N

N

PyXNAT: XNAT in Python

Yannick Schwartz, Alexis Barbot, Benjamin Thyreau, Vincent Frouin, Gaél

Varoquaux, Aditya Siram, Daniel Marcus, Jean-Baptiste Poline

» To cite this version:

Yannick Schwartz, Alexis Barbot, Benjamin Thyreau, Vincent Frouin, Gaél Varoquaux, et al..
PyXNAT: XNAT in Python. Frontiers in Neuroinformatics, 2012, 6 (12), pp.1-14. 10.3389/fn-
inf.2012.00012 . hal-00782339

HAL Id: hal-00782339
https://hal.science/hal-00782339
Submitted on 29 Jan 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00782339
https://hal.archives-ouvertes.fr

PyXNAT: XNAT in Python

Yannick Schwartz!, Alexis Barbot!, Benjamin Thyreau!, Vincent Frouin!, Gaél
Varoquaux?!, Aditya Siram?, Daniel S Marcus®, and Jean-Baptiste Poline!

YCEA, DSV, I2BM, Neurospin bt 145, Gif-sur-Yvette, France
2 parietal Team, INRIA Saclay Ile-de-France, Saclay, France
3 Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA

Abstract

As neuroimaging databases grow in size and com-
plexity, the time researchers spend investigating
and managing the data increases to the expense of
data analysis. As a result, investigators rely more
and more heavily on scripting using high-level lan-
guages to automate data management and process-
ing tasks. For this, a structured and programmatic
access to the data store is necessary. Web services
are a first step toward this goal. They however
lack in functionality and ease of use because they
provide only low level interfaces to databases. We
introduce here PyXNAT, a Python module that in-
teracts with The Extensible Neuroimaging Archive
Toolkit (XNAT) through native Python calls across
multiple operating systems. The choice of Python
enables PyXNAT to expose the XNAT Web Ser-
vices and unify their features with a higher level
and more expressive language. PyXNAT provides
XNAT users direct access to all the scientific pack-
ages in Python. Finally PyXNAT aims to be effi-
cient and easy to use, both as a backend library to
build XNAT clients and as an alternative frontend
from the command line.

Introduction

The neuroimaging community is producing imag-
ing and related data at an increasing rate. Pub-
licly available data and consortia shared data fol-
low the same trend as funding agencies more rou-
tinely require some sharing from the grantees. The
need to share and to maintain data resources at
different scales, from large, multi-site studies to in-

dividual laboratories or researchers, has also led
to the development of neuroimaging data manage-
ment systems (Van Horn and Toga, 2009). For in-
stance, the USA-based Biomedical Informatics Re-
search Network (BIRN) has during the past ten
years developed a number of tools to facilitate col-
laborative research and data sharing in neuroimag-
ing. These efforts included the development or
use of ontologies (Larson et al., 2009), data for-
mat exchange (Gadde et al., 2012), as well as
databases and data management systems includ-
ing the Human Imaging Database (HID) (Keator
et al., 2008), the LONI IDA (Van Horn and Toga,
2009), and The Extensible Neuroimaging Archive
Toolkit (XNAT) (Marcus et al., 2007). Other con-
sortia and initiatives have also emerged to facili-
tate the handling and sharing of neuroimaging data
such as Neurolog (Montagnat and Gaignard, 2008)
and CABIG (Kakazu et al., 2004). Projects such
as the ADNI (Petersen et al., 2010) make avail-
able high quality large datasets to the community,
and the number of large multi-modal databases
is growing very fast (Van Essen, 2002; Van Horn
and Toga, 2009). Numerous tools for managing
the neuroimaging and associated data have been
developed as a consequence of all these projects.
Most of them are built for a specific consortium
or laboratory, (Ozyurt et al., 2010; Montagnat and
Gaignard, 2008). Fewer are made to be distributed
as a re-usable stand-alone system. Amongst those,
XNAT is one of the most commonly used. It is in-
stalled in many major institutions' and enjoys an
increasing adoption in the community.

