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Friction and Wear during Twin-disc Experiments under Ambient and Cryogenic 

Conditions 

L. Chevalier, S. Cloupet, M. Quillien 

 

Abstract: We present a classical rolling contact apparatus where two discs roll and slide under 

a constant normal loading. Experimental results concerning bearing steel used in ambient air 

or under severe temperature conditions (Liquid Nitrogen) are presented. A simplified model 

proposed by Kalker (Fastsim) is used to identify the dynamic friction coefficient between 

these discs and to study the apparatus parameters influence on dissipated energy. Wear 

evolution is simulated using classical Archard’s law and compared to measured profiles. 

Influence of ambient conditions is highlighted by comparing friction and wear coefficients.    

Keywords: Twin-disc experiment, dynamic friction coefficient measurement, wear simulation, 

Fastsim 

 

1. Introduction 

 

Bearing track lubrication limits the dynamic friction coefficient value when the bearing balls 

are loaded. Consequently, the wear which results from this friction is also limited. In the case 

of turbopump bearings used in the space shuttle launch engine, the important loading makes 

this point very sensitive. Moreover, these bearings work in particularly harsh thermal 

environments since they are bathed in liquid oxygen (90 K) or liquid hydrogen (20 K). At 

such temperatures one is interested to know the effects of friction and wear. Because it is very 

difficult to manage lubrication at this temperature, our goal is to study the influence of the 

temperature on dynamic friction coefficient and wear factor in the absence of lubrication.  
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Twin disc apparatus is used to perform dynamic friction coefficient evolution measurements 

under constant normal load and variable slip (see Quillien & al. [1]). After testing, 

information on wear may be obtained. In this study we focus on modelling the experiment in 

order to evaluate dynamic friction coefficient and wear factor for the two situations: ambient 

temperature and cryogenic conditions (-196°C).  

First, we briefly recall the mechanical problem to solve and estimate the tangential force 

during the twin-disc experiment. Then we compare the experimental results to the simulation 

in order to discuss: (i) the evolution of the apparent friction coefficient versus longitudinal 

slip; (ii) the influence of temperature on coefficient of friction. Afterwards, we present the 

wear measurements and recall Archard’s law used for simulation. An updated Hertzian 

approach is used to take into account the wear profile evolution. Finally, we discuss the 

results of the simulation and make conclusions on the wear factor value in cryogenic or 

ambient air. 

 

2.  Dynamic friction coefficient identification 

2.1 Twin-disc apparatus description 

A twin-disc experiment is performed on two steel specimens (Fig.1) under extremely different 

conditions: ambient air at room temperature and cryogenic conditions (specimens are cooled 

with liquid nitrogen at –196°C in cryostat box). Different rotating rates are  imposed at each 

disc (controlling the rotate velocity of each brushless motor independently) to insure the same 

rolling velocity V = R1ω1 = R2ω2 or to impose a relative slip. Two belt-driven mechanical 

spindles, each of which supports 60 mm diameter specimen disks. R1 and R2 are equal to 30 

mm and ω1 and ω2 rotate at 3000 rpm. This leads to V about 9.5 m/s. Disc 1 is a cylinder but 

disc 2 is a portion of a sphere and presents a radius Rb = 30 mm at the contact zone. Each disc 

is in X105CrMo17 (AISI 440C in American designation) stainless steel. 
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Relative slip is imposed at the theoretical contact point between discs and Fig. 2 shows the 

traction coefficient defined by T/N versus longitudinal creepage (slip rate) υx as defined by 

Eq. 1 which increases regularly from 0 to 9%. At each step, slip is maintained to insure 

stability of T measurement.  

2
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υ mean
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One notices Fig.2 that T/N increases for small υx values, for higher values the ratio reaches a 

quite stable value µ = 0.6 at ambient temperature. Under cryogenic conditions the behaviour 

evolves differently. First, for small υx values the influence of temperature is obvious and 

dynamic friction coefficient reaches 0.05. The reduction of friction for low temperature is 

really significant. When creepage reaches 3% dynamic friction coefficient increases to the 

same value reached for ambient temperature. The benefit of cryogenic condition disappears. 

