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Application to Image Denoising
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{thomas.batard,marcelo.bertalmio}@upf.edu

Abstract. We introduce a gradient operator that generalizes the Eu-
clidean and Riemannian gradients. This operator acts on sections of
vector bundles and is determined by three geometric data: a Rieman-
nian metric on the base manifold, a Riemannian metric and a covariant
derivative on the vector bundle. Under the assumption that the covariant
derivative is compatible with the metric of the vector bundle, we consider
the problems of minimizing the L2 and L1 norms of the gradient. In the
L2 case, the gradient descent for reaching the solutions is a heat equation
of a differential operator of order two called connection Laplacian. We
present an application to color image denoising by replacing the regular-
izing term in the Rudin-Osher-Fatemi (ROF) denoising model by the L1
norm of a generalized gradient associated with a well-chosen covariant
derivative. Experiments are validated by computations of the PSNR and
Q-index.

Keywords: Generalized gradient, Riemannian manifold, Vector bundle,
Total variation, Color image denoising, Rudin-Osher-Fatemi model.

1 Introduction

Total variation regularization methods have been widely used for image denoising
tasks. Given an image I0 : Ω ⊂ R

2 −→ R ∈ BV (Ω) corrupted by additive white
Gaussian noise of standard deviation σ, the seminal model of Rudin-Osher-
Fatemi (ROF) [19] estimates the denoised image as the solution of the following
variational problem

arg min
I∈BV (Ω)

∫

Ω

1

2
λ (I − I0)

2 + ‖∇I‖ dΩ (1)

where λ is a tuning parameter. The first term in formula (1) is the attached
data term and the second one is the regularizing term. Since then, this model
has been extended in several ways (see e.g. [4],[10],[15],[16],[17],[18],[24] for lo-
cal methods based on a modification of the regularizing term, and [9],[11] for
nonlocal methods). In this paper, we construct a new regularizing term by the
introduction of a generalization of the gradient operator.
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The gradient operator we introduce generalizes the Euclidean and Riemannian
gradients by acting on sections of vector bundles. The ROF denoising model
based of this new gradient operator generalizes the Euclidean approach of [19]
and its multidimensional extension [4], as well as the Riemannian ROF denoising
model in [18]. The key idea is to treat the term ∇I as a vector-valued differential
1-form ∇EI, that we call connection gradient of I, where the operator ∇E is
a covariant derivative (also called connection). Given Riemannian metrics on the
base manifold and vector bundle, a metric on the space of vector-valued differen-
tial 1-forms might be constructed, and consequently the norm of the connection
gradient ∇EI might be considered. Then, for particular choices of metrics and
covariant derivative, the norm of ∇EI corresponds to the norm of the Euclidean
or Riemannian gradient.

In this paper, we focus on connection gradients where the covariant derivative is
compatible with the metric of the vector bundle. In this context, the covariant
derivative ∇E has an adjoint operator ∇E∗

and we show that both L1 and L2
norms minimization problems extend the Euclidean and Riemannian approaches
in a natural way. Indeed, we show that the gradient descent flow for reaching
the sections minimizing the L2 norm of connection gradient is the heat equation
of a generalized Laplacian. Moreover, we show that the critical points of the L1
norm of connection gradient satisfy

∇E∗
(

∇EI

‖∇EI‖

)

= 0

It is a fact that nonlocal denoising methods, like Non Local Means [5] or BM3D
[6] provide better results than local methods in terms of PSNR and Q-index [23]
measures. The denoising model we propose in this paper is local, however we
expect that it extends to a nonlocal model. Indeed, inspired by [9] where the
Euclidean ROF model [19] is extended to a nonlocal model by the construction
of a nonlocal gradient operator, we expect that our vector bundle ROF model
extends to a nonlocal model by the construction of a nonlocal connection gradi-
ent operator.