Databases aim to organize data in a way that it

Thttp://xnat.org/about/xnat-implementations.html

can be efficiently queried and stored. There are var-
ious database models? (Maier, 1983; Cattell et al.,
1997; Angles and Gutierrez, 2008) that can be cho-
sen to structure the data depending on the problem
to solve. As the complexity and size of the data
increases, neuroimaging databases become harder
to use because they combine metadata, stored in
the database itself, with images, stored in an un-
derlying file system. Currently most users man-
ually select and download data through graphical
user interfaces (GUI), which is intuitive on a small
scale, but becomes impractical and error prone on
a large one. That is because downloading the data
on a local disk before processing it breaks the way
the data is structured in the database. The data
has to be organized again, but locally, in a consis-
tent layout of files and directories, which effectively
duplicates the work done setting up the database.
Futhermore metadata used to select the data of in-
terest such as quality check variables are likely to
change during the life span of the database, which
makes it even harder to keep a local dataset syn-
chronized and organized. For example, any man-
ual operations to download the data would have
to be entirely repeated to reprocess an up-to-date
dataset. All these reasons explain why it is more
and more necessary to directly interact program-
matically with the database. Indeed, relying on a
scripted interaction helps maintain consistency of
accessed data and appropriate versions of the data.
This new data flow is represented in Figure 1. In
short, large databases call for new ways of interact-
ing with and analyzing the data.

XNAT Neuroimaging data management systems
in general, and XNAT in particular, must concur-
rently solve several issues, depending on specifica-
tions of the system. The most common challenges
are: to make the data available in a sustained and
secure manner, offer ways of searching and query-
ing specific data, and finally to enable updating
the data repository, either for curation or storing
results obtained from processing tools.

The XNAT system solved many of these prob-
lems. Its core design feature is that it models
the data through XML schemas, and automatically
builds a relational database and a web interface for
accessing the data using that formal description.

%http://en.wikipedia.org/wiki/Database_model

Many XML schemas are already available to de-
scribe common neuroimaging or neuropsychological
data. These schemas greatly ease the work of the
data manager constructing the database. XNAT
includes many useful features such as a permission
and access rights system, tabular views, and search
capacities. Based on this XML description, XNAT
users can send queries and receive appropriate re-
sults. XNAT has moreover developed a representa-
tional state transfer Application Program Interface
(REST API) to push and pull data from an XNAT
database. This REST API enables software devel-
opers and power users to programatically query the
server in order to access the data and its associated
meta. However, REST APIs are low-level inter-
faces that require a significant amount of technical
knowledge to perform basic operations.

PyXNAT We developed a Python library (PyX-
NAT) to unify the different REST resources for ac-
cessing and providing the data to the database as
well as ease scripting interactions with an XNAT
database. Python has recently gained a strong mo-
mentum in the neuroimaging data analysis com-
munity, and more generally in neuroscience. Com-
bined with powerful scientific librairies, it is now
close to providing a credible alternative to other
high level platform independent interpreted lan-
guage such as MATLAB™ but without additional
licence costs. It offers in addition a very large set of
software engineering utilities such as XML parsing,
database, and web interface modules. We discuss
more in depth to the choice of Python in the next
section.

The code of PyXNAT was originally developed at
Neurospin, (I2BM, CEA, France) in the context of
the IMAGEN European project® (Schumann et al.,
2010) to help this consortium interact with the IM-
AGEN database, we designed PyXNAT to be of
general use for the neuroimaging community and
licenced it under BSD-3*. The code is available®
online and its documentation and unit tests cover-
age quality is kept high so that the programmers ex-
ternal to the project can easily contribute. Indeed,
PyXNAT has started to shift toward a community-
based development.

