consequence, the map (7) is not invertible and the Chapman-Enskog expansion does
not provide a dissipative system in the whole domain.

Let us now present the equilibrium model. If α = 0 (resp. α = 1) then ϕ = 0
(resp. ϕ = 1) and we directly recover the Euler equations for the pure phase. If
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Fine model (4) Coarse model (8)

Adaptation with θ = 10−6 Adaptation with θ = 10−2

Figure 3. Solution after the first interaction: mass fraction ϕ

0 < α < 1, the limit ε → 0 leads to g1 = g2: the thermodynamical equilibrium is
reached. This asymptotic defines the coarse model:

(28)

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,

where p = p(ρ, e, ϕeq(ρ)) that is

(29) p = p(ρ, e) =


(γ1 − 1)ρe if ρ ≤ ρ∗1,
(γ1 − 1)ρ∗1e if ρ∗1 ≤ ρ ≤ ρ∗2,
(γ2 − 1)ρe if ρ∗2 ≤ ρ.

To carry out the adaptation, we have to compute the indicator, which is easily
deduced from identity (13) and reads

ϕ1 = (ρϕeq)
′(ρ)∂x(ρu)− ∂x(ρuϕeq(ρ)).

The numerical schemes we use are based on the Rusanov scheme [44]. The
discrete indicator arises from formula (24), in which the numerical fluxes F1 and
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Fine model (4) Coarse model (8)

Adaptation with θ = 10−6 Adaptation with θ = 10−2

Figure 4. Solution after the first interaction: density ρ

F2 are Rusanov fluxes, which yields in 2D

En+1
K := εϕn+1

K = ε
1

2|K|
∑

L∈N (K)

|eKL| (ρnKunKϕeq(ρnK) + ρnLu
n
Lϕeq(ρ

n
L)

− aKL(ρnKu
n
K − ρnLunL)

− (ρϕeq)
′(ρnK) (ρnKu

n
K + ρnLu

n
L − aKL(ρnK − ρnL)))nKL,

where aKL = max(|uK + cK |, |uL + cL|) and cK (resp. cL) denotes the speed of
sound of the fluid in the cell K (resp. the cell L). Note that the indicator En+1

K is
not a continuous function since ϕ′eq admits discontinuities at ρ∗1 and ρ∗2.

Test case. The adaptation algorithm is tested on a 2D (weak) interaction of a
bubble with a planar shock wave. The domain is [−0.5, 0.5]2 and the pressure laws
are perfect gas equations of state with γ1 = 1.6 and γ2 = 1.5. Wall boundary
conditions are set at the top, right and bottom, while at the left boundary, a
Dirichlet condition is prescribed with

(ρ, u, v, p, ϕ)(t, x = −0.5, y) = (ρ∗2, 0.1, 0, 1, 0).

The initial data is

(ρ, u, v, p, ϕ)(0, x, y) =

{
(ρ∗2, 0, 0, 1, 0) if x2 + y2 < 10−2,

(ρ∗1, 0, 0, 1, 1) else,
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Fine model (4) Coarse model (8)

Adaptation with θ = 10−6 Adaptation with θ = 10−2

Figure 5. Solution during the second interaction: mass fraction ϕ

which corresponds to a bubble of vapor surrounded by the liquid phase. The relax-
ation time ε is equal to 1. The solution is composed by a shock wave which impacts
the bubble, rebounds on the right boundary and impacts once again the bubble.
The solution is plotted after the first interaction at t1 = 0.6 and during the second
interaction at t2 = 1.26. The mesh is composed of 5906 triangular cells and 3054
vertices. The mass fraction ϕ is depicted in Figures 3 and 5 while the density ρ
is depicted in Figures 4 and 6. In all these figures, we compare the approximate
solutions associated with

• the fine model (27),
• the coarse model (28),
• the adaptation algorithm with a threshold θ = 10−2 and
• the adaptation algorithm with a threshold θ = 10−6.