The outline of the paper is the following. Sect. 2 is mainly theoretical. We first
introduce the notion of connection gradient and its norm, and remind the defini-
tion of connection Laplacian on vector bundle. We relate them with well-known
concepts of Euclidean and Riemannian geometry. Then, we restrict to the case
where the covariant derivative is compatible with the metric of the vector bun-
dle. We etablish a link with the Beltrami framework of Sochen et al. (see e.g.
[20]) by showing that sections minimizing the L2 norm of connection gradient
are harmonic with respect to some Riemannian metric on the vector bundle. In
Sect. 3, we present an application to color image denoising by considering the
L1 norm of a suitable connection gradient as the regularizing term of a ROF
denoising model. In particular, we discuss the discretization of the operator ∇E
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and its adjoint ∇E∗
. We test our denoising method on the Kodak database [12]

and compute both PSNR and Q-index measures. Results show that our method
provides better results than the Split Bregman method [10] applied to ROF
functional.

2 Generalized gradient on vector bundle

2.1 Definitions and examples

We refer to [21] for an introduction to differential geometry of fiber bundles.
Given a vector bundle E, we denote by Γ (E) the set of smooth sections of E.

Connection gradient

Definition 1. Let E be a vector bundle of rank m over a Riemannian manifold
(M, g) of dimension n. Let ∇E be a covariant derivative and h be a definite
positive metric on E. Given ϕ ∈ Γ (E), we call the term ∇Eϕ ∈ Γ (T ∗M ⊗ E)
the connection gradient of ϕ.

The metrics g on TM and h on E induce a definite positive metric 〈 , 〉 on
T ∗M ⊗ E. Then, we define the norm of the connection gradient of ϕ as

‖∇Eϕ‖ :=
√

〈∇Eϕ,∇Eϕ〉 =

√

√

√

√

n
∑

i,j=1

gij h (∇E
∂/∂xi

ϕ,∇E
∂/∂xj

ϕ) (2)

where (∂/∂x1, · · · , ∂/∂xn) is the frame of TM induced by a coordinates system
(x1, · · · , xn) of M .

Example 1. Let E = C∞(M) be the vector bundle of rank 1 of smooth functions
on a Riemannian manifold (M, g). Let ∇E be the trivial covariant derivative on
E and h be the definite positive metric on E given by the scalar multiplica-
tion. From Definition 1, the connection gradient of a function f is its differential
df ∈ Γ (T ∗M).

The musical isomorphism ♯ : T ∗M 7−→ TM maps df onto ∇gf , the Rieman-
nian gradient of f . Moreover the norm of df is

‖df‖ :=
√

〈df, df〉 =

√

√

√

√

n
∑

i,j=1

gij
∂f

∂xi

∂f

∂xj
, (3)

and coincides with the norm of ∇gf .
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Connection compatible with the metric

Definition 2. Let E be a vector bundle over a Riemannian manifold (M, g),
equipped with a definite positive metric h. A covariant derivative ∇E on E is
compatible with the metric h if it satisfies

dh(ϕ,ψ) = h(∇Eϕ,ψ) + h(ϕ,∇Eψ) (4)

for any ϕ,ψ ∈ Γ (E).

Example 2. On the vector bundle of smooth functions on a Riemannian mani-
fold, the trivial covariant derivative is compatible with the metric given by the
scalar multiplication on the fibers.

Example 3. The Levi-Civita connection on the tangent bundle TM of a Rie-
mannian manifold (M, g) is compatible with the metric g. Actually, it is defined
as the unique connection compatible with the metric and having a zero torsion
tensor.

Assuming that E is associated with the principal bundle PSO(E) of orthonormal
frame fields of E, we have the following result

Proposition 1 (see e.g. Lawson et al. [14] (Prop. 4.4 p.103)). There is a
one-one correspondance between connection 1-forms on PSO(E) and covariant
derivatives on E that are compatible with the metric.

Under the choice of a local trivializing section of PSO(E), i.e. a local orthonor-
mal frame with respect to h of the vector bundle E, a connection 1-form is a
so(n)-valued 1-form on M , i.e. ω ∈ Γ (T ∗M ⊗ so(n)). More precisely, we have
the formula

∇E
Xϕ = dXϕ+ ω(X)(ϕ) (5)

where X ∈ Γ (TM).