3http://www.imagen.eu
4http://www.opensource.org/licenses/BSD-3-Clause
Shttp://packages.python.org/pyxnat

http://en.wikipedia.org/wiki/Database_model

NumPy

Librairies
SciPy
NiPyPE
Nipy .
SPM FSL

Freesurfer

File System

T,

eb Interface BLEELUERD:

File Storage

Figure 1: PyXNAT avoids organization on file system.

The rest of this article is organized as follows.
In the first section, we give some background infor-
mation on the software components on which PyX-
NAT is based. The second section describes the
construction of the library and gives some use case
examples. Last, we discuss possible limitations and
conclude with future improvements.

1 Material and methods

We first review the different technologies and com-
ponents leveraged by PyXNAT as a preliminary to
discussing the implementation design.

Python

We chose to use the Python language since it enjoys
a growing success in the neuroimaging and neuro-
science communities. Indeed, it has recently been
subject of a special-topic issue in Frontiers in Neu-
roinformatics entitled "Python in neuroscience”. It
is a multi-paradigm programming language (for ex-
ample, it supports object-oriented, functional, and
procedural programming) with a simple and con-
sistent syntax. It benefits from very efficient open-
source scientific packages for numerical computa-
tion such as NumPy (Oliphant, 2006) and SciPy
(Jones et al., 2001), making it a viable alterna-
tive or useful complement to other analysis tools
such as MATLAB™. Its flexibility and concise
syntax speeds the process of prototyping new algo-
rithms and trying out existing softwares. Another
strength of the language lies in the variety of its ap-

plication fields, which cover both scientific (Lang-
tangen, 2011) and non-scientific —but relevant—
domains such as database management and web
development.

Python defines a standard for database inter-
faces, which is the Python DB-API (PEP 249
6). PyXNAT acts as an interface to an XNAT
database, but it is a Pythonic wrapping on a REST
API rather than a database driver. As such, it does
not really follow a specification based on standard
database mechanisms and does not replicate opera-
tions such as transactions, which are transparently
handled by the XNAT underlying database. How-
ever it follows some principles from the specifica-
tion, if not always with the same semantics. As
an example, the PEP 249 defines cursor objects
as "[objects] used to manage the context of a fetch
operation”. In other words, these objects are re-
sponsible for controlling the data fetching but do
not do anything when instantiated. They instead
rely on lazy loading” mechanisms that access the
data only when it is needed. PyXNAT design re-
uses this principle.

XNAT

Overview and key features

XNAT (Marcus et al., 2007) is an open source
software platform designed to manage neuroimag-
ing and related data. An XML Schema® defines

Shttp://www.python.org/dev/peps/pep-0249/
"http://en.wikipedia.org/wiki/Lazy_loading
Shttp://www.w3.org/XML/Schema

http://www.python.org/dev/peps/pep-0249/

search_field
0.0

[search_field E——@ EH

Ry c—

11
T

field_ID

sequence

m

]

nt_name

Figure 2: XML Schema for the result table

the XNAT data model and is used to generate a
database back-end and a web interface front-end.
Using the XML Schema as an abstraction layer has
several advantages. First, the schema provides a
formal representation of the data in a standard for-
mat and enables the definition of high-level rela-
tions between concepts such as inheritance. Sec-
ond, it makes XNAT extensible since the base
schema can accommodate extra types for specific
studies using custom external schemas.

XNAT search engine

XNAT features a powerful search engine with its
own query language that enable users to search
data across all the data types defined in the data
model in a transparent manner. The query lan-
guage is specified with an XML Schema docu-
ment. It enables standard relational database op-
erations such as projection and selection. The
data is returned as a CSV or JSON table and
can be customized by defining elements in the
XML query document. The XML schema in Fig-
ure 2 specifies how to format the results as tab-
ular data. The root_element_name corresponds
to the type of data rendered for each row of
the table (e.g., xnat:subjectData), whereas the
search field elements defines the columns (e.g.,