It is clear that the coarse model provides solutions very different from the fine model;
in particular, the bubble fully liquefies during the second shock-bubble interaction.
The results with θ = 10−6 are more accurate than with θ = 10−2. They are very
similar to the results of the fine model, except for the mass fraction at the second
time with θ = 10−6 (Fig. 5), where the contours of the bubble are sharper with the
adaptation algorithm. Note that, in spite of this difference, the values of ρ and ϕ
inside and outside the bubble are very similar. This behavior can be related with the
non-invertibility of the map (7), since transitions between pure phases are present
in this test case. This is confirmed by the results of Figure 8, where a saturation
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Fine model (4) Coarse model (8)

Adaptation with θ = 10−6 Adaptation with θ = 10−2

Figure 6. Solution during the second interaction: density ρ

effect occurs when θ tends to 0. Indeed, the error between the fine model and
the adaptation algorithm decreases for θ ≥ 10−4 but remains constant for smaller
values of θ. This appears for both variables ϕ and ρ and at both times. In Figure 7,
the characteristic function of the coarse domain Df is plotted for the adaptation
algorithm with θ = 10−2 and θ = 10−6, for both times t1 and t2. Surprisingly, the
results are very close, whatever the threshold θ, except for θ = 10−6 and t = t1,
where the fine model is used in the neighborhood of the right boundary.

4.3. Compressible two-phase flow. We now consider the computation of a one-
dimensional compressible two-fluid flow: each phase is considered as a single phase
separated from the other. The two phases have their own thermodynamics and
distinct velocities. Thus the balance equations can be given for both phases adding
exchange terms between the two phases through the interfaces. This model was
first proposed by Baer and Nunziato [9] and then widely studied, see for instance,
in a non exhaustive way, Abgrall and Saurel [46], Gallouët et al [26], Ambroso et
al [3], Saleh [45].

Considering our adaptation procedure for such a model is a very challenging
benchmark test because this two-fluid flow model does not enter the frame of the
previous sections. Indeed we will see that:

• The fine model is non-strictly hyperbolic and non-conservative.
• The source term is non-zero over 3 equations.
• The entropy is not strictly convex.
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Adaptation with θ = 10−6 Adaptation with θ = 10−2

Adaptation with θ = 10−6 Adaptation with θ = 10−2

Figure 7. Partition of the domain between the coarse domain
(red) and the fine domain (blue) after the first interaction (up)
and during the second interaction (down)

• The Chapman-Enskog expansion is rather complicated and requires adding
some assumptions to the system (in particular on the thermodynamics of
the two phases).
• The numerical scheme used for the coarse model is not derived from the

one of the fine model. Thus the numerical indicator is not deduced from a
Chapman-Enskog expansion applied to the numerical scheme.
• The adaptation algorithm has to be modified in order to take into account

the non-compatibility of the numerical scheme.
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Figure 8. Error between model (R) and the model adaptation,
w.r.t. θ after the first interaction (up) and during the second in-
teraction (down)

Following [20], the governing set of equations reads in 1D

(30)



∂tα1 + uI∂xα1 = λp(p1 − p2),

∂t(α1ρ1) + ∂x(α1ρ1u1) = 0,

∂t(α1ρ1u1) + ∂x(α1ρ1u
2
1 + α1p1)− pI∂xα1 = −λu(u1 − u2),

∂t(α1ρ1E1) + ∂x((α1ρ1E1 + α1p1)u1)− pIuI∂xα1

= −λT (T1 − T2)− uIλu(u1 − u2)− pIλp(p1 − p2),

∂t(α2ρ2) + ∂x(α2ρ2u2) = 0,

∂t(α2ρ2u2) + ∂x(α2ρ2u
2
2 + α2p2)− pI∂xα2 = λu(u1 − u2),

∂t(α2ρ2E2) + ∂x((α2ρ2E2 + α2p2)u2)− pIuI∂xα2

= λT (T1 − T2) + uIλu(u1 − u2) + pIλp(p1 − p2).

Here ρk, uk, pk, Ek = ek +
1

2
u2
k and Tk denote respectively the density, the velocity,

the pressure, the total energy (ek being the internal energy) and the temperature
of each phase with k = 1, 2. The volume fractions αk satisfy

α1 + α2 = 1,
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so that the two phases are immiscible. Each phase is characterized by its own EoS.
We assume for simplicity that both phases are described by perfect gas laws

pk = πk(ek, ρk) = (γk − 1)ρkek,

where γk > 1 denotes the polytropic exponent. In that case the temperatures
satisfy (after normalization Cv = 1)

Tk = Tk(ek, ρk) = ek.

