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ABSTRACT

We relax the traditional definition of contact and intercontact

times by bringing the notion of vicinity into the game. We

propose to analyze disruption-tolerant networks (DTN) un-

der the assumption that nodes are in κ-contact when they re-

main within a few hops from each other and in κ-intercontact

otherwise (where κ is the maximum number of hops char-

acterizing the vicinity). We make interesting observations

when analyzing several real-world and synthetic mobility

traces. We detect a number of unexpected behaviors when

analyzing κ-contact distributions; in particular, we observe

that in some datasets the average κ-contact time decreases as

we increase κ. In fact, we observe that many nodes spend a

non-negligible amount of time in each other’s vicinity with-

out coming into direct contact. We also show that a small

κ (typically between 3 and 4) is sufficient to capture most

communication opportunities.

1. INTRODUCTION

“How much time do two nodes spend within com-
munication range of one another and how long does
it take for them to meet again after having left each
other?” These questions are central to most works
on disruption-tolerant networking (DTN) and concern
the problem of evaluating the contact and intercontact

times among nodes [2, 7, 12]. Such analyses have funda-
mental practical impact, as they serve as a substrate for
the design of forwarding strategies that better schedule
transmissions based on the history of mobility. Notice-
able examples are Prophet [9], Spray and Wait [15], and
SSAR [8].
In this paper, we propose a different evaluation of the

dynamics of disruption-tolerant networks by integrating
the notion of node vicinity in the equation. Instead of
considering only direct communications among nodes,
we suggest extending the notion of “contact” to the
zone within a few hops. The impetus for this proposal
comes from the observation that a significant fraction of
the pairs of nodes remains nearby (within a few hops)
when not in direct contact. To this end, we use the
∗Authors carried out part of the work at LINCS
(www.lincs.fr).

κ-vicinity1 as the basis of our analyses, where κ stands
for the maximum number of hops separating two nodes.
We define and analyze two temporal measures that are
the κ-contact and the κ-intercontact times. We analyze
their aggregated distributions and keep pairwise analy-
ses for further study.
The interests of relying on an extended view of con-

tacts and intercontacts are manifold. First, one obtains
a finer characterization of the network, as we observe in
real-world mobility traces that many pairs of nodes are
frequently nearby without any direct contact. Second,
it becomes easier to tune forwarding protocols as by
introducing very little overhead (to discover the neigh-
borhood) a node can discover significant proximity with
other nodes. Third, by using short multihop opportu-
nities, end-to-end delays can be decreased.
We analyze the time distributions for the κ-contact

and the κ-intercontact times using both real-world and
synthetic mobility traces and make a number of interest-
ing observations. In a nutshell, we reveal the following
findings:

• Different classes of datasets. We observe from
our analyses that there are basically two differ-
ent types of behaviors. When extending the con-
tact notion to a node’s vicinity, one would expect
κ-contacts duration to increase. However, in some
datasets, increasing κ leads to a higher probability
of having shorter contacts, which is a quite unex-
pected result. We refer to these patterns respec-
tively as dense and light distributions.

• Existing analyses hold for κ-vicinity. We confirm
that the main observations found in the literature
still apply in the context of our study. This means
that the main principles of opportunistic commu-
nications remain the same. This is a good point as
existing opportunistic protocols can directly ben-
efit from our findings.

• Close vicinity is enough. We observe for the datasets
we analyze that it is enough to extend the vicin-

1Also referred to as the κ-neighborhood.



ity to a few hops (typically three or four) to cap-
ture most of the local communication opportuni-
ties. Such a threshold enables low costs for vicinity
composition gathering. This also holds for net-
works with a large diameter.

After introducing and formalizing our proposal, we
develop an extended analysis of well-known real-world
and synthetic mobility traces. We then discuss the sev-
eral time distributions and observations we make. Al-
though out of the scope of this paper, we also provide
some insights into the applicability of the proposed work
in the design of more efficient DTNs.