xnat:subjectData/SUBJECT_ID). The results of
the query are therefore ready to be used in any pro-
gram or spreadsheet software. The XML Schema
in Figure 3 defines how to express search predi-
cates for XNAT. The main element of the query
is the criteria_set element, which can nested
with child_set elements in order to perform
more complex queries (e.g., return subjects that
are over 20 years old and left-handed, or sub-
jects that are under 20 and right-handed). The
criteria_set element takes a method value which
indicated which boolean operator to use (AND or
OR). Each criteria set is composed of a list
of constraints, defined by a schema field (e.g.,
xnat:subjectData/HANDEDNESS), a comparison
operator, and a value. The query language there-
fore enables usual operations such as criteria com-
parison and nesting.

To promote interaction between different users of
the same database and help system administrators,
the XNAT search engine provides a way to share
queries for all or a subset of users.

The REST model

REST (Representational State Transfer) (Fielding,
2000) is a generalization of the architectural prin-
ciples of the World Wide Web and is used to de-

= El~—| applnfo |E|—| xdat:fizld |El—| xdat-relation |
0.

. B—Ev-—{ appinfo |E—| xdatalamant |

Y
0.0

—E)E'—E——' appinfo |B— xdaufield |E— xdatralation |
0.0
*_

E)-E)-—| appinfo IE!—' xdarelamant]

~— @ gverride_value_formatting ’E|

Figure 3: XML Schema for the search criteria

velop web services alongside or as an alternative
to other specifications such as the Simple Object
Access Protocol or the Common Object Request
Broker Architecture. A RESTful architecture iden-
tifies a set of resources, which can be entities or
collections, with standardized Uniform Resource
Identifiers (URIs). The methods to interact with
the resources rely on HTTP verbs—such as GET,
PUT, POST and DELETE—that are mapped to
resource-specific semantics. This means that re-
sources map to a set of views to represent the data
state on the server independently from the way it
is stored. REST also allows representing the re-
sources content in different formats (e.g., XML,
HTML, and plain text).

XNAT uses URIs’ generic syntax, which consists
in a sequence of component parts describing the
communication protocol, the resource location, and
additional information. An example inspired from
the RFC 3986° summarizes the syntax:

http://central.xnat.org/REST/projects?format=csv
__/ \ /\ / \ /
| | | |
scheme authority path query

RESTful architectures organize resources in a hi-
erarchy. Basically, URIs’ paths are constructed us-

Yhttp://www.ietf.org/rfc/rfc3986.txt

ing a fixed set of keywords that have parent-child
relations. In XNAT, the main concepts follow the
tree structure represented in Figure 4. Keywords
are paired with an ID to point to a specific resource.
Collection resources return a list of identifiers and
do not end with an ID. Table 1 illustrates how
XNAT uses the REST resources to list the project
names on a server and access a specific one.

Resource type Path
element resource /REST /projects/PROJID
collection resource /REST/projects

Table 1: XNAT URI design

URIs support a range of operations through
the HTTP verbs. Collection resources typically
only support the GET method whereas element re-
sources use GET, PUT and DELETE to support
access, creation, and deletion operations. To per-
form additional operations, XNAT leverages the
query component of URIs. As shown in Table 2, it
enables selecting and filtering the outputs as well
as choosing the output format.

projects

subjects

experiments

scans assessors reconstructions

Figure 4: XNAT REST model

Option
select output
filter output
output format

URI query string
?columns=ID,project
?xsiType=xnat:mrSessionData
?format=csv

Table 2: URI query strings usage in XNAT

The XNAT REST API is separated in two parts:
the hierarchical structure described on Figure 4 and
the search engine. Navigation through the database
and downloading files attached to subjects or exper-
iments is accessible from the URIs whereas getting
tables containing metadata is enabled by the search
engine.