Connection Laplacian Let ∇T∗M⊗E be the covariant derivative on T ∗M ⊗E
defined as

∇T∗M⊗E(η ⊗ ϕ) = ∇T∗Mη ⊗ ϕ+ η ⊗∇Eϕ

where ∇T∗M is the covariant derivative on T ∗M induced by the Levi-Civita
covariant derivative on (TM, g) and ∇E is a covariant derivative on E compatible
with a definite positive metric h. The adjoint ∇E∗

: Γ (T ∗M ⊗ E) −→ Γ (E) of
the operator ∇E : Γ (E) −→ Γ (T ∗M ⊗ E) is the operator

∇E∗
= −Tr∇T∗M⊗E

where Tr denotes the contraction with respect to the metric g. In others words,
the following equality is satisfied

∫

M

h(∇E∗
η, ϕ) dM =

∫

M

〈η,∇Eϕ〉 dM (6)

assuming that ϕ has compact support.



Generalized Gradient on Vector Bundle - Application to Image Denoising 5

Example 4. On the vector bundle of smooth functions on a Riemannian manifold
(M, g), the adjoint d∗ : Γ (T ∗M) −→ C∞(M) of the trivial covariant derivative
d : C∞(M) −→ Γ (T ∗M) is the operator

d∗η = −
∑

i,j

(

gij∂xi
η(∂/∂xj) −

∑

k

Γ k
ij η(∂/∂xk)

)

where the symbols Γ k
ij are the symbols of the Levi-Civita connection of (M, g)

with respect to the frame (∂/∂x1, · · · , ∂/∂xn).

Definition 3. The connection Laplacian ∆E is the second order differential
operator on Γ (E) defined as ∆E = ∇E∗

∇E.

In the frame (∂/∂x1, · · · , ∂/∂xn) of (TM, g) associated to a local coordinates
system (x1, · · · , xn) of M , we have

∆E = −
∑

ij

gij

(

∇E
∂/∂xi

∇E
∂/∂xj

−
∑

k

Γ k
ij∇

E
∂/∂xk

)

Note that the operator ∇E∗
∇E is also called Bochner Laplacian.

Example 5. The Laplace-Beltrami operator is the connection Laplacian (up
to a sign) associated to the trivial covariant derivative d on the vector bundle of
smooth functions on a Riemannian manifold (M, g). In other words, it might be
written

∆E = −
∑

ij

gij

(

∂xi
∂xj

−
∑

k

Γ k
ij ∂xk

)

2.2 L2 minimization of connection gradient and Dirichlet energy

Let E be a vector bundle over a Riemannian manifold (M, g) equipped with a
definite positive metric h and a covariant derivative ∇E compatible with h. We
have the following result

Proposition 2 (Lawson et al. [14] Prop. 8.1 p.154). The operator ∆E is
non-negative and essentially self-adjoint. Furthermore,

∫

M

h(∆Eϕ,ψ) dM =

∫

M

〈∇Eϕ,∇Eψ〉 dM (7)

for all ϕ,ψ ∈ Γ (E) provided that one of ϕ or ψ has compact support.
If M is compact, then ∆Eϕ = 0 if and only if ∇Eϕ = 0.

We observe that the right term of equality (7) corresponds to the Gâteaux deriva-
tive in the direction ψ of the energy

E(ϕ) =

∫

M

‖∇Eϕ‖2dM (8)

Hence the critical points of the energy (8) satisfy ∆Eϕ = 0. Moreover, they
correspond to the minimum of the energy.
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Heat equation and heat kernel of connection Laplacian The gradient
descent method for reaching sections minimizing the energy (8) corresponds to
the heat equation of the connection Laplacian ∆E

∂ϕ

∂t
+∆Eϕ = 0 (9)

Results about heat equation and heat kernel of connection Laplacian are well-
etablished (see e.g. [2]).

Given a connection Laplacian ∆E and ϕ0 ∈ Γ (E), there exist a smooth map

called heat kernel of ∆E and denoted by K such that the operator e−t∆E

defined by

(e−t∆E

ϕ0)(x) =

∫

M

Kt(x, y)ϕ0(y) dM

satisfies the heat equation (9).
The heat kernel of a connection Laplacian has a series expansion of the form

(

1

4πt

)
n
2

e−d(x,y)2/4t Ψ(d(x, y)2)

+∞
∑

i=0

tiΦi(x, y,∆
E) J(x, y)−

1

2 (10)

where Φi(x, y,∆
E) ∈ End(Ey, Ex), n is the dimension of the base manifold M ,

and d stands for the geodesic distance on (M, g). The function Ψ is such that
the term Ψ(d(x, y)2) equals 1 if y is inside a normal neighborhood of x and 0
otherwise. At last, J are the Jacobians of the coordinates changes from usual
coordinates systems to normal coordinates systems.