In order to explain the influence of longitudinal creepage on dynamic friction coefficient one 

must be sure that T/N is equal to dynamic coefficient of friction. It would equal the real 

dynamic friction coefficient if slip were occurring over the entire contact area. In the 

following, T/N ratio will be called the apparent dynamic coefficient of friction.  

2.2. Theoretical basis 

In this section, we focus on the rolling contact analysis. We briefly recall the kinematics 

relations and friction laws to be solved. Then we present the exact problem and the simplified 

one that we use for the numerical developments. In the case of two rigid bodies in contact at 

point O (x=0, y=0), the rigid sliding velocity rsV is defined by system 2: 
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Where rsxV  and rsyV  are the x-coordinate and y-coordinate of rsV , φx and φz are angular 

defects between the two bodies. Since bodies have an elastic behaviour, the relative velocity 

has a complementary term and system 2 becomes: 
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Where ),( yxw
r

 is the sliding velocity between two elastic bodies and wx and wy its 

components. u(x,y) and v(x,y) are the relative displacements in x-direction and y-direction. w 

can be divided by V and system (3) becomes: 
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υx and υy are called longitudinal (υx is also usually called “slip rate”) and lateral creepages, φ 

is the spin in the contact area and V is the speed of the theoretical contact point when bodies 

are supposed to be perfectly rigid. In our case, we want to know the tangential 

traction ),( yxτr , the normal load ),( yxp and the sliding velocity ),( yxw
r

 in the contact area. 

This problem can be solved with two approaches: first is the exact theory and the second is 

the simplified theory. According to the Coulomb’s friction laws (Eq. 5), if sliding velocity is 

equal to zero then the tangential traction is lower than friction coefficient multiplied by 

normal pressure. Otherwise the tangential traction is equal to friction coefficient multiplied by 

normal pressure. 
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u, v, w are related with τx, τy and p by the elastic behaviour laws of the two bodies. Since Love 

[2] first proposed the analytical solution of concentrated loading on a semi infinite elastic 
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body, it has been possible to establish relation between normal and tangential traction and the 

relative displacement in the contact area of two semi-infinite bodies (Johnson [3], Kalker [4], 

Middlin [5]). 

2.2.1 Initial approach: exact theory 

It has been established (see Jacobson & Kalker [6] for example) that for two quasi-identical 

bodies (same elastic material properties: G shear modulus and ν Poisson’s ratio), normal and 

tangential problems are uncoupled and relative displacements are related to tractions τx, τy and 

p by relations in Eq. 6. 
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Global G and ν are defined from the elastic coefficients for each body by: 
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Where (x, y, z) are co-ordinates in x-direction, y-direction and z-direction of point M and (x’, 

y’, z’) the co-ordinates of point M’ as presented in Fig 3.  

The third relation of Eq.6, in the case of constant curvature in the contact area, is analogous to 

the Hertz problem. Pressure distribution ),( yxp  is elliptic, and contact area is an ellipse 

where half lengths in both X and Y directions are denoted a and b and can be solved 

separately from the first two relations in Eq. 6. The tangential problem is still coupled with 

the normal problem by the friction law.  

Figure 4 shows the case of the two bodies used for the twin-disc apparatus described 

previously, with a dynamic friction coefficient µ = 0.6 and a longitudinal creepage υx = 0.2%. 

Tangential traction τx and slip wx are plotted. These results are obtained with “CONTACT” 
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software developed by Kalker which solves the global system of Eqs. 4, 5 and 6. One can 

observe that the elliptic region of contact (a and b) has the dimensions given by the Hertz 

formula. One can also clearly see the adhesive zone where wx is equal to zero and the sliding 

zone where τx is equal to µp. This first approach leads to a long CPU time.  