2 Results

We implemented the PyXNAT package on top of
the XNAT REST API to enable easy communica-
tions with XNAT through the Python language. In
this section, we describe the general design of the
library as well as specific mechanisms that are origi-
nal or of particular importance. We finish by giving
some examples of real life uses cases for PyXNAT.

Architecture and design

PyXNAT combines several components to interact
with an XNAT server, which are described in Fig-
ure 5. Its core relies on the httplib2 Python mod-
ule, which is in charge of issuing calls to XNAT.
The REST structure itself, which is described Fig-
ure 4 is static and cannot be discovered with the
XNAT REST API. This is why PyXNAT uses a

configuration file to model the REST structure and
to generate a programming interface that maps the
REST API to Python objects and methods. The
modelling of the REST API is used to generate
HTTP calls against XNAT as well as parsing the
responses to generate Python objects.

The XNAT REST API is composed of a set of
hierarchical resources, which is the REST structure
itself, and an endpoint for its search engine. The
REST structure gives access to files (e.g., images),
as well as metadata. The URIs look a lot like files
and directories paths on a file system and can effec-
tively be viewed as such. The search engine gives
access to the metadata and enables searching them,
but does not provide any mechanism to point to
files. So with the REST API, it is possible to look
for all the subjects that are 14 years of age or have
a specific answer to an assessment. But the search
will not be able to yield URIs to files. PyXNAT
builds on XNAT by using the results of the search
engine to subsequently generate URIs and retrieve
files. By tightly integrating those two mechanisms,
PyXNAT delivers a more powerful and succint way
to interact with XNAT. For example, PyXNAT is
able to retrieve all the assessments from a subject
in a single statement whereas the REST API from
XNAT would require several calls.

) Remote

Server

request response

parser

(Local

Computer

Figure 5: PyXNAT architecture

Object Mapper

PyXNAT borrows language elements from SQL
(Structured Query Language) and the Python DB-
API to define a familiar and easy to use query lan-
guage. The select statement defines the data to
return from a query, either a list of identifiers if it is
a collection object, or a Python object point-
ing to a single URI if it is an element object.
An object mapper returns Python objects reflect-
ing URIs, and offering actions through their meth-
ods. These actions include, resource operations,
database browsing, and files downloading and up-
loading.

interface.select (’/projects’)
interface.select (’/project /PROJID”)

The element objects share common operations
for insertion and deletion for example, but also fea-
ture specific methods. For example all types of
entities can be created and deleted, but only the
project objects may handle the access permissions:

p = interface.select (’/project /PROJID’)
p.insert ()

p.delete ()

p.exists ()

p.set_accessibility (’public’)

Collection objects use a lazy loading mecha-
nism and work essentially the same way as cursor
objects as defined in Python DB-API. The object
itself doesn’t issue any request on the database and
delegates the actual query to dedicated methods.
The table 3 summarizes and compares the collec-
tion or cursor objects methods.

Python DB-API pyxnat-API

fetchone() first() or fetchone()
fetchmany() not-supported
fetchall() get() or fetchall()

Table 3: Cursor objects methods comparison.

PyXNAT container objects are implemented as
Python generators. Generators provide a conve-
nient mechanism for lazily looping over items (e.g.,
using a for loop) without accessing or loading
those items until they are needed. For example,

to perform an operation on every subject from all
projects, PyXNAT operates on the subjects from
each project one at a time. Without the lazy access
mechanism, the library would have to retrieve all
the subjects from all the projects before operating
on them. This might take a considerable amount
of time that can be used instead to start operations
that needed the subjects in the first place. While
there are other ways to iterate over subjects, this
example demonstrates the flexibility introduced by
the PyXNAT library:

interface.select (’/projects/*x/subjects

)

for subject in s:
<perform operation>

s = ’