2. BACKGROUND

2.1 Related Work

The most intuitive characterization of DTNs relies
on the distribution of contact times. A contact occurs
when two nodes are within each other’s wireless com-
munication range and can perform transmission. We
consider networks with bidirectional links. In an early
work, Vahdat and Becker investigated the impact of
wireless ranges on message delivery [17]. Hui et al. an-
alyzed contacts to derive affinities between individuals
and likeliness of meeting [6]. Chaintreau et al. were pi-
oneers in determining the possibilities of efficient trans-
mission in networks through the history of contacts [3].
Contact is not the only meaningful parameter. To make
the most of opportunistic communications, understand-
ing intercontact times is also important.
Intercontact distributions indicate when nodes will

next be able to transmit data to other devices. In the
literature, we observe two main definitions for intercon-
tact. The inter-any-contact notion, meaning the time
interval elapsed between two subsequent contacts inde-
pendently of the identities of the neighbors. The sec-
ond definition, the pairwise intercontact time, involves
a specific pair of nodes. It relates to the time two
nodes wait before meeting again after moving away from
each other. Leguay et al. thoroughly studied pairwise
intercontact distributions in well known experimental
datasets. They found these distributions well fitting ei-
ther log-normal laws or exponential distributions [4].
Chaintreau et al. argued that pairwise intercontact
times follow power law distributions over a specific time
range [2]. In a similar study, Karagiannis et al. found
that pairwise intercontacts fit diptych distributions –
power law followed by exponential decay [7]. Recently,
Passarella and Conti examined aggregate intercontact
times and found them not to be the exact mirror of
pairwise intercontact times [12].

2.2 Positioning

Although our work is inline with the contributions
found in the literature, we propose to characterize DTNs

using a different point of view. Previous analyses use
one-to-one or one-to-all approaches for characterization.
We argue in favor of an in-between approach to lever-
age a group-to-all vision. In this work, we take into ac-
count the immediate vicinity beyond simple contact for
every node. We consider a subset of every node’s con-
nected component and study the effects of our group-to-
all vision on DTN characterization. Using the κ-vicinity
knowledge, we extend previous analyses to observe the
impact of such point of view on DTN understanding.
To study the behavior of contacts within a node’s

κ-vicinity, we did not extend a node’s wireless range
to influence contact possibilities as Vahdat and Becker
did. For intercontact patterns, as previously pleaded
by Leguay et al., we base our analysis on the pairwise
intercontact definition. We rely on our earlier findings
that many pairs of nodes, when not in direct contact, re-
main nearby (within very few hops) [13]. The extension
of contact and intercontact to a vicinity notion brings
logical variation in previous intercontact and contact
analyses. We perform state-of-the-art examination on
our extended notions to understand how different our
results are when compared to previous pairwise analy-
ses [2, 7].

3. FROM THE VIEWPOINT OF VICINITY

Our modern society is tied by the relationships people
share with one another. Social network studies showed
how people interact based on social ties and how this
can be used in networking when they form groups at
given times [1, 10]. However, existing DTN protocols
still maintain a contact-only vision for their decisions;
in other words, they overlook the perspective of nearby
nodes. Given people’s tendency to colocate in specific
places at explicit times, why should we underestimate
such information?

3.1 The κ-vicinity

We want to embody the vision a mobile node has of its
neighborhood. To this end, we consider the κ-vicinity
of a node instead of only the direct neighbors:

Definition 1. κ-vicinity. The κ-vicinity Vi
κ of node

i is the set of all nodes within κ hops from i.

We use the term κ-vicinity to avoid any confusion
with the tradition “n-hop-neighborhood” terminology.
We assume that the n-hop-neighborhood indicates the
nodes exactly at n-hops, while κ-vicinity gathers all the
nodes up to κ hops. In Figure 1, we illustrate the 2-
vicinity of node i.
The κ-vicinity brings the immediate surrounding knowl-

edge. This is an interesting point of view for oppor-
tunistic networks because it extends a node’s knowl-
edge to immediately useable communication opportu-
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Figure 1: Node i’s κ-vicinity and the κ-intercontact phenomenon. For the sake of clarity, we only
display connectivity links and shortest hop distance from i within the κ-vicinity.

nities. The κ-vicinity empowers a node’s reach in the
network [14].

3.2 κ-contact and κ-intercontact

We are now ready to make the necessary definitions
for the rest of our work.

