
HAL Id: hal-00782354
https://hal.science/hal-00782354

Submitted on 30 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Experiment on Parallel Model Checking of a CTL
Fragment

Rodrigo Tacla Saad, Silvano Dal Zilio, Bernard Berthomieu

To cite this version:
Rodrigo Tacla Saad, Silvano Dal Zilio, Bernard Berthomieu. An Experiment on Parallel Model Check-
ing of a CTL Fragment. 10th International Symposium, ATVA 2012, Automated Technology for
Verification and Analysis, Oct 2012, Thiruvananthapuram, India. pp.284-299, �10.1007/978-3-642-
33386-6_23�. �hal-00782354�

https://hal.science/hal-00782354
https://hal.archives-ouvertes.fr

An Experiment on Parallel Model Checking
of a CTL Fragment?

Rodrigo T. Saad, Silvano Dal Zilio and Bernard Berthomieu
{rsaad, dalzilio, Bernard.Berthomieu}@laas.fr

CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse France
Univ de Toulouse, LAAS, F-31400 Toulouse, France

Abstract. We propose a parallel algorithm for local, on the fly, model
checking of a fragment of CTL that is well-suited for modern, multi-core
architectures. This model-checking algorithm takes benefit from a paral-
lel state space construction algorithm, which we described in a previous
work, and shares the same basic set of principles: there are no assump-
tions on the models that can be analyzed; no restrictions on the way
states are distributed; and no restrictions on the way work is shared
among processors. We evaluate the performance of different versions of
our algorithm and compare our results with those obtained using other
parallel model checking tools. One of the most novel contributions of this
work is to study a space-efficient variant for CTL model-checking that
does not require to store the whole transition graph but that operates,
instead, on a reverse spanning tree.

1 Introduction

Several model-checking methods address the state-explosion problem from a
purely algorithmic perspective, for instance with the use of abstractions on the
set of states (such as stubborn sets or symmetries) or symbolic techniques. De-
spite the fact that considerable progress has been made at the theoretical level,
there are still classes of systems that cannot benefit from these advanced meth-
ods, like for example models that rely on real time constraints or on dynamic
priorities. In this case, it is interesting to take benefit from the computation
power—and increased amount of primary memory—provided by multi-processor
and multi-core computers in order to handle very large state spaces.

In this paper, we propose a parallel algorithm for local, on the fly, model
checking of a fragment of CTL that is well-suited for modern, multi-core archi-
tectures. We target shared-memory computers with a moderate number of cores
(say 4 to 64) operating on a large shared memory space (typically from 16GB
to 1TB of RAM). This description fits many available mid-range servers, but is
also quite close to tomorrow’s mainstream desktop computers.

Our model-checking algorithm takes benefit from a parallel state space con-
struction algorithm defined in a previous work [11] and share the same principles.

? This work was partially supported by JU Artemisia project CESAR, AESE project
Topcased and Région Midi-Pyrénées

First, we make no specific assumptions on the models that can be analyzed (we
only assume that we know how to compute the successors of a given state and
test them for equality). Second, we put no restrictions on the way states are
distributed: in our solution, every process keeps a local share of the global state
space and we do not rely on an a-priori static partition of the states. Finally,
we put no restrictions on the way work is shared among processors; this means
that our algorithm plays nicely with traditional work-sharing techniques, such
as work-stealing or stack-slicing.

In this paper, we extend this state space construction algorithm by adding
model checking capabilities. While the leading parallel model-checking tools are
based on LTL model-checking, (see Sect. 5) we advocate the use of CTL. The
choice of CTL derives from a number of desirable properties that we want for
our parallel algorithm.

First, it must take advantage of parallelism and be compatible with our
parallel state space generator. For this reason, the logic should preferably be
branching time rather than linear time since model checking algorithms for linear
time logics are strongly tied to depth-first-search (dfs) exploration techniques;
and that dfs algorithms are “inherently sequential” (they belong to the class
of P-complete problems [8,3]). Parallel techniques for LTL model checking have
been quite investigated however [1,6] so we will compare our approach with these.

Secondly, we want an on-the-fly algorithm; only states essential for answer-
ing the model-checking problem should be enumerated. For this reason, model
checking should be local rather than global; properties will be interpreted at the
initial state rather than at all states.

Next, because the full state space may have to be enumerated (e.g. when
checking a property that is true), we want it to be space-efficient. Hence, we
shall accept that a small amount of information is recomputed every time it is
needed rather than kept in storage.

For all these reasons, we decided to select a fragment of Computation Tree
Logic (CTL) with state subformulas restricted to atomic propositions. This frag-
ment strictly includes the logic used by popular tools like Uppaal. Though obvi-
ously less expressive than CTL, it implements a good trade-off between expres-
siveness and cost of verification when used to check large state spaces. While not
yet implemented in our tool, it is possible to adapt our algorithm to model-check
full CTL; more expressive logics will be considered in further work.