The interaction between phases is described with both differential terms and re-
laxation terms arising in the mass, momentum and total energy equations. The
differential terms are non-conservative products that involve an interfacial pressure
pI and an interfacial velocity uI . These terms depict the coupled evolution of the
phases: if ∂xαk = 0 and the source terms are neglected then the two phases are
totally decoupled and each one follows the classical gas dynamics equations. A
classical choice for the interfacial pressure and velocity is

uI = u1, pI = p2.

Other interfacial closure relations can be chosen, we refer to [26] for detailed expla-
nations.

Let us rewrite the seven-equation model under a form similar to (5-6):

(31)

{
∂tU + ∂xf1(U, V ) = 0,

∂tV + ∂xf2(U, V ) + g(U, V )∂xα1 = r(U, V ),

where

U = (α1ρ1, ρ, ρu, ρE)T ,

V = (α1, α1ρ1u1, α1ρ1E1)T ,

r(U, V ) =

 λp(p1 − p2)
−λu(u1 − u2)

−λT (T1 − T2)− uIλu(u1 − u2)− pIλp(p1 − p2)

 ,

f1(U, V ) =


α1ρ1u1

ρu

ρu2 + p+
α1ρ1α2ρ2

ρ
(u1 − u2)2

(ρE + p)u+
α1ρ1α2ρ2

ρ
(u1 − u2)

(
E1 + p1

ρ1
− E2 − p2

ρ2

)
 ,

f2(U, V ) =

 0
α1ρ1u

2
1 + α1p1

(α1ρ1E1 + α1p1)u1

 ,

g(U, V ) =

 u1

−p2

−p2u1

 ,

and

(32)

ρ = α1ρ1 + α2ρ2,

ρu = α1ρ1u1 + α2ρ2u2,

ρE = α1ρ1E1 + α2ρ2E2,

p = α1p1 + α2p2.

The relaxation terms reflect the fact that the phases are not at kinematic, me-
chanical and thermodynamical equilibrium. As soon as the time-scales λp, λT and
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λu go to +∞, the source term r(U, V ) vanishes and the system reaches the equilib-
rium characterized by

(33)

p1 = p2 = p,

u1 = u2 = u,

T1 = T2 = T.

Because we consider a perfect gas mixture, the equilibrium of temperatures is equiv-
alent to

(34) e1 = e2 = e.

Thus the map Veq (such that r(U, V ) = 0 ⇔ V = Veq(U)) can be written as an
explicit function of U :

(35) Veq(U) =


(γ1 − 1)α1ρ1

(γ2 − 1)(ρ− α1ρ1) + (γ1 − 1)α1ρ1

(α1ρ1)
ρu

ρ

(α1ρ1)
ρE

ρ

 .

This asymptotic limit defines the coarse model

(36)


∂t(α1ρ1) + ∂x(α1ρ1u) = 0,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0,

∂t(ρE) + ∂x((ρE + p)u) = 0,

which corresponds to the classical Euler equations coupled with the evolution equa-
tion of the volume fraction α1.

Combining (33) and (34), we deduce that the equilibrium pressure is also a
perfect gas law p = (γ(U)− 1)ρe with

(37) γ(U)− 1 = (γ2 − 1)
ρ− α1ρ1

ρ
+ (γ1 − 1)

α1ρ1

ρ
.

We now address the approximation of the fine model (30). The approximation
of the seven-equation model has been the subject of many contributions. The nu-
merical scheme we use is adapted from [26, 3]. It consists in treating the convective
terms by the Rusanov scheme [44] that handles the non-conservative terms and the
relaxation terms by a fractional step approach. Let ZnK = (UnK , V

n
K) be the one

dimensional solution in the cell K at time tn which we want to update, until time
tn,1. The non-conservative Rusanov scheme writes

(38)
∆x
(

(Z)n,1K − (Z)nK

)
+ ∆t

(
(Ff )nK+1/2 − (Ff )nK−1/2

)
−∆t(φ)nK

(
(α1)nK+1/2 − (α1)nK−1/2

)
= 0,

where Ff =

(
f1

f2

)
, f1 and f2 being defined in (31), and

φ = (0, 0, 0, 0, u1, p2, p2u1)T ,

2(Ff )nK+1/2 = (Ff )nK + (Ff )nK+1 − rK+1/2((Z)nK+1 − (Z)nK),

rK+1/2 = max(rK , rK+1),

rK = max(|(u1)nK |, |(u1)nK |+ (c1)nK , |(u2)nK |+ (c2)nK),

2(α1)nK+1/2 = (α1)nK + (α1)nK+1.
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Here ck, k = 1, 2, denotes the speed of sound of the phase k, which reads

ck =

√
γk
pk
ρk
,

the phase k following a perfect gas law.
The second step consists in computing the source terms, separating the velocity,

the pressure and the temperature relaxations. We recall the main ideas, the whole
procedure being widely depicted in [26, 3]. Let Zn,u be the approximation of the
solution after the velocity relaxation with Zn,1 as initial condition. The velocity
relaxation only acts on the velocities uk and the total energies Ek, k = 1, 2:

∂t(α1ρ1) = ∂tρ = ∂t(ρu) = ∂t(ρE) = 0,

∂t(α1ρ1u1) = −λu(u1 − u2),

∂t(α1ρ1E1) = −λu(u1 − u2),

which is equivalent, for k = 1, 2, to

αkρk∂tuk = (−1)kλu(u1 − u2),

αkρk
∂ek
∂pk

∂pk
∂t

= (−1)kλuu1(u1 − u2).

Applying the implicit Euler method to approximate the previous ordinary dif-
ferential equations leads to the following approximation of the state vector in the
cell K between time tn,1 and tn,u

(αk)n,uK = (αk)n,1K ,

(αkρk)n,uK = (αkρk)n,1K ,

(uk)n,uK =
((αlρl)

n,1
K + λu∆t)(αkρkuk)n,1K + λu∆t(αlρlul)

n,1
K

(α1ρ1)n,1K (α2ρ2)n,1K + ρn,1K λu∆t

(p1)n,uK = (p1)n,1K ,

(p2)n,uK = (p2)n,1K +
λu∆t

(γ2 − 1)(α2)n,1K

((u1)n,uK − (u2)n,uK )2.

The pressure relaxation term is now taken into account. From time tn,u to time
tn,p the solution is computed by solving the following ODE system

∂t(α1ρ1) = ∂t(α1ρ1u1) = 0,

∂tρ = ∂t(ρu) = ∂t(ρE) = 0,

∂tα1 = λp(p1 − p2),

α1ρ1∂tE1 = −p2λp(p1 − p2).

Following [26, 3] we use an explicit form of λp

λp =
1

λ̄p

α1α2

p1 + p2
,

where λ̄p is constant.
Integrating the equations on the total energies gives

(pk − pl)(t) = (pk − pl)n,u exp

(
−λp

∫ t

0

(Ak −Al) (τ)dτ

)
,

(p1p2)(t) = (p1p2)n,u exp

(
−λp

∫ t

0

(
A1

p1
(p1 − p2) +

A2

p2
(p2 − p1)

)
(τ)dτ

)
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with Ak =
∂pk
∂ρk

ρk
αk
− ∂pk
∂ek

p2

αkρk
. Then multiplying the mass fraction equation by

1
α1α2

and integrating leads to(
α1

1− α1

)
(t) =

(
α1

1− α1

)n,u
exp

(
1

λ̄p

∫ t

0

(
p1 − p2

p1 + p2

)
(τ)dτ

)
.

Finally we address the relaxation in temperature and solve the ODE system
below between tn,p and tn+1

∂tα1 = ∂t(α1ρ1) = ∂t(α1ρ1u1) = 0,

∂tρ = ∂t(ρu) = ∂t(ρE) = 0,

α1ρ1∂tE1 = −λT (T1 − T2).

The two phases follow a perfect gas law so that Tk = ek, k = 1, 2. Thus the
previous equations are equivalent to

αkρk∂tek = (−1)kλT (ek − el), k 6= l.

These ordinary differential equations are approximated by

(ek)n+1
K =

((αlρl)
n,p
K + λT∆t)(αkρkek)n,pK + λT∆t(αlρlel)

n,p
K

(α1ρ1)n,pK (α2ρ2)n,pK + λT∆tρn,pK
,

for k 6= l.

Remark 4.2. Note that this strategy preserves the positivity of the pressure pk, the
temperature Tk and the maximum principle on the mass fraction αk ∈ [0, 1].