2.2.2 Second approach: derived from the linear Kalker theory (LKT) 

The second approach is based on FASTSIM algorithm (Kalker [7]) derived from the linear 

Kalker theory. Simulation of wear evolution during twin-disc testing involves numerous 

iterations and a simplified but quick algorithm is needed to execute the calculations in a 

reasonably short CPU time. In the Linear Kalker Theory LKT (when creepages are supposed 

small or friction coefficient extremely high) then the adhesion area is global ( 0),(
rr =yxw ) and 

one can solve system of Eq. 4 which leads to: 
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Identification with the u and v expressions in Eq.6 and Eq.8 provides the global tangential 

loading Tx and Ty and spin moment:  
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Where Cij are given by integrals and only depend on b/a and Poisson’s ratio ν. These values 

are tabulated as m and n coefficients of the Hertz problem [8]. When creepage values become 

higher (or when friction is smaller) the LKT is no longer valid. Tangential traction saturates 

near the rear edge and becomes equal to µp.  

An alternative to the prohibitive CPU time needed by the initial approach is to use the Fastsim 

algorithm as developed by Kalker. Let’s examine the proposed simplifications: the local 

stiffness is modelled as a linear relation between tangential traction and relative displacements 
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u and v (i.e. u = L.τx. and v = L. τy). The L value depends of Cij coefficient, shear elastic 

modulus G and ellipse dimensions a and b, but we must introduce three values to ensure that 

the Tx and Ty components of LKT are identical in the case of global adhesion: 
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The simplified problem to solve is expressed by the relations of Eq.11. It is easy to see that 

for an elliptic pressure distribution, the slip component will lead to infinity at the rear edge of 

the contact. This is in contradiction with Fig. 4 and one can solve this problem using a 

parabolic pressure distribution. This is an approximation that increases the maximum pressure 

Po for 25% but gives good agreement in the tangential problem case.  
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Solving the system in Eq. 11 leads to an analytical solution when spin is neglected. In the case 

of µ = 0.6 and υx = 0.2 %, the solution is plotted in Fig. 5. We have compared the two 

approaches in Fig. 4 and Fig. 5 and accuracy of the Fastsim solution is satisfactory. 

Consequently we will solve the Fastsim approximation instead of the exact system in what 

follows. 

2.3. Dynamic friction coefficient identification 

It has been shown in the previous section that when longitudinal creepage is sufficiently small 

tangential traction τx is not equal to µp over the whole contact area. Consequently, summing 

τx on this area gives a tangential global load T in the X direction which is lower than µN: the 

ratio T/N is an apparent friction coefficient denoted µa. Figure 6 shows this apparent dynamic 

friction coefficient versus longitudinal creepage for a µ value set to 0.6. One can see that 
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sliding becomes complete over the contact area for longitudinal creepage higher than 1%. 

Even if the apparent friction coefficient gives a close approximation, one can see that it does 

not superpose the measured points. This means that the real dynamic friction coefficient 

varies for small values of creepage. 

To conduct dynamic friction coefficient identification we propose the chart in Fig.7. Each 

curve is obtained for a constant dynamic friction coefficient µ varying from 0.05 to 0.7. The 

light line separates the small creepage values where an adhesive zone remains (local stick 

area) on the contact area (in this case the slip is not global), and the higher values of υx where 

sliding is complete on the contact area and the apparent dynamic friction coefficient is over 

98% of the real value. The light line is obtained by plotting each point where µa equals 98 % 

of µ. 

One can see that experimental data always appear on the saturated zone of the apparent 

dynamic friction coefficient excepted for the very first point in ambient air conditions. In case 

of cryogenic condition, friction coefficient value is smaller and saturation appears for very 

small values of longitudinal creepage. In both cases, this means that the sliding area appears 

to be the total elliptic area of the contact zone for the measured points. Apparent dynamic 

friction coefficient given by T/N is in fact, the real dynamic coefficient of friction. To 

summarise our conclusions, the foregoing measurements have shown that:  

(i) The dynamic friction coefficient depends on the longitudinal creepage value. 

For very small values, friction is an increasing function of creepage. This 

observation may appear to be a strange remark since it is classically admitted 

that the adhesive friction coefficient is higher than the sliding dynamic 

coefficient of friction. The steady state rolling calculation cannot provide the 

static solution so we shall not further discuss on this first remark.  
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(ii) For high creepage values the dynamic friction coefficient is quite constant 

(from 0.55 to 0.62 at ambient temperature and from 0.05 to 0.07 under Liquid 

Nitrogen).  