The keywords used in the select statement are
the same as the ones defining the REST structure
represented in Figure 4. The ability to chain those
keywords through the Python objects enable users
to express more complex queries very easily. For
example, the following calls, which are equivalent,
return all the files for all the experiments related
to a subject in any project in the database. Of
course, it would be as easy to use identifiers or more
constrained filters instead of the wildcard "*” in
order to return a specific set of files. The different
syntaxes all rely on the same underlying Python
objects. They exist because there are two different
ways to use PyXNAT. First, as a library, which
calls for efficiency and enables to reference directly
the data. Second, as an interactive command line
frontend for XNAT, in which case performance is
not the main concern. The need to quickly explore
the database is, however, far more important and
explains the introduction of shortcuts in the syntax.

interface.select.projects().subjects ().
experiments () .resources (). files ()

interface.select (’/projects/*/subjects /x/
experiments/«/resources /*/files ’)

interface.select(’//experiments//files’)

Search integration

XNAT’s search engine sets up queries using the
dataypes defined in the XML schemas. It is ac-

PYXNAT

XNAT

e
search files

d Search Engine

HTTP call(s)

%

metadata

request generator

i REST

HTTP call(s) |

/

return files

Figure 6: PyXNAT integration of the search engine and the files access

cessible from a single URI, on which it is possible
to POST—basically send—an XML file describing
the query. The request gets results in form of a
CSV (comma-separated values) table, which con-
tains the requested data and identifiers. However,
the URIs referencing files cannot be returned be-
cause they are not stored in the database. More-
over, the REST API does not provide any mecha-
nism to use the identifiers to build URIs referencing
files. PyXNAT deals with the complexity of writing
the XML documents and offers a simple language
to use the search engine. It also parses the out-
puts from the search engine to generate valid URIs
that get resources on XNAT. Thoses mechanisms
are illustrated in Figure 6.

To keep the semantics consistent throughout the
API, PyXNAT uses again its select statement to
define the data to capture, but with different pa-
rameters. The first argument is specifies the type
of an entry, and the second argument is a list of
fields and defines the columns of the table to return.
The SQL where clause is replicated in PyXNAT to
formulate the search criteria. The criteria set is
expressed as a list of tuples, where each tuple cor-
responds to a single search constraint. A constraint
tuple is a 3-value entity composed of a search field,
a comparison operator and a value. Every query
may include sub-queries, expressed by lists of tu-
ples. The whole request with PyXNAT is therefore
expressed with an SQL-like syntax which is close to
other query languages and enables to fully leverage
the XNAT search engine. This syntax is close to
SQLAlchemy’s'?, a popular Python ORM library

Ohttp://www.sqlalchemy.org

(Object-relational Mapping)*®.

PyXNAT search example

row = ’xnat:mrSessionData’

columns = |
’xnat:subjectData /LABEL’ ,
’xnat: mrSessionData /AGE’
’xnat :subjectData /GENDER’

]

criteria = |
(’xnat:mrSessionData /PROJECT’ ,
=, 'MY_PROJECT’) ,
(’xnat: mrSessionData /PROJECT’ ,
=", "CENTRAL_OASISCS’) ,
7OR7
]

interface.select (row,
criteria)

columns) . where (

SQLAlchemy example from the online
documentation
session .query (User). filter (User.name. like (

%ed)

)

The same syntax can be used to combine the
search engine with the hierarchical REST re-
sources. The select statement from the object
mapper can be chained with the where clause,
which uses the search engine. PyXNAT returns ob-
jects, for which subjects match the criteria defined
in the where clause.

interface.select (’//experiments’).where(
criteria)

Hhttp://en.wikipedia.org/wiki/Object-relational_
mapping

http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object-relational_mapping

Database introspection

XNAT databases contain several kinds of data such
as imaging data, demographic information, behav-
ioral data, and experimental design. These cate-
gories are further differentiated; for instance, imag-
ing data may be acquired from several different
modalities including structural and functional MRI
as well as PET. Further complicating the situa-
tion, these image modalities are often referred to by
several different names. For example, a database
may reference a T1-weighted image as just "T1”,
whereas another one reference it as "MPRAGE”.
This terminology problem can be adressed with on-
tologies and data integration technologies which are
currently being developed by the community (Bug
et al., 2008; Larson et al., 2009). However as a
first step adressing this problem, PyXNAT provides
functions to retrieve list of all values used in a given
database. This functionality gives users the ability
to interact with the data and the data model, in or-
der to quickly provide a summary of a large number
of data types and entries.