The leading term of the series (10) is

(

1

4πt

)n/2

e−d(x,y)2/4t Ψ(d(x, y)2) τ(x, y)J(x, y)−1/2 (11)

where τ(x, y) is the parallel transport map on E associated to ∇E along the
unique geodesic joining x and y.

Example 6. In [22], convolution with the leading term (11) associated to the
Laplace-Beltrami operator were applied to anisotropic diffusion of color images.
It was extended in [1] to connection Laplacians with no trivial connections.

Parallel section and Harmonic map Harmonic maps between two Rieman-
nian manifolds σ : (M, g) −→ (N,Q) are defined as critical points of the Dirich-
let energy

E(σ) =

∫

M

traceg(σ
∗h) dM =

∫

M

‖dσ‖2 dM (12)

The Euler-Lagrange equations of the functional (12) are

τ(σ) : = traceg∇
T∗M⊗σ−1(TN)dσ = 0
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Hence the harmonic maps σ satisfy τ(σ) = 0. The quantity τ is called the ten-
sion field. We refer to [7] for a presentation of harmonic maps.

Note that the Dirichlet energy (12) is at the core of the Beltrami framework
of Sochen et al. (see e.g. [20]).

Theorem 1 (Konderak [13]). Let E be a vector bundle over a compact Rie-
mannian manifold (M, g) equipped with a metric h and a covariant derivative
∇E compatible with h. Let h̃ be the Sasaki metric on E associated to (h,∇E , g).
Then σ ∈ Γ (E) is a harmonic map σ : (M, g) −→ (E, h̃) if and only if it is
parallel, i.e. ∇Eσ = 0.

Hence, the sections minimizing the energy (8) are harmonic maps with respect
to the Sasaki metric on the vector bundle.

2.3 Total Variation on vector bundle

Definition 4. Let E be a vector bundle over a compact Riemannian manifold
(M, g) equipped with a Riemannian metric h, and a covariant derivative ∇E

compatible with h. We define the total variation TV of ϕ ∈ Γ (E) as

TV (ϕ) =

∫

M

||∇Eϕ|| dM (13)

Proposition 3. The critical points of (13) are the sections ϕ satisfying

−Tr∇T∗M⊗E

(

∇Eϕ

‖∇Eϕ‖

)

= 0 (14)

Proof. Let ψ be a section with compact support. We have

d

dt

(

TV (ϕ+ tψ)
)

|t=0
=

∫

M

〈 ∇Eϕ

‖∇Eϕ‖
,∇Eψ

〉

dM

= −

∫

M

〈

Tr∇T M⊗E

(

∇Eϕ

‖∇Eϕ‖

)

, ψ
〉

dM

since −Tr∇T M⊗E is the adjoint of ∇E . Then, as ψ has compact support, we
have

d

dt

(

TV (ϕ+ tψ)
)

|t=0
= 0 =⇒ −Tr∇T∗M⊗E

(

∇Eϕ

‖∇Eϕ‖

)

= 0

⊓⊔

Example 7. Let E be the vector bundle of smooth R
m-valued functions defined

on a compact domain of R
n. In others words, E is a vector bundle of rank

m equipped with the trivial connection and Euclidean scalar product over a
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compact Euclidean manifold of dimension n. Then the total variation of a section
ϕ is

TV (ϕ) =

∫

M

√

√

√

√

n
∑

i=1

m
∑

j=1

(

∂ϕj

∂xi

)2

dM (15)

Formula (15) corresponds to the total variation defined by Blomgren et al. [4].
In particular, for n = 2 and m = 1, this is the total variation of Rudin et al.
[19]. Hence, these two approaches may be viewed as the Euclidean restrictions
of the total variation we construct in (13).