(iii) Cooling the rolling contact with Liquid Nitrogen reduces significantly the 

sliding dynamic friction coefficient (about 10 times) but when sliding becomes 

greater (about υx = 5%) the reducing effect of Liquid Nitrogen on the friction 

coefficient vanishes. 

This last remark requires a additional comment. The test has been repeated many times and 

this “instability” of the friction coefficient always appears more or less at the same creepage 

value. Some thermal effect may be in competition with the liquid nitrogen cooling . If one 

could be able to quantify dissipated energy during the test it might be possible to quantify the 

associated rise of temperature . This is point is developed in the final section.  

The stick–slip partition of the contact area in steady state rolling has an impact on  dissipated 

power. Wear occurs and contact profiles fluctuate during the test. In the next section, we will 

present the updating of the solid curvatures during the twin-disc test and will simulate both 

wear evolution and temperature increase to conclude on the “instability” presented above. The 

method used for wear simulation and other very similar methods have already been presented 

in the literature (see [9], [10], [11] for example). 

3. Wear simulation analysis 

3.1 Loading history and wear measurement 

During the twin-disc experiment, a constant normal load N (N = 72 N) is applied but 

longitudinal creepage υx and the friction coefficient vary following steps shown on Fig. 8 for 

the two environments. Each step of υx is imposed for 5 iterations except the two last steps for 

ambient air. One iteration corresponds to 4200 revolutions of each disc. These diagrams 
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present the paths followed in friction coefficient and in longitudinal creepage during 

simulations in ambient cryogenic and ambient air. In the previous section we identified a 

friction coefficient value µ for each one of these steps. Because friction coefficient µ and 

longitudinal creepage υx influence dissipated power in the contact surface, they are factors 

governing wear evolution. It is not surprising to observe that the rolling zone of the discs was 

modified by the experiment.  

Figure 9 shows the profile measured after the experiment for the two environments. One can 

observe that both depth and width of the wear profile are smaller for ambient cryogenic than 

for ambient air condition. This is logical if we consider that the dynamic friction coefficient is 

lower for a considerable duration of the experiment. Nevertheless, the magnitudes of wear 

depth fall within the same range of values (6 µm instead of 4.4 µm with liquid nitrogen) and 

the width wear profile are smaller in ambient cryogenic than in ambient air (15.1 mm against 

18 mm). The values of υx over 3% greatly effects the wear process. In order to compare both 

wear evolutions, we performed numerical simulation of the wear process. At each step of the 

simulation the increase of temperature has been evaluated. 

3.2 Updated Hertzian approach for wear simulation 

A model for material loss due to the cyclic rolling contact loading is provided by Archard’s 

law [12]. A similar form was proposed by Zi Li & Kalker [11] and the mathematical 

expression is given by Eq.12. 

TL
H

K
W =            (12) 

W (m3) is the volume of wear, L (m) is the sliding length of the abrasive particle, T (N) is the 

tangential load and H (N/m2) is the material hardness. Micro-hardness have been done and H 

= 700 Hv. In Eq.12, K is a dimensionless coefficient characteristic of the materials in contact. 

Simple microscopic interpretation of the “Archard’s factor” K is frequently given (see Felder 
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[13] or François & al. [14] for example) which suggests a relation between the factor K and 

the dynamic friction coefficient µ. In that way, a low dynamic friction coefficient leads to 

very small wear because of slight dissipated power during slip coupled with a small wear 

factor. We will test this assumption in the following. 