Contributions. We follow the classical approach of Clarke and Emerson [2] for
CTL model-checking. During model-checking, we label each state of the system
with the subformulas that are true at this given state. Labels are computed
iteratively until we reach a fix-point, that is until we cannot add new labels. We
consider two variants of this algorithm that differ by the amount of information
on the transition relation that is stored. Both variants have two passes: a forward
pass performs a constrained exploration of the state graph in which we start
labeling each state with local information; a second, backward pass, propagates
information towards the root of the state graph and checks if the resulting graph
admits an infinite path.

In the first version of the algorithm, that we call RG (for reverse graph), we
assume that, for every reachable state, we have a constant time access to the
list of all its “parents”. In other words, we store the reverse transition relation
of the state space. Algorithm RG is simply a parallel version of the algorithm
in [2] that uses our parallel state space construction method. Our experimental
results show that, even with this simple approach, we obtain a very good parallel
implementation (that is with a good speedup) and a very good model-checking
tool (that is with a good execution time when compared with other tools on a
similar setup).

In the second version, we assume that we have direct access to only one of the
parents, meaning that we may have to recompute some transitions dynamically.
We call this second version RPG, for reverse parental graph. The advantage of
the RPG version is to save memory space. Indeed, if we use the symbol S to
denote the number of reachable states, the RG algorithm as a space complexity
in the order of O(S2) in the worst-case, while it is of the order of O(S) for
the RPG version. We show, in our benchmarks, that the RPG version allows to
compute bigger examples without sacrificing execution time.

Outline of the paper. In the next section, we summarize the parallel state space
generation algorithm [11] that is used in our work. The model checking algo-
rithms are defined in Sect. 3 using pseudo-code, while our parallel implementa-
tion is described in Sect. 4. Before concluding, we discuss the related work and
compare our performances with the DiVinE[1] tool, a state of the art parallel
model checker for LTL.

2 Parallel State Space Generation

State space generation is often a preliminary step for model checking behavioral
formulas. This is a very basic operation: take a state that has not been explored;
compute its successors and check if they have already been found before; iterate
until there is no more new state to explore. Hence, a key point for performance
is to use an efficient data structure for storing the set of generated states and
for testing membership in this set. In [11], we propose an algorithm for parallel
state space construction based on an original concurrent data structure, called
a localization table (LT), that aims at improving spatial and temporal balance.

This approach is close in spirit to algorithms based on distributed hash tables,
with the distinction that states are dynamically assigned to processors; i.e. we
do not rely on an a-priori static partition of the state space. In our solution,
every process keeps a share of the global state space in a local data structure.
Data distribution and coordination between processes is made through the LT ,
that is a lockless, thread-safe data structure. The localization table is used to
dynamically assign newly discovered states and can be queried to return the
identity of the processor that owns a given state. With this approach, we are able
to consolidate a network of local state repositories into an (abstract) distributed
one without sacrificing memory affinity—data that are “logically connected”

and physically close to each other—and without incurring performance costs
associated to the use of locks to ensure data consistency.

The performance of our state space construction algorithm was evaluated on
different benchmarks and compared with the results obtained using other solu-
tions proposed in the literature. A first implementation of our algorithm showed
promising results as we observed performances that are consistently better—both
in terms of absolute speedup and memory footprint—than with other parallel
algorithms. For example, this algorithm does consistently better than algorithms
based on the use of static partitioning or than a similar approach based on the
concurrent hash map implementation provided in the Intel Threading Building
Blocks (TBB) library.

State space generation has a direct impact on the performance of the model-
checking algorithm. For one thing, state space generation alone is enough to
model-check reachability properties (of the form A2(φ)). Moreover, for more
complicated properties (see our benchmark results in Sect. 4), the time needed
to explore the state space still makes up a big part of the model checking time.

3 Parallel Model Checking for a CTL Fragment

We build our model checking algorithm on top of the parallel state space gen-
eration algorithm of [11], described in the previous section. Our other design
choices follow from our goal to target models with very large state spaces. More
particularly, we choose to restrict ourselves to a fragment of CTL and to disal-
low the nesting of operators; that is, every subformula—denoted φ, ψ, . . .—is a
(boolean composition of) atomic propositions.

The logic used for model-checking essentially relies on three operators: Exist
Until (EU), E (ψ ∪ φ), that is true if there exists a trace (a path) in the state
space such that ψ has to hold until, at some position, φ holds; Always Until
(AU), A (ψ ∪ φ), that is true if the “until condition” holds on every trace; and
finally the leadsto formula, ψ ; φ, that is true if, for every trace, whenever ψ
holds then necessarily φ will hold later. The last property can be expressed as
A2(¬ψ∨A3(φ)) in CTL. From the interpretation given in Table 1, we see that
these operators define an expressive fragment of CTL (and also LTL).

Model-checking procedures for these operators will be described in Sections 3.2
to 3.4. In our implementation, we consider two variants—RG and RPG—of the
algorithms. Both versions are based on two elementary phases: (1) a forward
constrained exploration of the state graph using the state space construction
discussed in Sect 2; followed by (2) a backward traversal and label propagation
phase ensuring that the resulting graph is acyclic.