In Section 3 the numerical scheme of the coarse model was deduced from the
one of the fine model using the asymptotic preserving property of the fine scheme.
In the present case the coarse model has only four equations and is conservative
contrary to the fine model. The idea is to use a completely different numerical
scheme to approximate the coarse model (36). In the following we consider the
classical Rusanov [44] scheme for the approximation of the coarse model. Let UnK
be the one dimensional solution in the cell K at time tn to be advanced at time
tn+1. The finite volume scheme for the coarse model (35) is

(39) ∆x
(
(U)n+1

K − (U)nK
)

+ ∆t
(

(Fc)
n
K+1/2 − (Fc)

n
K−1/2

)
= 0,

together with

Fc =


α1ρ1u1

ρu
ρu2 + p

(ρE + p)u

 ,

and

(40)

2(Fc)
n
K+1/2 = (Fc)

n
K + (Fc)

n
K+1 − sK+1/2((U)nK+1 − (U)nK),

sK+1/2 = max(sK , sK+1),

sK = max(|(u)nK |, |(u)nK |+ (c)nK),

where c =
√
γp/ρ denotes the speed of sound of the fluid.

The adaptation algorithm relies on the numerical indicator. In section 3, it is
deduced via a discrete Chapman-Enskog expansion. Here the complexity of the fine
scheme prevents such computations.

To overcome the problem we propose to use a result of [20]. The author per-
formed the Chapman-Enskog expansion on a two-phase model close to (30). Let us
recall the result, detailed calculus being given therein.
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Proposition 4.1. Assume that the relaxation process has only one time scale:
λu = λp = λT = 1

ε , ε > 0 fixed. Up to ε2 terms, the smooth solutions of (30)
satisfy

(41)

∂t(α1ρ1) + ∂x(α1ρ1u) = ε∂xA,

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = ε∂xB,

∂t(ρE) + ∂x ((ρE + p)u) = ε∂xC,

where, defining Yk =
αkρk
ρ

,

(42)

A = ρ(Y1)2Y2

(
ρ

ρ1
− 1

)
∂xp,

B = e(Y1 − Y2)2∂xu,

C = ρeY1Y2∂xp

(
γ1Y1

(
ρ

ρ1
− 1

)
+ γ2Y2

(
ρ

ρ2
− 1

))
+ uB.

Note that the non-conservative terms p2∂xαk, p2u1∂xαk and the temperature
relaxation term are mandatory to compute the Chapman-Enskog expansion. More-
over the first order terms in ε are explicit functions of U .

Then we propose to directly use the L1-norm of a discrete approximation of the
corrector of first order in ε (42) as the numerical indicator (without using the fine
numerical scheme as it is done in Section 3). The numerical indicator thus reads

(43) En+1
K := ε(|AnK |+ |Bnk |+ |CnK |),

together with

AnK = ρnK((Y1)nK)2(Y2)nK

(
(α1)nK
(Y1)nK

− 1

)
pnK+1 − pnK

∆x
,

BnK = enK
unK+1 − unK

∆x
((Y1)nK − (Y2)nK)2,

CnK = ρnKe
n
K(Y1)nK(Y2)nK

pnK+1 − pnK
∆x

ΓnK + unKB
n
K ,

where

ΓnK = γ1(Y1)nK

(
(α1)nK
(Y1)nK

− 1

)
+ γ2(Y2)nK

(
(α2)nK
(Y2)nK

− 1

)
.

Note that the indicator is written in terms of the vector ZnK only, which is fully

known in the whole computational domain, so that we can write En+1
K = E(P1Z

n
K).

We now address the adaptation algorithm. Because the coarse scheme is not
derived from the fine scheme, the adaptation algorithm has to be modified.

We recall that P1 is the linear operator such that P1Z = U and M is the map
such that M(U) belongs to the equilibrium manifold M (see Section 2.1). Let
ZnK = (UnK , V

n
K) be the solution in the cell K known at time tn which we want to

update, until time tn+1. Let BnK be the balance of fluxes in the cell K at time tn.
The 1D adaptation algorithm reads as follows:

A) For all cell K, compute the numerical error En+1
K given by (43).

B) For all cell K, if [En+1
K > θ] then

- K ∈ Df (tn)
Else

- K ∈ Dc(tn).

C) At this stage, Df (tn) ∪ Dc(tn) = D (= R).
For all interface K + 1/2

- If [K ∈ Dc(tn) and ∀L ∈ N (K), L ∈ Dc(tn)]
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- Compute (Fc)
n
K+1/2 using the numerical scheme (40).

Update the balance

BnK ← BnK + (Fc)
n
K+1/2

BnK+1 ← BnK+1 − (Fc)
n
K+1/2

- Else
- Compute (Ff )nK+1/2 using the numerical scheme (38).