Tangential dissipated work is calculated by the product T times L. In an instantaneous form of 

this model, the wear rate (m3/s) is directly proportional to the dissipated power Pd as defined 

in Eq.13. 

dP
H

K
W =&            (13) 

Pd is not uniformly distributed over the contact area and it is necessary to calculate the 

tangential surface-traction distribution τ and the sliding velocity wg at each point on the 

contact area to specify the distribution of dissipated energy per unit surface. We define the 

wear depth rate u& (m/s) by Eq.14. 

g

dW K
u w

dS H
τ= =

&
&           (14) 

During a single pass of the roller on the cam track, the increment of the wear depth is obtained 

by an integration over the time (t) of the wear depth rate from zero to ∆t = 2a(y)/V. Where V 

is the rolling velocity and 2a(y) is the length of the contact stripe at abscise y as shown in Fig. 

10. This yields to the incremental wear depth per roller passage δu/δn given by Eq.15 where 

Pl(y) is the dissipated power per unit length. 

)(
)(

yP
HV

K

n

yu
l=

δ
δ

          (15) 

Pl(y) is calculated by integration over x (rolling direction) of tangential traction τ(x,y) times 

sliding velocity w(x,y). Those quantities are inputs for the wear simulation software. For each 

step of the simulation (one bar in the Fig.8 chart) wear is calculated from the dissipated power 

per unit length with Eq.15. The best circle to fit the new profile is determined using a classical 
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least square distance method. Principal curvatures are updated and a new Fastsim calculation 

is carried out. The evolution of wear profile can be estimated step by step. 

3.3 Wear law identification 

The wear factor K is unknown and must be identified from the experimental data. Different 

methods (Newton-Raphson, Monte-Carlo ...) can be used to manage this identification. We 

implement the following identification procedure by dichotomy:  

(i) K0 and K1 values are chosen arbitrarily but these two values must include the solution 

K. Then we define the solution K as it being the mean of K0 and K1. 

2
10 KK

K
+

=              (16) 

The principle of this method is to reduce the interval [K0 K1] to converge and to have 

the solution K0 = K1 =K 

(ii) The wear simulation is managed with the K value defined by Eq. 16 following the 

conditions defined by Fig. 8. A wear profile )(yu s  is obtained and we define Us as the 

minimum of )(yu s . Us is compared to the minimum Um of wear measures.  

(iii) An error Er(%) is defined by Eq. 17: 

100(%) ×
−

=
m

sm
r

U

UU
E            (17) 

(iv) If Er (%) < 1% then the calculation stops, otherwise  

if Us > Um   →  the upper limit of the interval [K0 K1] was replaced by K: K1 = K 

otherwise  →   the lower limit of the interval [K0 K1] was replaced by K: K0 = K 

This procedure, summarised in Fig. 11, continues until the condition Er < 1% is satisfied. 

Using such a procedure for the ambient air case, we have identified the K value of 9.89.10-4.  

Wear simulation in ambient cryogenic is then carried out. Figure 12 shows the maximum 

depth of cryogenic conditions is accurately modelled with the same K value. This result is 
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important because it shows that the wear process is not influenced by the temperature and 

only depends on the two materials. We believe that this conclusion must be accepted with 

caution. We have here an identification obtained from on a global process where large 

differences occur between the friction coefficient at the beginning of the Liquid Nitrogen test 

(about 0.05) and the second part of the test where the friction coefficient rises up to 0.5.  

Figure 12 shows that the wear evolution really begins after 2000 sec., which is the moment 

where the friction coefficient increases and becomes equal to the one measured in ambient air 

condition. This rise in the friction coefficient in cryogenic conditions may be due to an 

increase in temperature at the contact point. Therefor then is a need to model the thermal 

evolution originating from the dissipated power during rolling.  

Assuming that the thermal problem is axisymetric and that the temperature is constant over 

the thickness of the disc, the temperature is only a function of the radius r and time t  The heat 

transfer equation yields to Eq.18.  

[ ])(
1)(

∞−−=
∆

∆
TTShP

Cvt

tT
wcd λ

ρ
          (18) 

T  is the mean temperature inside the disc at time t, Tw is the wall temperature on the external 

radius of the disc r=R and ∞T  is the temperature of the external ambient. C is the heat 

capacity, v is the volume of disc, ρ is the disc density, S is the exchange surface, λ is the 

thermal conductivity and hc is the forced convection exchange coefficient.  