The backward traversal phase is only needed for AU and leadsto formulas,
since checking EU formulas amounts to performing a constrained exploration of
the state space (for instance, the formula A2(φ) is true if no state satisfies ¬φ,
which can be checked during the exploration phase). Consequently, our algorithm
is not completely on-the-fly for these cases because the presence of a cycle is
detected after the (constrained) state space is constructed, delaying the discovery

of an invalid path. The last column of Table 1 indicates, for each formula, whether
the backward phase is necessary.

Formulas Interpretation in CTL Forward Backward

E (ψ ∪ φ) E (ψ ∪ φ) x

A (ψ ∪ φ) A (ψ ∪ φ) x x

E3(φ) E (True ∪ φ) x

A3(φ) A (True ∪ φ) x x

E2(φ) ¬A3(¬φ) x x

A2(φ) ¬E3(¬φ) x

ψ φ A2(¬ψ ∨A3φ) x x

A2A3(φ) true φ x x

Fig. 1. List of Supported Formulas.

3.1 Concepts and Notations

We assume that we perform model-checking on a Kripke System KS (S,R, s0).
We will use, interchangeably, the notation KS for the Kripke structure (S,R, s0)
and G for the directed graph G(S,R), also called the state graph. In the RPG
version of our algorithm, we make use of the Parental Graph of a Kripke System,
that is a reverse spanning tree of the (currently computed) state graph.

Definition 1 (Parental Graph). The directed graph, PG(Vp, Ep), is a parental
graph of G(V,E) if: (1) PG if a subgraph of G that has the same vertices, that
is Vp = V and Ep ⊆ E, and (2) for every vertex v ∈ V , if v is not the root of G
then v has an in-degree of one in PG.

A simple way to obtain a parental graph, PG, when exploring the state
graph, G, is to keep for every state, s, a vertex to the state in G that was used
to generate s (and forget the others). The parental graph has nice properties. If
PG is a parental graph of G and G is acyclic then so is PG. Moreover, the set
of leaves of PG subsumes that of G; a leaf of G is necessarily a leaf of PG.

In the remainder of the text, the expression |S| is used to denote the cardinal-
ity of S (the number of reachable states), while |R| is the number of transitions.
We assume that every state s ∈ S is labeled with a value, denoted suc(s), that
records the out-degree of s in KS . The value of suc(s) is set during the forward
exploration phase. Initially, suc(s) is the cardinality of the set of successors of s
in KS , that is suc(s) = |{s′ | s R s′}|. We decrement this label during the back-
ward traversal of the state graph; when the value of suc(s) reaches zero, we say
that s is cleared from the state graph. In our pseudo-code, we use the expression
suc(s).dec() to decrement the value of the label suc for the state s in KS , and
the expression suc(s).set(i) to set the label of s to some integer value i.

When we deal with the reverse parental graph version of our algorithm,
we assume that we implicitly work with one particular parental graph of KS ,
denoted PKS . In this case, we assume that every state s ∈ S is also labeled

with a value, denoted sons(s), that records the out-degree of s in KS . We also
label each state s ∈ S with a state, denoted father(s), that is the (unique)
predecessor of s in PKS . (The label father(s) makes sense only if s is not the
initial state, s0, of KS .) Initially, the value of sons(s) is set to zero. The label will
be incremented during the forward exploration, when we build PKS (that is, we
select the transitions from KS that will be stored in PKS). This operation is
denoted sons(s).inc() in our pseudo-code. We will decrement the value of sons(s)
during the backward traversal phase.

3.2 Checking EU properties

Checking EU properties for the initial state is standard, except that we perform
the forward phase concurrently, on all states. this can be done on the fly in a
single, forward pass. To check the formula E (ψ ∪ φ), we explore the state space
until a state is found such that either (1) φ holds and no more state has to be
explored, or (2) ¬ψ ∧ ¬φ holds. In the first case, the algorithm reports success;
all states obeying φ terminate a (possibly empty) path of states rooted at the
initial state and all obeying ψ. In the second case, we have found a counter-
example; a state obeying neither ψ nor φ, meaning that the property is false
at the initial state. The check function is the same for the two versions of our
algorithm, whether based on the reverse graph or the reverse parental graph
data structure.

1 function BOOL check a (ψ : pred , φ : pred , s0 : s t a t e)
2 Stack A ← new Stack (∅) ;
3 // Start with the forward exploration
4 i f f o rward check a (ψ , φ , s0 , A) then // If all forward constraints are respected
5 return backward check a (s0 , A) //start the backward phase
6 else return FALSE // We found a problem during the forward exploration

Listing 1.1. Algorithm for the formula A (ψ ∪ φ)—function check a

3.3 Checking AU Properties

For checking the formula A (ψ∪φ), as for EU properties, we stop exploring a path
when we find a state such that (1) φ holds or (2) ¬ψ∧¬φ holds. If an occurrence
of case (2) is found, we have a counter-example to the property false. Otherwise,
we start backward traversal phase in order to detect cycles. Indeed, the property
A (ψ ∪ φ) is false if there is an infinite path of states (starting from s0) that
all obey ψ. We call this second phase the clearing phase, because it consists in
recursively removing leaf nodes from the graph. This process ends either when
the only remaining state is the initial state (meaning that the property is true),
or when no states with out-degree zero can be found (in which case we know
that there is a cycle). The validity of this method follows from the fact that a
finite Directed Acyclic Graph (DAG) has at least one leaf.