Definition 2. κ-contact. Two nodes are in κ-contact

when they dwell within each other’s κ-vicinity, with κ ∈
N

∗. More formally, two nodes i and j are in κ-contact

when {i ∈ Vj
κ} = {j ∈ Vi

κ}. In other words, a contem-

poraneous path of length at most κ links i and j.

We also need to grasp the intercontact observations
for our vicinity viewpoint. The literature definition of
mere intercontact is when two nodes are not in contact.
Therefore, we consider κ-intercontact when two nodes
are not in κ-contact. These are complementary notions.
Another way to see it is as follows: if node i maintains
knowledge about its κ-vicinity, it is in κ-intercontact
with any node beyond its κ-vicinity. In Figure 1, node
j leaves i’s κ-vicinity and then gets back some time
later, characterizing a κ-intercontact interval.

Definition 3. κ-intercontact. Two nodes are in

κ-intercontact while they do not belong to each other’s

κ-vicinity. Formally speaking, two nodes i and j are in

κ-intercontact when {i 6∈ Vj
κ} or {j 6∈ Vi

κ}. There is no

path of length κ or less linking i and j.

Note that 1-contact matches the contact notion and
1-intercontact corresponds to usual binary intercontact.

4. DATASETS

To perform our analysis, we selected real-life datasets
and synthetic models displaying specific scenarios. Each

of them embeds characteristics of real-life patterns that
DTN wants to leverage. Real-life measurements used
devices capturing other devices presence within a 10m
wireless range.

Infocom05 measurement was held during a 5 day con-
ference in 2005 [2]. 41 attendees carried iMotes collect-
ing information about other iMotes nearby. We study
a 12-hour interval bearing the highest networking ac-
tivity. Each iMote probes its environment every 120
seconds. Infocom05 represents a professional meeting
framework.

Rollernet had 62 participants measuring their mutual
connectivity with iMotes while they where riding a do-
minical rollerblading tour during 3 hours in Paris [16].
Researchers set devices to send beacons every 30 sec-
onds. These measurements show a specific sport gath-
ering scenario.

Unimi is a dataset captured by students, faculty mem-
bers, and staff from the University of Milano in 2008 [5].
They involved 48 persons with special devices probing
their neighborhood every second. Unimi provides a
scholar and working environment scenario.

RT is a mobility model correcting flaws from the Ran-
dom Waypoint model [11]. We sampled the behavior of
20 nodes following this model on a surface of 50 x 60
m2 with speed between 0 and 7 m/s and a 10m wireless
range for vicinity sensing.

Community is a social-based mobility model [10]. It
tends to colocate socially-related nodes in specific loca-
tions at the same time like groups of friends would do.
We simulated 50 nodes with a 10m wireless range on a
1,500 x 2,500 m2 plane during 9 hours.



5. INTERCONTACT DISTRIBUTIONS

Intercontact patterns in DTN sprang many inspiring
analyses as seen in Section 3. Studying intercontact
duration distributions helps researchers quantify how
long a node will have to wait before its next encounter.
Figure 2 represents aggregated complementary cumu-
lative density function (CCDF) of binary (traditional)
intercontact and respective κ-intercontact durations for
every pair of nodes. These CCDFs indicate the proba-
bility of a κ-intercontact lasting longer than t seconds.

5.1 Binary intercontact

As Karagiannis et al. observed, we also find that all
binary intercontact CCDFs follow a straight line up to
a knee point when both x-axis and y-axis are on loga-
rithmic scale. This implies power laws for each binary
intercontact distributions until the observed knee point
also known as the characteristic time. In Unimi, we
observe a knee point for binary intercontact at around
50,000 seconds. After plotting distributions with a lin-
ear scale on the x-axis and maintaining the log scale
on the y-axis, we also observe that distributions can be
approximated by a straight line beyond the knee point.
In Figure 2, the phenomenon is clear for Unimi. This
hints exponential decays for distribution tails. Obser-
vations on binary intercontact match results of previous
studies.