In order to estimate the contact temperature during the twin-disc test, we assume thatT has 

the same order as wT . Eq. 18 can then be solved step by step and yields Eq. 19.  

[ ])( 11 ∞++ −−∆+= TTShP
Cv

t
TT icdii λ

ρ
       (19) 

Ti+1 is computed at each time step i. ∞T will be set to the room temperature for the  ambient air 

test or to –196°C for the cryogenic condition. This calculation of the temperature evolution 
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necessitates a previous calculation of the power dissipated by rolling at each step of the 

iterative numerical simulation managed to compute wear evolution. 

The temperature evolution for ambient conditions or cryogenic conditions is given on Fig.13. 

It appears that the temperature increase during the ambient air test is about 10 °C. One can 

note that the increase in temperature is nearly the same value as for the cryogenic conditions 

and cannot explain the instability in the friction coefficient chart. We can observe a fall of 

temperature near 4500 sec. in Fig. 13-b. This fall due to the decrease of the friction coefficient 

imposed (Fig.8) in cryogenic conditions, and thus this can be explained by the low value of 

dissipated power in regard of a small temperature growth. 

Figure 14 shows that the wear profile obtained by numerical simulation compares favourably  

the depth of the measured wear profile of the cryogenic test. This is already a good point 

because the wear factor has been identified from the ambient air test. One can observe that the 

wear width is too small compared to the measured profile. This is certainly the consequence 

of the procedure used to update curvatures at each step of the simulation and can be improved 

by using a non linear wear law or by developing a semi-hertzian procedure as proposed by Zi 

Li & Kalker [15] or by Ayasse & Chollet  [16]. 

4. Conclusions 

Experimental data obtained during twin-disc tests managed under ambient air and cryogenic 

conditions have been analysed using a simplified modelling of steady state rolling. This 

analysis enables accurate identification of slip influence on the friction ratio between discs. 

The influence of temperature conditions has also been discussed and it appears that the 

cooling contact yields to a spectacular decrease of the friction ratio compared to ambient 

temperature conditions. Unfortunately, this low value is not stable and for 5% relative slip, the 

friction coefficient rises to the nearly same value than at ambient temperature. It has been 
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shown that dissipation is not responsible for this instability, and at this time there is no 

explanation for its existence.   

Further investigation of the wear evolution that occurs during the test has been provided using 

a classical Archard model. It appears that using the same wear factor at ambient air or 

cryogenic conditions enables an accurate prediction of the wear profile depth at the end of the 

test. Nevertheless, a semi Herztian approach must be implemented to be able to predict also 

the wear profile width.  

Nomenclature 

a,b  half length of elliptical surface (m) 
a(y)  half length of contact band (m) 
Cij  Kalker coefficients for elliptical contact 
C  heat capacity 
E  Young modulus (Pa) 
Er  Error between Us et Um (%) 
G  shear elastic modulus (Pa) or modulus of rigidity 
H  material hardness (N/m²) 
hc  forced convection exchange coefficient 
K  non-dimensional coefficient that characterized a couple of materials: wear coefficient 
Lij  value which depends of Cij 
Mz  spin momentum around z-direction 
N  normal load (N) 
n  number of roller passage 
Po  Hertz pressure (Pa) 
Pd  dissipated power (W) 
Pl  dissipated power per unit length (W/m) 
p(x,y)  pressure distribution (Pa) 
L  sliding length of the abrasive particle (m) 
Ri  radius of disc i (m) 
Rb  radius of spherical disc (m) 
T  tangential load (N) 
Tx  tangential load in x-direction 
Ty  tangential load in y-direction 

∞T   temperature of the external ambient 

Tw  wall temperature on the external radius of the disc 
u&   wear depth rate (m/s) 
u  deepness of wear (m) 
u
r
  displacement field : [ ]),(),,(),,( yxwyxvyxuu =r  

Us  minimum wear profile simulation us(y) (m) 
Um  minimum of wear measure (m) 
V  rolling velocity (m/s) 
Vd  Volume of disc (m3) 
Vmean  mean of rolling velocity (m/s) 

rsV   rigid sliding velocity (m/s) 