We give the pseudo-code for checking A (ψ ∪ φ) in Listing 1.1. The inputs
are the atomic properties ψ and φ and the initial state s0. The algorithm makes
use of a stack A to collect the states at which φ holds during the forward explo-
ration phase. The procedure uses two auxiliary functions, forward check a and

backward check a, that depends on the version of the algorithm. We start by
defining these helper functions for the Reverse Graph version.

Algorithm for the Reverse Graph version (RG). We give the pseudo-code for the
function forward check a (for the RG version) in Listing 1.2. The last parameter
of this function, A, is a stack that is used to collect the leaf nodes of the state
graph, that is the states where φ holds. These states are the starting points in
our backward traversal of the graph.

During the forward exploration phase (function forward check a) each state
s is labelled with its number of successors in the initial state graph (the Kripke
structure). During the backward traversal phase (function backward check a),
this label is decremented each time a successor of s is removed; decrementations
are done in parallel. Intuitively, a state can be removed as soon as it is cleared. We
never actually remove a state from the graph. Instead, when a processor changes
the label of a state s to 0, we also decrement the labels of all the parents of s in
the graph. Hence the choice of storing the reverse of the transition function in
the data structure.

In the function backward check a, see Listing 1.2, we start by clearing all
the states in A which are, by construction, the states s such that suc(s) is nil.
When a state is cleared, we decrement the labels of all its parents (suc(s′).dec())
and check which ones can be cleared (suc(s′) == 0). The algorithm stops if the
initial state, s0, can be cleared or if there are no more states to update.

1 function BOOL forward check a (ψ : pred , φ : pred , s0 : s ta te , A : Stack)
2 Set S ← new Set (s0) ; Stack W ←new Stack (s0) ;
3 while (W i s not empty) do
4 s ← W. pop () ;
5 i f (s � φ) then
6 suc (s) . s e t (0) ; // We clear state s from KS
7 A. push (s)
8 e l s i f (s � ψ) then // We tag s with its number of successors
9 suc (s) . s e t (number o f s u c c e s s o r s o f s in KS) ;

10 i f (suc (s) = 0) // Check if s is not a dead state
11 return FALSE
12 f o ra l l s ’ s u c c e s s o r o f s in KS do // and continue the exploration
13 i f (s ’ /∈ S) then
14 S ← S ∪ {s ’} ; // s’ is a new state
15 W. push (s ’)
16 else return FALSE
17 return TRUE
18
19 function BOOL backward check a (s0 : s ta te , A : Stack)
20 while (A i s not empty) do
21 s ← A. pop () ;
22 i f (s = s0) then // The property is true if
23 return TRUE // we reach the initial state
24 f o ra l l s ’ parent o f s in KS do // Otherwise we check if the
25 suc (s ’) . dec () ; // predecessors of s can be cleared
26 i f (suc (s ’) = 0) then A. push (s ’)
27 return FALSE

Listing 1.2. Forward and backward exploration for A (ψ ∪ φ) with Reverse Graph

Algorithm for the Reverse Parental Graph version (RPG). The function for the
RPG version is only slightly more complicated, because we need to recompute
some successors in the transition relation: we can only access one of the parents
of a state in constant time (which we call the father of the state). The pseudo-

code for the forward exploration phase (function forward check a) is essentially
the same as in Listing 1.2; this is why it is omitted here. Compared to the RG
version, we only need to add two additional statements when adding a new state
(around line 15 in Listing 1.2): assuming that the state s is generated from a state
s′, we set the value of the father for the newly generated state (father(s).set(s′))
and increment the number of sons of the father sons(s).inc()). This information
is used during the backward traversal to track non cleared leaves.

We give the pseudo-code for the backward traversal phase in Listing 1.3.
During this phase, we follow the parental graph structure to “propagate” the
cleared states toward the root of the state graph. The algorithm alternates be-
tween two behaviors, clearing and collecting. The clearing behavior is similar to
the pseudo-code for the RG algorithm, with the difference that we decrement
only the father of a state and not all the predecessors. When there are no more
labels to decrement—and if the root state is not yet cleared—the algorithm
starts looking for states that can be cleared. For this, we test all the states s
such that sons(s) == 0; that is, such that all the sons of s have been cleared
(in the parental graph). In this case, to check if s can be cleared, we have to re-
compute all its successors in KS and check whether they have also been cleared
(if their suc label is zero).