5.2 κ-intercontact

As of κ-intercontact distributions, we find their gen-
eral overlook to be quite similar to their respective bi-
nary intercontact distributions except for Community.
κ-intercontacts display partial displacement after some
point with a sharper slope for each curve. The larger the
κ parameter, the more important the bottom left shift
for each distribution. The concept of κ-neighborhood
logically reduces κ-intercontact times. The wider a node’s
vicinity knowledge, the later this latter detects a node’s
departure from its vicinity and the quicker it detects its
comeback resulting in shorter κ-intercontact durations.
We see that for κ ≥ 6, CCDFs aggregate.
An interesting remark is how κ-intercontact distri-

butions exhibit the same properties as binary intercon-
tacts. They follow power laws until a specific point
(the characteristic time) and then carry exponential de-
cay. In Figure 2, beyond 50,000 seconds, Unimi ’s 2-
intercontact curve is a vertical shift of the binary inter-
contact CCDF. The same occurs for further κ-intercontacts.
However, an important information is that the knee
point found for binary intercontact corresponds to chang-
ing points for κ-intercontact distributions. In Unimi,
κ-intercontact curves (κ ≥ 2) quickly decrease after the
characteristic time found at 50,000 seconds.
Table 1 displays average intercontact duration and

Table 2 the number of intercontacts intervals for each

dataset. Except for Community, the higher κ gets,
the lower the average κ-intercontact length. This en-
forces our rational expectations of κ-vicinity reducing
κ-intercontact duration with higher κ. We remarked
decreasing cumulated κ-intercontact times for each κ.
We also observe a logarithmic growth in the number of
κ-intercontact intervals.

5.3 Observations

The Community dataset stands out because of its
non-monotonic average κ-intercontact duration and evo-
lution of the number of intervals. When the average
length grows, the number of κ-intercontact intervals de-
creases. This still results in a decreasing cumulated κ-
intercontact duration for each κ. It enforces our first
thoughts in the benefits of κ-vicinity for κ-intercontact
times.
Under the assumption that nodes in the vicinity dwell

within low delay reach, κ-intercontact duration decreases
with larger κ, strengthening our belief that κ-neighborhood
is beneficial to DTN protocols. The fact that character-
istic time in all intercontact distributions corresponds
is also an important finding. It could help protocols
like Prophet, Spray-and-Wait, or SSAR maintain their
actual intercontact-based approach and extend them
to their vicinity to benefit from shorter κ-intercontact
times.

6. CONTACT AND κ-CONTACT ANALYSES

Contact is the main feature for opportunistic mobile
networks. Analyzing its distribution gives us insights
into how protocols can benefit from these contact oppor-
tunities, as κ-contacts happen to be an extension of the
strict contact definition. Instead of considering contact
between neighbors at a 1-hop distance only, we analyzed
the potential of transmission to nearby nodes within the
κ-vicinity. These paths enable low delay transmissions
and a better neighborhood reach for a network node.

6.1 κ-contact duration distributions

In Figure 3, we display aggregated CCDFs of contact
alongside κ-contact duration for every pair of nodes in
each experiment. These CCDFs indicate the probabil-
ity of a κ-contact lasting longer than t seconds.
For Infocom05 and Rollernet, their CCDFs maintain

comparable aspects. We observe a small upper right
shift for larger values of κ. As the κ-contact notion
increases the node’s vicinity scope, any nearby node
may stay within the considered node’s coverage longer
than with a shorter sight vision. The higher the κ,
the higher the probability of having longer κ-contact
intervals duration. Above scanning granularity, lower
κ results in curves with a sharper slope than curves of
longer κ-contacts.
Like Infocom05 and Rollernet, for κ ≥ 3, Commu-
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Figure 2: κ-intercontact distributions. Apart from Community, nodes display a lower probability
of obtaining κ-intercontact intervals lasting longer than t seconds for high κ. On average, κ-vicinity
reduces κ-intercontact times. Distributions follow power laws up to a characteristic time and display
exponential decay afterwards. All κ-intercontact distributions knee point concord. Community has
inconsistent κ-vicinity patterns for κ ≥ 3. Interc. stands for Binary intercontact (logscale on both
axes except Unimi Focus which is linear-log).