Vrsx, Vrsy  x-coordinate and y-coordinate of the rigid sliding velocity (m/s)  
W  volume of wear (m3) 

W&   wear rate (m3/s) 
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w(x,y)  sliding velocity (m/s) 
wx  sliding velocity in x-direction (m/s) 
wy  sliding velocity in y-direction (m/s) 
 
 
Greek letters 

λ  thermal conductivity 
µ  friction coefficient 
µa  apparent friction coefficient 
ν  Poisson’s ratio 
υx  longitudinal creep coefficient 
υy  transversal creep coefficient  
τ(x,y)  tangential traction (Pa) 
τx  tangential traction in x-direction (Pa) 
τy  tangential traction in y-direction (Pa) 
φ  spin in the contact area (m-1) 
φx, φy  angular defect of positioning body (rad) 
ωi  rotating velocity (rad/s) of disc i 
 

List of figures 

Figure 1: Twin-disc apparatus. Rotation rates are imposed to both discs and slip can be controlled. Normal load 
N between the two discs is constant during the test and tangential load T is measured continuously. Rotation rate 
is about 3000 rpm. The velocity of the contact point is about 9.5 m/s. 

Figure 2: Longitudinal creep (slip rate) and traction coefficient T/N versus time respectively imposed and 
measured during the twin disc experimentation in ambient air and in cryogenic ambient 
Figure 3: Potential contact area considered to solve the exact problem. d(MM’) is the relative displacement 
between two points M and M’. 

Figure 4: Reference solution of the steady state rolling contact computed from the exact problem. One can 
observe the linearity of the relative speed wx in the slipping zone (a). In the adhesive zone, one can observe the 
non linear evolution of tangential traction τx (b). 

Figure 5: Steady state rolling contact twin disc problem solved using Fastsim approximation. One can observe a 
large adhesive zone (larger than the reference solution of Fig. 4). The relative speed wx is linear in the slipping 
zone (a). The tangential traction τx is linear in the adhesive zone (b). Both distributions are very similar to the 
reference solution and give less than 1% difference on the dissipated power Pd during rolling. 

Figure 6: Apparent coefficient of friction µa versus longitudinal creep for µ = 0.6. Experimental values of 
ambient air test are superposed (diamonds) and follow approximately the same evolution. The partition between 
slipping zone and adhesive zone is illustrated for several longitudinal creepage values. When slip occurs on the 
complete contact area the apparent coefficient of friction µa is equal to the real coefficient of friction µ. 

Figure 7: Friction coefficient versus longitudinal creep identification chart. Guide lines are plotted for µ values 
varying from 0.05 to 0.7 step of 0.05, measured coefficient of friction are given by diamonds for air conditions 
and triangles for cryogenic conditions. One can observe that the coefficient of friction is very small in cryogenic 
conditions until longitudinal creepage remains less than 3%. 

Figure 8: Modelling of the creepage history during the wear experiment and corresponding modelled coefficient 
of friction used for the numerical simulation of the wear evolution during the test. In Ambient air case and in 
liquid Nitrogen case. The second experiment duration is a little shorter. 

Figure 9: Rolling zone profile for disc 1 after the experiment for N = 72N in ambient air (top) and in Liquid 
nitrogen condition (bottom). One can see that wear depth is lower for cryogenic condition than for ambient air 
condition, which is easily justified by the lower value of the mean friction ratio during the test and the smaller 
duration of the same test. 

Figure 10: Description of the contact area in Hertzian problem. The rolling direction is in x-direction 

Figure 11: Presentation of the algorithm which was used to identify the wear coefficient K 
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Figure 12: Maximum wear depth during the twin disc test. These curves are obtained by numerical simulation 
for the two cases (ambient temperature and liquid nitrogen) using a unique wear factor (no dependence of 
temperature on the wear law). 

Figure 13: Temperature evolution during twin-disc experiment (numerical simulation). Case (a) ambient air 
condition, T∞ = 20°C. Case (b) cryogenic condition, T ∞

 = -196°C. In both cases increase of temperature does not 
exceed 10°C. This small increase is not sufficient to explain friction ratio instability during the cryogenic test.  