1 function BOOL backward check a (s0 : s ta te , A : Stack)
2 over ← FALSE
3 while (not over)
4 while (A i s not empty) do
5 //Clearing
6 s ← A. pop () ;
7 i f (s = s0) then // The property is true if
8 return TRUE // we reach the initial state
9 s ’ ← f a t h e r (s) ; // Otherwise we check if

10 sons (s ’) . dec () ; // the father of s can be cleared
11 suc (s ’) . dec () ;
12 i f (suc (s ’) = 0) then A. push (s ’)
13 //Collecting: if we have no more states to clear in A we try to find
14 // candidates among the states with no children in PKS
15 f o ra l l s such that sons (s) = 0 and suc (s) 6= 0 in KS do
16 i f t e s t (s) then
17 suc (s) . s e t (0) ;
18 A. push (s)
19 i f (A i s empty) then
20 over ← TRUE //No good candidate was found, end backward search
21 return FALSE
22
23 function BOOL t e s t (s : s t a t e)
24 f o ra l l s ’ s u c c e s s o r o f s in KS do
25 i f suc (s ’) 6= 0 then
26 return FALSE // at least one successor is not cleared
27 return TRUE

Listing 1.3. Backward exploration for A (ψ ∪ φ) with Reverse Parental Graph

The advantage of this strategy is that we do not have to consider all the states
in the graph but just a subset of them. Indeed, we know that if KS is a acyclic
(is a DAG) then PG has at least one leaf that is also a leaf in G [9]. Hence, this
subset is enough to test the presence of a cycle. Conversely, the drawback of this
approach is that we may try to clear the same vertex several times, which may
be time consuming.

3.4 Checking Leadsto Properties

To check the formula ψ φ, we need to prove that no cycle can be reached
from a state where ψ holds, without first reaching a state where φ holds. Indeed,
otherwise, we can find an infinite path where

a

b b

DAG

a

b b

DAG

Fig. 2. Formula a b.

φ never holds after an occurrence of ψ. Fig-
ure 2 shows an example of graph for which
the formula is valid.

This observation underlines the link be-
tween checking the formula ψ φ locally—
for the initial state—and checking the valid-
ity of A3(φ) globally—at every state where
ψ holds. As a consequence, we can use an ap-
proach similar to the one used for AU prop-
erties in the previous section. The main dif-
ference is that, instead of clearing the initial
state, we have to clear all the states where
ψ holds. Hence, the pseudo-code for the lead-
sto formulas is similar to that of AU formu-
las (this is why it is omitted here), the main
difference is in the termination condition: the
function returns true if all the states where ψ holds are cleared.

3.5 Correctness and Complexity of our Algorithms

Proofs of correctness (termination, completeness and soundness) and a precise
study of the complexity of our algorithms can be found in [9]. We just discuss
here the worst-case complexity in the sequential case, and for formulas A (ψ∪φ).
The results for this case can be generalized to our whole logic. (Inside asymptotic
notations, we use the symbols S and R when we really mean |S| and |R|.)

The algorithm given in Sect. 3.3 may inspect every state in the Kripke Struc-
ture KS and, for every transition, it may update one label. Therefore, its worst-
case time complexity is in the order of O(S + R) for the RG algorithm. The
complexity is higher in the RPG version since, for each altered state, we may
have to recompute the successors for all the reachable states s such that sons(s)
is nil. Hence, solving a simple recurrence, we can prove that the time complex-
ity is in the order of O(S · (R − S)) for the RPG version. Since the number of
transitions in KS is bounded by |S|2, we obtain a complexity in the order of
O(S2) for the RG version and of O(S3) for the RPG variant. Concerning the
space complexity, the RPG version is in the order of O(S), while the RG version
is linear in the size of the graph, that is in the order of O(S +R) (or O(S2)).

We show in our experiments that the decision to favor “space-efficiency”
(in the case of the RPG version) is quite interesting. In particular, on some
examples, the RPG version may run faster than the RG version because it needs
to “write less information” in main memory, an effect that is not visible if we
only look at the theoretical complexity. More importantly, memory is one of the
key resources used during model-checking. Indeed, it is common to exhaust the
available memory during verification.

4 Implementation and Experimental Results

In the code presented in Sect. 3, no underlying computational model was make
precise. The code can be easily adapted to a Parallel RAM model, following a
Single Program Multiple Data (SPMD) programming style. In this section, we
discuss the details surrounding the parallel implementation of our algorithms,
then report on a set of experiments performed to evaluate their effectiveness.

4.1 Parallel Implementation of our Algorithm

In a SPMD context, all processing units will execute the same functions (the one
defined in Listings 1.1–1.3). Following this approach, the (forward) exploration
phase and the (backward) cycle detection phase can both be easily parallelized.
Then, for the model-checking function themselves—for instance the function
check a—we only need to synchronize the termination of the forward exploration
with the start of the backward label propagation. At each point, a processing unit
can terminate the model-checking process if it can prove (or disprove) the validity
of the formula before the end of the exploration phase. Actually, most of the
burden of parallelizing our algorithm is hidden inside the use of our specialized,
lock-free data structures.