Update the balance

BnK ← BnK + (Ff )nK+1/2

BnK+1 ← BnK+1 − (Ff )nK+1/2

D) For all cell K
• If K ∈ Df

– Zn+1
K = ZnK −

∆t

∆x
BnK

– Solve the source term
• else

– Zn+1
K = M

(
P1

(
ZnK −

∆t

∆x
BnK
))

Test case. We apply this algorithm in the case of the evolution of a two-phase flow
in a duct of uniform section and 7m length. The simulation is performed on 1000
cells. The two phases are depicted by a perfect gas law with γ1 = γ2 = 1.4. The
flow is initially at equilibrium, the initial conditions are α1 = 0.9, u1 = u2 = 5,
p1 = p2 = 105, ρ1 = ρ2 = 1. A inlet Dirichlet boundary condition is applied on the
left side using the initial condition except that p1 = 1.005× 105 and the relaxation
parameters are λu = λp = λT = ε−1 = 104. A outlet Neumann boundary condition
is applied on the right side. These boundary conditions are taken into account using
the classical ghost cell method. Finally, the adaptation parameter is θ = 10−1.

This test case allows us to study the asymptotic behavior of the two-phase model.
Due to the relaxation terms in the fine model, the relative quantities tend to zero
as x increases, leading to a boundary layer on the left. It is worth noting that only
the boundary relative pressure is non-zero but the boundary layer also appears for
the relative velocity and for the relative temperature. As far as the coarse model is
concerned, no relative quantity can be measured and the non equilibrium boundary
remains inactive. Figures 9 present the shapes of the relative pressure, velocity and
temperature at time t = 0.2. One can easily see that the boundary layer is well
solved by the fine model and that the relative quantities rapidly tend to 0. In all
these cases, the adaptation algorithm provides results which are superposed on the
results of the fine model.

Figure 10 presents the evolution of the repartition of the fine and the coarse cells
of the adaptation algorithm with respect to time. We can observe that the fine
model is mostly applied in the region which corresponds to the boundary layer. A
fast right moving set of “fine” cells first appears. It is caused by the formation of
the boundary layers, letting small perturbations propagate. After, the domain is
split into about two parts: the fine model is used at the left, near the boundary
layer, and the coarse model is used at the right. One could expect that, after a long
time, the position of the coupling interface should be constant, corresponding to the
establishment of the stationary state, but such a behavior has not been observed
with the parameters we used.
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Figure 9. Relative velocity (top), relative pressure (middle), rel-
ative temperature (zoom, bottom).
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Figure 10. Evolution of the indicator (characteristic function of
Df (T )) : repartition of the fine and coarse models in time as a
function of x (red: fine model, cyan: coarse model).

5. Conclusion

We propose an original model adaptation algorithm which is rigorously estab-
lished when applied to hyperbolic systems with relaxation coupled with their as-
ymptotic hyperbolic limit model. Due to the applications under investigation, we
are not allowed to modify the numerical schemes for computing both models, which
prevents us from using either classical asymptotic preserving schemes on the whole
domain or sophisticated micro-macro decompositions. Our method is relies on a
numerical Chapman-Enskog expansion, the first order term being used to indicate
what model can be selected.

Mainly three test cases are presented in order to assess the relevance of the indi-
cator, in the context of dynamical model adaptation. When the model completely
fits the classical assumptions on hyperbolic systems with relaxation, our strategy
provides very satisfying results. The use of the coarse model only coincides with
the strong variations of the solution. The two other test cases are much more chal-
lenging since they do not fully enter in the initial framework. But here again, the
indicator allows an accurate dynamical partition of the domain and the adapta-
tion algorithm provides in most cases very close results to the reference solution
of the fine model. However, let us recall that, at least in this work, our foremost
interest concerns the development of an indicator to determine what model is the
more relevant, and not to construct a multiscale method to save CPU time. This
is the reason why we do not provide any comparison of efficiency in addition to the
studies of accuracy (Figures 2 and 8).

Of course, this indicator is not fully robust: on the one hand, the global error
due to the adaptation algorithm cannot be guessed and on the other hand, it is
well known that the Chapman-Enskog expansion fails when the solution admits
discontinuities. Another issue is that the error due to the interface coupling is
not measured. Several works on these topics are under investigation. In particu-
lar, a similar adaptive method in the scalar setting is studied, for which rigorous
convergence results can be obtained.
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