Figure 14: Measured wear of cylindrical disc profile compared with the result of numerical simulation 
(cryogenic condition case). The maximum depth is well reproduced but the wear width is under estimated by the 
numerical simulation. 
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Figure 1: Twin-disc apparatus. Rotation rates are imposed to both discs and slip can be controlled. Normal load 
N between the two discs is constant during the test and tangential load T is measured continuously. Rotation rate 

is about 3000 rpm. The rolling velocity of the contact point is about 9.5 m/s. 



 
 
 

 
 

Figure 2: Longitudinal creep (slip rate) and traction coefficient T/N versus time respectively imposed and 
measured during the twin disc experimentation in ambient air and in cryogenic ambient. Ambient air test is 

marked by (o) and cryogenic ambient test is marked by (x).  
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Figure 3: Potential contact area considered to solve the exact problem. The distance d(MM’) between two points 

M and M’ is noted ‘r’ in the text: d(MM’) = 22 )'()'( yyxxr −+−= . 
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Figure 4: Reference solution of the steady state rolling contact computed from the exact problem. One can 
observe the linearity of the relative speed wx in the slipping zone (a). In the adhesive zone, one can observe the 

non linear evolution of tangential traction τx (b). 
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Figure.5: Steady state rolling contact twin disc problem solved using Fastsim approximation. One can observe a 
large adhesive zone (larger than the reference solution of Fig. 4). The relative speed wx is linear in the slipping 
zone (a). The tangential traction τx is linear in the adhesive zone (b). Both distributions are very similar to the 

reference solution and give less than 1% difference on the dissipated power Pd during rolling. 
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Figure 6: Apparent coefficient of friction µa versus longitudinal creep for µ = 0.6. Experimental values of 
ambient air test are superposed (diamonds) and follow approximately the same evolution. The partition between 
slipping zone and adhesive zone is illustrated for several longitudinal creepage values. When slip occurs on the 

complete contact area the apparent coefficient of friction µa is equal to the real coefficient of friction µ. 
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Figure 7: Friction coefficient versus longitudinal creep identification chart. Guide lines are plotted for µ values 
varying from 0.05 to 0.7 step of 0.05, measured coefficient of friction are given by diamonds for air conditions 
and triangles for cryogenic conditions. One can observe that the coefficient of friction is very small in cryogenic 

conditions until longitudinal creepage remains less than 3%. 
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Figure 8: Modelling of the creepage history during the wear experiment and corresponding modelled coefficient 
of friction used for the numerical simulation of the wear evolution during the test. In Ambient air case and in 

liquid Nitrogen case. The second experiment duration is a little shorter. 



 

 

Figure 9: Rolling zone profile for disc 1 after the experiment for N = 72N in ambient air (top) and in Liquid 
nitrogen condition (bottom). One can see that wear depth is lower for cryogenic condition than for ambient air 
condition, which is easily justified by the lower value of the mean coefficient of friction during that test and the 

smaller duration. 
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Figure 10: Description of the contact area in Hertzian problem. The rolling direction is x-direction 
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Figure 11: Presentation of the algorithm which was used to identify the wear coefficient K. 
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Figure 12: Maximum wear depth during the twin disc test. These curves are obtained by numerical simulation 
for the two cases (ambient temperature and liquid nitrogen) using a unique wear factor (no dependence of 

temperature on the wear law). 
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Figure 13: Temperature evolution during twin-disc experiment (numerical simulation). Case (a) ambient air 

condition, T∞ = 20°C. Case (b) cryogenic condition, T ∞
 = -196°C. In both cases increase of temperature does not 

exceed 10°C. This small increase is not sufficient to explain coefficient of friction instability during the 
cryogenic test. 
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Figure 14: Measured wear of cylindrical disc profile compared with the result of numerical simulation 
(cryogenic condition case). The maximum depth is well reproduced but the wear width is under estimated by the 

numerical simulation. 
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