We consider a shared memory architecture where all processing units share
the state space (using the mixed approach presented in [11]) and where the
working stacks are partially distributed (such as the stacks W and A used in
our pseudo-code). For most of our pseudo-code, it is enough to rely on atomic
compare and swap primitives to protect from parallel data races and other syn-
chronization issues; typically, compare-and-swap primitives will be used when we
need to test the value of a label or when we need to update the label of a state
(for instance with expressions like sons(s).dec()). Together with the compare-
and-swap primitive, we use our combination of distributed, local hash tables
with a concurrent localization table to store and manage the state space.

For the RG version of the algorithm, we can ensure the consistency of our
algorithm by protecting all the operations that manipulate a state label. (We
made sure, in our pseudo-code, that every operation only affects one state at
a time.) The parallel version of RPG is a bit more involved. This problem is
related to the behavior of the collecting operations of the backward exploration
(see the comment on line 14 of Listing 1.3)—and in particular the function test—
that needs to check all the successors of a state to see if they are cleared. First,
this code is not atomic and it is not practical to put it inside a critical section
(it would require a mutex for every state). If two processors collect the same
state, then the father of this state could be decremented twice, during the clear-
ing operations. Second, collecting must be performed after all processors have
finished the clearing operations, otherwise the algorithm may end prematurely
(see [9] for a complete explanation.) We solve the concurrency issues for the RPG
version through the synchronization of all processors before both clearing and
collecting. Then, we take advantage of our distributed local state repositories to
avoid problems due to concurrent access; each processor can perform the collect-
ing operations only over the states that it owns. Finally, we use a work-stealing

strategy (see [11]) to balance the work-load between the different phases of our
algorithm; for instance, whenever a thread has no more state to clear, it tries to
“steal” non-cleared states from other processors.

4.2 Experimental Results

We have implemented the parallel versions of our model-checking algorithm and
evaluated their performances on several benchmarks. Experimental results pre-
sented in this section were obtained on a Sun Fire x4600 M2 Server configured
with 8 dual core opteron processors and 208 GB of RAM memory, running the
Solaris 10 operating system. (The complete set of experiments can be found
in [9].) We give results obtained on 8 classical models—a Token Ring protocol;
the Peg-Solitaire board-game; . . . —with a mix of valid and invalid properties.
We experimented with all the formulas: reachability (E3φ), safety (A2φ and
E2φ), liveness (A3φ) and leadsto (ψ φ).

Speedup Analysis: we study the relative speedup and the execution time for
our algorithms. In addition, we also give the separate speedup obtained in each
phase of the algorithm—during the exploration (forward) and cycle detection
(backward) phases—in order to better analyze the advantages of our approach.

Figure 3 shows speedup analysis for the RPG version of our algorithm. We
only show the results for two models—a Token Ring with 22 bases (TK22) and a
Solitaire game with 33 pegs—since they are representative of the results obtained
with our complete benchmark. These models have different execution profiles
which impacts significantly the overall performance. The main difference is the
time spent in the backward traversal phase. Figure 4 shows a series of bar charts
putting in evidence the time required for each phase of the algorithm (exploration
and cycle detection). In addition, we compare our approach (RG and RPG) with
a third algorithm (NO GRAPH) that uses the same code as RG but recomputes
predecessor states instead of storing them (this is possible only because, for this
particular benchmark, we know how to compute the predecessors of a state). We
have observed two main categories of behaviors in this analysis.

negligible backward traversal: the time spent in the backward exploration
phase is negligible compared to the overall execution time (e.g. model TK22
in Fig. 3, 4). This is the case, for instance, if the property is false and the
cycle detection phase terminates early. In this category of experiments, there
are no significant differences between RG and RPG, mainly because the gain
in performance during the forward exploration phase outweighs the extra work
performed during the cycle detection phase;

complete backward traversal: the cycle detection phase needs to run through
all the state space (e.g. model SOLITAIRE in Fig. 3, 4). We observe a significant
difference in performance between the RG and RPG versions in this case. The
extra work performed by the RPG version becomes the dominant factor.

These experiments confirm that RPG is a good choice when we are limited by
the memory space: although it may require more computations (in our examples,
we may loose a factor of 5 in execution time), it can be applied on models that

a) Speedup b) Execution Time

Fig. 3. Speedup and execution time analysis for Token Ring and Solitaire models.

 0

 100

 200

 300

 400

 500

 600

 700

reverse

parental

no_graph

reverse

parental

no_graph

reverse

parental

no_graph

E
xe

cu
tio

n
T

im
e(

s)

 Execution Time for model TK22

exploration
cycle detections

E[]==>A[]

 0

 200

 400

 600

 800

 1000

 1200

 1400

reverse

parental

no_graph

E
xe

cu
tio

n
T

im
e(

s)

 Execution Time for model SOLITAIRE

exploration
cycle detections

A<>

Fig. 4. Comparison with a Standard Algorithm.

are not tractable with the RG version because of the space needed to store the
transitions. For instance, for the Peg Solitaire model with 37 pegs (that has 3.109

states and 3.1010 transitions), the RPG only needs 15 GB of memory while, with
the RG version, we would need 240 GB of memory just to store the transitions.