3 Application to color image denoising

3.1 ROF denoising model on vector bundle: the general case

Continuous setting Let E be a vector bundle of rank 3 equipped with a
definite positive metric h and covariant derivative ∇E compatible with h over a
Riemannian manifold (M, g) of dimension 2. Let I0 ∈ BV (E) be a color image
corrupted by additive Gaussian noise of deviation σ. We propose the denoising
model

arg min
I∈BV (E)

∫

M

1

2
λ‖I − I0‖

2dΩ + ‖∇EI‖ dM (16)

where dΩ denotes the Euclidean measure on M and λ is a Lagrange multiplier
associated with the noise level.

The gradient descent for reaching solutions of (16) is

∂I

∂t
= −λ(I − I0) + Tr∇T∗M⊗E

(

∇EI

‖∇EI‖

)

, I|t=0 = I0 (17)

Discrete setting We follow the approach in [19] where forward and backward
finite difference operators are used for discretizing the trivial covariant derivative
d and its adjoint −div. The key idea is to use the discrete version of the adjoint
operator definition, which is written as follows in the context of connection
gradient

∫

M

− div η ϕ dΩ =

∫

M

〈η, dϕ 〉 dΩ

for ϕ ∈ C∞(M) and η ∈ Γ (T ∗M). Then, using forward differences for discretiz-
ing dϕ implies that div η must be discretized using backward differences.

We extend this approach by using the general definition of adjoint operator

∫

M

h(∇E∗
η, ϕ) dM =

∫

M

〈η,∇Eϕ〉 dM (18)
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for η ∈ Γ (T ∗M ⊗ E) and ϕ ∈ Γ (E). Let us give the explicit expressions in
the case of base manifold of dimension 2 and vector bundle of rank 3. Let ϕ =
∑3

j=1 ϕ
jej ∈ Γ (E) where (e1, e2, e3) is orthonormal with respect to h. Under

the forward finite difference operators for approximating dϕj , we have

∇Eϕm,n =

2
∑

i=1

3
∑

j=1

[

(ϕj
m+δi1,n+δi2

− ϕj
m,n) +

3
∑

k=1

ϕk
m,n Υ

j
ik m,n

]

dxi ⊗ ej (19)

where δ is the Kronecker symbol. Then, using the discrete form of (18) given by

∑

m,n

hm,n(∇E∗
η m,n, ϕm,n) =

∑

m,n

〈ηm,n,∇
Eϕm,n〉m,n

we obtain, for η =
∑2

i=1

∑3
j=1 η

ijdxi ⊗ ej , the expression

∇E∗
ηm,n =

3
∑

j=1





2
∑

i,k=1

(gik
m−δk1,n−δk2

ηij
m−δk1,n−δk2

− gik
m,nη

ij
m,n) +

2
∑

r,s=1

3
∑

p=1

ηrp
m,n g

rs
m,n Υ

p
sj m,n



 ej

(20)
As in the Euclidean case [19], forward finite difference operators on ∇E imply
backward finite difference operators on ∇E∗

.

3.2 ROF denoising model on vector bundle: an example

Connection gradient suitable for color image processing Let I = I1e1 +
I2e2 + I3e3 be a color image defined on a domain Ω of R

2.

We construct a surface S embedded in (R5, ‖ ‖2) parametrized by

ϕ : (x1, x2) 7−→ (x1, x2, µ I
1(x1, x2), µ I

2(x1, x2), µ I
3(x1, x2))

where µ is a strictly positive constant. Let (Z1, Z2, N1, N2, N3) be an orthonor-
mal frame field of (R5, ‖ ‖2) where Z1, Z2 ∈ Γ (TS).

Let E be the vector bundle of R
5-valued functions over the Euclidean mani-

fold (Ω, ‖ ‖2). Let ∇E be the covariant derivative on E given by the connection
1-form ω ≡ 0 in the frame (Z1, Z2, N1, N2, N3). Denoting by P the change frame
field from (e1, e2, e3, e4, e5) to (Z1, Z2, N1, N2, N3), the connection 1-form is given
in the frame (e1, e2, e3, e4, e5) by

P dP−1 (21)

As the connection 1-form ω is so(n)-valued, the covariant derivative ∇E is com-
patible with the Euclidean metric on R

5.
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Algorithm We test the denoising model (16) with this connection gradient.