Table 1: κ-intercontact average duration in seconds.
κ

Dataset 1 2 3 4 5 6+

RT 1,874.3 772.2 415.7 291.5 238.4 213.1
Rollernet 738.3 555.3 412.2 328.2 273.6 242.5
Unimi 66,434.8 28,687.6 19,529.0 16,585.3 15,534.9 15,110.3

Infocom05 4,930.9 1,752.0 1,111.5 916.8 850.3 823.5

Community 525.3 232.4 193.5 262.2 317.1 295.9

nity ’s κ-contact CCDFs bear the same overall outlook
with a sharper slope for smaller κ. For 1- and 2-contact
CCDFs, we hint an interesting phenomenon. We find
two junctions around 400 seconds and another at 1,050
seconds. Opposed to our previous expectations, we have
a better chance of getting contact of duration D ∈
[400; 1, 050] seconds than 2-contact slots of the same
duration.
For RT and Unimi, their 1-contacts bear different be-

haviors than κ-contacts when κ ≥ 2. As hinted in the
Community dataset, for some times κ, the probability
of obtaining contacts slots lasting longer than t seconds
is higher than the probability for the same t in other
datasets. In Figure 3, this phenomenon clearly appears
for Unimi. In RT, t = [0; 500]∪ [1, 050; 10, 000] seconds.
In Unimi, the assertion is valid for the whole distribu-
tion. For κ ≥ 3, CCDFs aggregate into an unique one.

2-contact distribution is a mixed behavior between 1-
contact and larger values of κ.

6.2 Density related behavior

Due to the social nature of Community ’s function-
ing, specific nodes tend to remain together and bring
a high density around popular nodes. Rollernet is a
dense sport setting and Infocom05 has selective meet-
ing points in the conference. They all exhibit an im-
portant node-centered density, whereas Unimi and RT

bear light density around each nodes. The local den-
sity parameter may explain the difference between the
κ-contact behaviors.
Figure 4 illustrates a situation detailing the unex-

pected behavior of κ-contact distributions in light set-
tings. Lighter densities limits geographical κ-vicinity
coverage and induces smaller κ-contact intervals. Dense



Table 2: κ-intercontact number of intervals.
κ

Dataset 1 2 3 4 5 6+

RT 2,264 5,041 8,258 10,516 11,862 12,629
Rollernet 2,529 7,460 12,357 15,789 17,622 18,422
Unimi 21,737 57,085 86,009 102,495 109,406 112,323

Infocom05 3,727 11,028 15,338 16,774 17,186 17,117

Community 3613 11,561 8,034 4,505 3,660 3,477
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Figure 3: κ-contact distributions. There are two major patterns: (i) dense distributions where
CCDFs having larger κ suffer a top right shift and a smoother slope than smaller κ, and (ii) light

distributions, where all κ-contact distributions for κ ≥ 4 aggregate and present a slight bottom left
shift compared to the contact distribution (logscale on both axes).

settings ignite distributions like Infocom05, Rollernet,
and Community and will be henceforth mentioned as
dense distributions. Low density settings like RT and
Unimi enable the second type of distributions men-
tioned as light distributions.

6.3 Average duration and number of intervals

In Table 3, we displayed the average duration of κ-
contact intervals and in Table 4 the number of κ-contact
slots for each of our five experiments. Two main be-
haviors arise. On the one hand, for Infocom05, Roller-
net, and Community, we find an impressive continuous
growth of average slots duration for every κ. On the
other hand, RT and Unimi show the opposite evolution
concerning average κ-contact duration. An increase in
κ brings increased average κ-contact lengths.
For most datasets, we also find a logarithmic growth

of the number of κ-contact intervals. Consequently, the

number of intervals balances their length shortening.
This testifies the growth in cumulated κ-contact du-
rations in all datasets. Despite results observed in the
previous section for RT and Unimi, for all our datasets,
we find that larger values of κ increase the overall κ-
contact duration and modify its distribution. The main
difference lies in the fact that Infocom05, Rollernet,
and Community experience longer κ-contacts for large
κ than RT and Unimi, which have more shorter κ-
contacts. In any case, both types have longer cumulated
κ-contact times and it grows with κ.