5 Related work and Comparisons With Other Tools

Several works address the problem of designing efficient, parallel model-checking
algorithms. Most of the proposals follow an “automata-theoretic approach” for
LTL model checking. In this context, the difficulty is to adapt the cycle detection
algorithms (Tarjan or Nested-DFS), which are inherently sequential. Two works
stand out: one with a mature implementation, DiVinE [1], with the owcty +
map algorithm; another with a prototype, named LTSmin, with the mc-ndfs
algorithm [6]. They mostly differ by the algorithm used to detect cycles.

DiVinE combines two algorithms, owcty and map, that result in “a parallel
on-the-fly linear algorithm for model checking weak LTL properties” (weak LTL
properties are those expressible by an automata that has no cycle with both
accepting and no-accepting states on its path). If the LTL property does not

meet this requirement, the algorithm complexity may be quadratic. The multi-
core nested DFS (mc-ndfs) algorithm [6] is a recent extension of the swarm [4]
distributed algorithm to a multi-core setting. The authors in [6] propose a multi-
core version with the distinction that the storage state space is shared among
all workers in conjunction with some synchronization mechanisms for the nested
search. Even if, in the worst-case, all the processors may duplicate the same work,
this approach has a linear complexity (given a fixed number of processors).

In contrast with the number of solutions proposed for parallel LTL model
checking, just two specifically target CTL model checking on shared memory
machines: Inggs and Barringer work [5] supports CTL∗, while van de Pol and
Weber work [7] supports the µ-calculus.

Comparison with DiVinE. We now compare our algorithms with DiVinE [1],
which is the state of the art tool for parallel model checking of LTL. The results
given here have been obtained with DiVinE 2.5.2, considering only the best
results given by the owcty or map, separately. This benchmark (experimental
data and examples are available in report [10]) is based on the set of models
borrowed from DiVinE on which, for a broader comparison, we check both valid
and non valid properties. Figure 5 shows the exact set of models and formulas
that are used. All experiments were carried out using 16 cores and with an
initial hash table sized enough to store all states. The DiVinE experiments were
executed with flag (-n) to remove counter-example generation.

Figure 6 shows for each model the execution time (T.) in seconds and the
memory peak (M.) (in GB). Figure 7 summarizes these results using the normal-
ized weighted sum of the memory footprint and the execution time, separated
for valid and non valid formulas.

Algorithms owcty and map show better overall results when the formula is
not valid (FALSE). By contrast, reverse holds the best execution time when the
formula is valid. Regarding the RPG version of our algorithm, our results show
that it holds the best memory footprint among all results, it uses on average
2 to 4 times less memory than map and owcty when the formula is valid. In
addition, regardless of its “cubic” worst-case complexity, it shows good results
when compared to map and owcty. For instance, it is able to verify a valid
formula on average using 4 times less memory than owcty with a limited slow-
down (≈ 1.8 times slower).

To conclude, for the set of models and formulas used in this benchmark, both
RPG and RG delivered good results when compared to DiVinE. For instance, RG
has a better performance in both time and memory usage when compared with
DiVinE (map and owtcy). Finally, RPG proved to be the most space conscious
algorithm—the one to choose for the biggest models—without sacrificing too
much the execution time.

6 Conclusion

We have described ongoing works concerning parallel (enumerative) model-checking
algorithms for finite state systems. We define two versions of a new model check-

Model Formula Results

Anderson (AN)
18· 106 states

F1:(-cs_0) ==> (cs_0) false
F2:A[]<>(cs_0 or ... or cs_n) true

Lamport (LA)
38· 106 states.

F1:(wait_0 and (- cs_0)) ==> (cs_0) false
F2:(- cs_0) ==> (cs_0) false
F3:A[]<>(cs_0 or ... or cs_n) true

Rether (RE)
4· 106 states

F1:A[]<>(nrt_0) true
F2:A[]<>(rt_0) false

Szymanski (SZY)
2· 106 states .

F1:(wait_0 and (- cs_0)) ==> (cs_0) false
F2:(- cs_0) ==> (cs_0) false
F3:A[]<>(cs_0 or ... or cs_0) true

Fig. 5. Formulas and Models for our Comparison.