The algorithm is the following:
1. Consider the (discrete) surface S parametrized by

ϕ : (m,n) 7−→ (m,n, µ I1
0 (m,n), µ I2

0 (m,n), µ I3
0 (m,n))

2. Construct an orthonormal moving frame (Z1, Z2, N1, N2, N3) using Gram-
Schmidt process where Z1, Z2 ∈ Γ (TS), and denote by P the change frame field
from (e1, e2, e3, e4, e5) to (Z1, Z2, N1, N2, N3).
3. Embed I0 into the frame (e1, e2, e3, e4, e5): (I1

0 , I
2
0 , I

3
0 ) −→ (0, 0, I1

0 , I
2
0 , I

3
0 ).

4. Compute the components of I0 in the frame (Z1, Z2, N1, N2, N3):
(J1

0 , J
2
0 , J

3
0 , J

4
0 , J

5
0 )T := P−1(0, 0, I1

0 , I
2
0 , I

3
0 )T .

5. Perform the Euclidean ROF denoising algorithm on (J1
0 , J

2
0 , J

3
0 , J

4
0 , J

5
0 )T with

stopping criteria
1

|Ω| × 3

∑

x∈Ω

‖Jt(x) − J0(x)‖
2 ≥ σ2

or
∣

∣

∣

∣

∣

1

|Ω| × 3

∑

x∈Ω

‖Jt+dt(x) − J0(x)‖
2 −

1

|Ω| × 3

∑

x∈Ω

‖Jt(x) − J0(x)‖
2

∣

∣

∣

∣

∣

≤ 0.0005

whichever happens first.
6. Compute the components of the result in the frame (e1, e2, e3, e4, e5):
(I1

t , I
2
t , I

3
t , I

4
t , I

5
t )T := P (J1

t , J
2
t , J

3
t , J

4
t , J

5
t )T , and return the function (I3

t , I
4
t , I

5
t ).

Experiments We run the algorithm on the Kodak database [12], for σ =
5, 10, 15, 20, 25. We take µ = 0.0075 for σ = 5, µ = 0.005 for σ = 10, µ = 0.0045
for σ = 15, µ = 0.004 for σ = 20 and µ = 0.0035 for σ = 25. The time step
dt is 0.1. We compare the results with the split Bregman denoising method [10]
tested online [8]. On Fig. 1, we compute the average increases of PSNR as well
as the average percent increases of Q-index over the Kodak database (we define
the Q-index of a color image as the mean of the Q-index on each component).
Results show that our method improves the Split Bregman method. On Fig. 2,
we compare the denoising methods on an image of the database. We observe
that our method preserves more the details of the image. It comes from the
choice of the moving frame (Z1, Z2, N1, N2, N3) which takes into account the
local geometry of the image.

4 Conclusion

In this paper, we introduced a generalization of the Euclidean and Riemannian
gradient operators in the context of vector bundle. We presented an applica-
tion to image denoising by replacing the Euclidean gradient in the regularizing
term of the Rudin-Osher-Fatemi denoising model by a generalized gradient on
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Fig. 1. Comparison of our method with Split Bregman. Left: PSNR increase for each
method. Right: Percent increase on Q-index for each method. Values averaged over
Kodak database.

Fig. 2. Top: Original image (left) corrupted by additive white noise with σ = 25 (right).
Bottom-left: Split Bregman denoising method. Bottom-right: Our denoising method.

vector bundle. By the gradient operator we considered, the denoising method is
decomposed into 2 steps: first, a projection of the image on the tangent and nor-
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mal parts of a surface describing the image; then, an Euclidean ROF denoising
method of the image in this moving frame. The results we got in terms of PSNR
and Q-index makes the method be suitable. In some sense, the denoising process
preserves the first order local geometry of the image. Inspired by [3] where it
is shown that curvature information is less corrupted than first order local ge-
ometry under additive Gaussian noise, we are currently investigating projections
taking into the curvature information of Riemannian manifold. Finally, we would
like to point out that the step 2 of our denoising method might be extended to
any denoising method. In particular, we expect that nonlocal denoising methods
would increase significantly both PSNR and Q-index measures.
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