6.4 Observations

We have seen how κ-contact distributions predomi-
nantly exhibit two behaviors: light or dense distribu-
tions. Dense distributions follow our logical expecta-
tions. These distributions have sharper slope for lower κ
and therefore a stronger demarcation among them than



Table 3: κ-contact average duration in seconds.
κ

Dataset 1 2 3 4 5 6 7+

Infocom05 371.1 406.4 492.8 561.2 597.5 630.5 653.0
Rollernet 47.2 73.5 97.7 125.7 156.0 184.3 211.6

Community 96.3 138.7 358.6 751.9 1,000.9 1,123.21 1,135.5

RT 201.8 200.2 184.7 182.2 182.1 182.1 182.4
Unimi 1,324.6 901.2 820.7 796.7 791.5 801.5 798.2

Table 4: κ-contact number of intervals.
κ

Dataset 1 2 3 4 5 6 7+

Infocom05 3,735 11,071 15,412 16,870 17,288 17,221 17,117
Rollernet 5,106 15,410 25,200 32,630 36,286 38,110 38,586

Community 3,629 11,612 8,127 4,627 3,798 3,627 3,598

RT 2,316 5,146 8,385 10,645 11,992 12,759 13,128
Unimi 10,875 28,550 43,019 51,271 54,733 56,193 56,782

dense light

Figure 4: Density related behavior for κ-contact.
Density modifies the coverage zone of a node’s
κ-vicinity. For dense settings, we have a long
continuous κ-contact interval. For light situa-
tions, we obtain two smaller κ-contacts for the
same walk.

the next variety. Light distributions show κ-contact
distributions with comparable behaviors and no major
demarcations. They quickly aggregate into a unique
distribution above κ ≥ 4. For these distributions, con-
trary to our primary beliefs, the probability of getting
κ-contacts longer than t seconds is higher for shorter
values of κ and contact durations.
However, for all measurements, the number of κ-contact

intervals increases with every κ and springs a longer
cumulated κ-contact time. Dense distribution obtains
more large κ-contact intervals whereas light distribu-
tion has more short κ-contact intervals. Knowing which
distribution fits, either light or dense, to a given situa-
tion modifies the way a protocol should consider its κ-
vicinity. Adapting a routing technique to dense or light
κ-contact distributions accordingly may help nodes lever-
age their κ-vicinity more efficiently than what is cur-
rently done.

7. κ-VICINITY ANALYSIS

Where most studies consider only the possibilities
of contacts, using a node’s vicinity sounds appealing
to reduce κ-intercontacts and increase κ-contact times.
With the κ-vicinity, we can measure the potential of
such nearby companions in terms of opportunistic com-
munications. Yet, we can wonder up to which point a
node should survey its vicinity to leverage it.

7.1 Density

To mirror a node’s specific κ-vicinity density, for each
node, let Di

κ be the density of nodes around i, obtained
as

Di
κ =

card(Vi
κ)

τ
, (1)

where card(Vi
κ) is the number of nodes in i’s κ-vicinity

and τ is the experiment duration. κ-density internal
composition influences a node’s κ-vicinity behavior. The
more κ-contacts a node has, the more chances it has
of getting {κ + 1}-contacts. In Table 5, we present
the average Di

κ. For datasets with participants moving
slow and steady like Infocom05, Unimi, and Commu-

nity, above a certain limit Di
κ does not increase anymore

and is limited by the network diameter. More dynamic
or inconsistent patterns – RT and Rollernet – display
logarithmic increase in Di

κ. For all cases, we verify Vκ

growth with κ indicating the presence of nearby nodes
useable as relays for κ-contact.
For any datasets, observing contacts only shows lim-

ited Di
κ. While observing the κ-vicinity up to a few

hops – κ = {3, 4} – increases Di
κ by at least doubling it

or even tripling it. For κ > 4, the increase rate is less
striking or even null. Nevertheless, longer κ-contacts



Table 5: Average number of neighbors Di
κ in a node’s κ-vicinity (whole dataset duration).

κ

Dataset 1 2 3 4 5 6 7 8+

Community 2.0 4.1 4.6 4.9 4.9 4.9 4.9 4.9
RT 2.0 3.2 4.7 6.7 7.4 7.8 7.9 8.0

Infocom05 2.3 3.8 5.5 6.0 6.3 6.4 6.4 6.4
Rollernet 1.8 3.2 4.7 5.7 6.3 6.7 6.9 7.1
Unimi 0.15 0.25 0.31 0.35 0.37 0.38 0.38 0.38

in terms of path length may not be interesting because
of potential path inconsistency due to all relays move-
ments. Monitoring κ-vicinity up to a {3, 4} threshold
brings most of the local density a node can use.