M Formula
owcty map reverse parental

T.(s) M.(Gb) T.(s) M.(Gb) T.(s) M.(Gb) T.(s) M.(Gb)

AN
F1: false 61.3 3.3 110.2 5.5 28.8 2.8 94.4 1.8
F2: true 79.5 7.4 110.5 4.8 26.4 2.9 50.4 1.8

LA
F1: false 1.6 1.1 1.4 1.1 42.4 5.1 74.2 3.3
F2: false 1.4 1.1 1.7 1.2 47.6 5.6 327.2 3.6
F3: true 153.6 14.1 282.8 12.1 51.0 5.6 370.4 3.7

RE
F1: true 12.0 1.8 20.1 1.3 5.0 0.7 12.0 0.6
F2: false 13.2 1.8 1.2 0.3 3.4 0.7 7.8 0.6

SZY
F1: false 8.5 0.9 7.0 0.5 2.2 0.3 1.4 0.2
F2: false 9.8 0.9 6.6 .5 4.2 0.3 39.6 0.3
F3: true 9.0 0.9 24.7 0.6 3.8 0.3 32.8 0.3

Fig. 6. Table of results.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

m
ap

owcty

reverse

parental

m
ap

owcty

reverse

parental

 W
ei

gh
te

d
N

or
m

 E
xe

c.
 T

im
e

Not Valid(FALSE)Valid (TRUE)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

m
ap

owcty

reverse

parental

m
ap

owcty

reverse

parental

W
ei

gh
te

d
N

or
m

 M
em

. U
sa

ge

Not Valid (FALSE)Valid (TRUE)

Fig. 7. Comparison with divine (reverse = RG, parental = RPG).

ing algorithm that support an expressive fragment of both CTL and LTL. These
algorithms are based on the standard, semantic model-checking algorithm for
CTL but specifically target parallel, shared memory machines. Our two versions
differ by the amount of information they need to store: a Reverse Graph (RG)
version that explicitly stores the complete transition relation in memory, and a
Reverse Parental Graph (RPG) that relies on a spanning tree.

We use the reverse parental graph structure as a mean to fight the state
explosion problem. In this respect, this approach has a similar impact—on the
space—than algorithmic techniques like sleep sets (used with partial-order meth-

ods), but with the difference that we do not take into account the structure of
the model. Moreover, our approach is effective regardless of the formalism used
to model the system. For instance, it is particularly useful in cases where it is
not possible to compute the “inverse” of the transition relation.

Our prototype implementation shows promising results for both the RG and
RPG versions of the algorithm. The choice of a “labeling algorithm” based on the
out-degree number has proved to be a good match for shared memory machines
and a work stealing strategy; we consistently obtained speedups close to linear
with an average efficiency of 75%. Our experimental results also showed that the
RPG version is able to outperform the RG version for some categories of models.

Using our work, one can easily obtain a parallel algorithm for checking any
CTL formula Φ by running one instance of our algorithms (for the AU and EU
formulas) for each subformula of Φ. But this approach, as such, is too naive. For
future works, we are considering improvements of our algorithms that support
full CTL formulas without having to manage several copies of our labels (sons
and suc) in parallel, which could have an adverse effect on memory consumption.

References

1. J. Barnat, L. Brim, M. Češka, and P. Ročkai. DiVinE: Parallel Distributed Model
Checker. In Parallel and Distributed Methods in Verification and High Performance
Computational Systems Biology (HiBi/PDMC 2010), pages 4–7. IEEE, 2010.

2. Edmund M. Clarke and Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Logics of Programs, volume 131
of LNCS, pages 52–71. 1982.

3. Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel
Computation: P-Completeness Theory. Oxford University Press, USA, 1995.

4. G. J Holzmann, R. Joshi, and A. Groce. Swarm verification. In Proc. of the 23rd
IEEE/ACM Int. Conference on Automated Software Engineering, pages 1–6, 2008.

5. Cornelia P. Inggs and Howard Barringer. CTL* model checking on a shared-
memory architecture. Formal Methods in System Design, 29(2):135–155, July 2006.

6. A. W. Laarman, R. Langerak, J. C. van de Pol, M. Weber, and A. Wijs. Multi-
Core nested Depth-First search. In Proc. of the 9th International Symposium on
Automated Technology for Verification and Analysis, ATVA 2011, LNCS, 2011.

7. Jaco van de Pol and Michael Weber. A Multi-Core solver for parity games. In
Proc. of the 7th International Workshop on Parallel and Distributed Methods in
verifiCation (PDMC 2008), volume 220(2) of ENTCS, pages 19–34, 2008.

8. John H. Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20(5):229–234, 1985.

9. Rodrigo T. Saad. Parallel Model Checking for Multiprocessor Architecture. PhD
thesis, Institut National des Sciences Appliquées, Toulouse, France, December
2011.

10. Rodrigo T. Saad, Silvano Dal Zilio, and Bernard Berthomieu. Parallel Model
Checking with Lazy Cycle Detection—MCLCD. Technical Report 12139, LAAS-
CNRS, 2012 (http://hal.archives-ouvertes.fr/hal-00669752/en).

11. Rodrigo T. Saad, Silvano Dal Zilio, and Bernard Berthomieu. Mixed Shared-
Distributed hash tables approaches for parallel state space construction. In Int.
Symposium on Parallel and Distributed Computing (ISPDC 2011), July 2011.