7.2 Neighbors beyond contacts

An interesting situation occurs when pairs of nodes
do not come into contact but belong to each other’s κ-
vicinity. Usual protocols miss this knowledge by over-
looking the potential of nearby nodes. To analyze the
impact of such situations, we studied the closest dis-
tance between nodes for all pair of nodes.
For Unimi and Infocom05, we find that respectively

92% and 91% of pair of nodes do come in contact. This
can be explained by the datasets nature where people
are coworkers and have to meet to exchange ideas. How-
ever, we find that even there, some nodes do not find
themselves closer than a 2-hop distance respectively for
6% and 7% of them. Other datasets deprived of the
specific aim of meeting each other like Rollernet and
Community show that contact only represent 31% and
42% of the lowest distances. There, respectively more
than 51% and 46% stay at the closest between 2 and
4-hop distances. In RT, all pair of nodes come into con-
tact at one point or another. By observing the {3, 4}-
vicinity, we manage to monitor additional situations of
non-contact between nodes. As a result, we catch most
pairwise κ-contacts occurring in a node’s vicinity with
only a threshold κ = {3, 4}.

8. IMPLICATIONS

Opportunistic Protocols. DTN protocols chose to
leverage the obvious contacts – binary intercontact pat-
terns. While they may appear sufficient to elaborate
routing schemes, they ignore nearby communications
possibilities. As DTN rely on human mobility patterns
to generate encounters and topological proximity, we
should make use of hot places in a map and hubs on
the connectivity plane. Gathering a node’s surround-
ing situation via the κ-vicinity knowledge can help us
do so. We show that observing a node’s κ-vicinity im-
proves both contact opportunities and intercontact du-
rations. Moreover, in Section 7, we explain how observ-
ing a node’s κ-vicinity with κ = {3, 4} is enough to be

aware of most pairwise activity in the vicinity beyond
contacts and to benefit from local densities.

Mobility Models. Musolesi et al. based their mobil-
ity model on social network theory [10]. Their model
takes into account colocating patterns by mean of social
attractiveness. Their intent, with HCMM proposed by
Boldrini et al [1], is one of the most sensible we have
seen in terms of binding synthetical models and social
patterns. Still, they limit their approach to contact
patterns which results in incoherent κ-contact and κ-
intercontact distributions. In Figure 3, contact and 2-
contact distributions intertwine whereas the κ-contact
(κ ≥ 3) do not and present the same demarcation as
other dense distributions. In Figure 2, binary inter-
contact and 2-intercontact CCDFs present expected be-
haviors. We find 3+-intercontact behavior inconsistent.
We warn users when using such mobility models, while
issued traces respect essential social patterns, they may
mislead users on other incidental parameters like κ-
vicinity behaviors.

9. CONCLUSION

We propose a DTN characterization based on the
vicinity viewpoint. Our motivation comes from the
fact that most DTN protocols ignore their vicinity be-
yond one hop. We confirm previous results of Kara-
giannis et al. with regard to aggregated κ-intercontact
behaviors, meaning that they follow power laws up to
a given time and experience exponential decay after-
wards. This allows current DTN protocols to lever-
age their κ-vicinity without too much change in their
functioning. We also found that κ-contact distributions
globally follow two patterns which are density related.
Dense environments provide logical results of κ-contact
duration extension with higher κ whereas light settings
display inverted paradoxical patterns. Protocols should
be aware of these patterns and treat them accordingly
to benefit from this knowledge. Finally, we showed how
limiting a node’s awareness to their {3, 4}-vicinity is
enough to benefit from most κ-vicinity advantages. As
a next step, we plan on analyzing pairwise κ-vicinity
behaviors on a strict pairwise level to enable better
identification of peculiar events between nodes. We
also would like to dive deeper into the κ-contact no-



tion and understand the different path types resulting
in κ-contact.
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