XNAT provides basic introspection methods that
are replicated and augmented in PyXNAT. In par-
ticular, XNAT provides REST functions to query
the data types that are defined by the XML
Schema. These functions enable users to learn from
a database, for example, that it defines the concept
of subject and that a subject has a gender or tha the
age of the subject is actually defined for an exper-
iment performed on this subject. However, XNAT
lacks a helper function to extract all the values that
a data field takes in a specific database. To provide
this functionality with a consistent API, PyXNAT
uses the search engine from XNAT. This is very
useful when building queries, since it provides a
list of all values that can be used. In the interac-
tive session below, we show the different methods
that enables users to explore the data model and
find data:

retrieve list of datatypes

>>> interface.inspect.datatypes ()

[..., ’xnat:mrSessionData’, ..

retrieve list of datatypes fields

>>> interface.inspect.datatypes(’xnat:
mrSessionData)

[..., ’xnat:mrSessionData/AGE’, ...]

retrieve list of field wvalues

>>> interface.inspect.field_values (’xnat:
mrSessionData /AGE’)

[[..., ’14°, 7257, 2427 ..]

Cache

PyXNAT maintains a local copy of all the server re-
sponses into a cache (i.e., the data files that may be
images as well as the metadata arrays or resources
listing). The main goal of the cache is to improve
performance; but, it can also be rendered persistent
and provide a full ”offline” mode to PyXNAT.

The PyXNAT cache is primarily an implementa-
tion of the HTTP caching mechanism that stores
the data on a filesystem. HTTP is known as
a request-response protocol, which means that a
client sends a request to a server that is responsible
for processing and returning a message in response.
The message is composed of two main parts: the
header and the body. The header contains informa-
tion on the message and on the server. The body
contains the actual data that was requested (e.g.,
an image). HTTP provides cache validators in the
header of the messages to transmit the status of the
resource to the client, which can take a decision on
the validity of the cached version of the resource.
This strategy prevents the client from downloading
unnecessary data and improves performance by re-
ducing the network traffic. XNAT only provides the
”Last-Modified” field in the header, which can be
checked against the date of the local version of the
data. Only the resources that link to a file support
the cache validation in XNAT. The other resources
— elements listing, metadata values — need to be
downloaded again to make sure the local data is
up to date. This is why PyXNAT introduces an
additional expiration mechanism to avoid repeat-
edly requesting resources to the server for certain
operations. In other words, if a cached resource is
accessed within a specified amount of time (default
to one second), the data will not be downloaded
again.

Database management

PyXNAT supports additional XNAT functionali-
ties including user, project, and pipeline manage-
ment as well as search utilities. Those features re-
flect exactly what is provided by the XNAT REST
API. We now present two critical interfaces.

The first interface provides project management
functionality. It enables project owners to configure
their project, add users, and set up access permis-
sions. This is achieved mainly by configuring two
attributes: the user role and the project accessibil-
ity.
interface .manage. project (’ID”) .

set_accessibility (level)

interface .manage. project (’ID’).add_user (’

user ’, role)

)

The second interface is the search utility. It en-
ables users to create and share searches with other
users. It uses the same syntax as the one described
for the where clause. An additional PyXNAT-
specific feature is the ability to create search tem-
plates. These templates maintain the ability to be
shared between users, but instead of carrying val-
ues, they define keys to be replaced by the actual
value when used. This makes it possible to easily
re-use any kind of search.

1__

criteria = [(’xnat:subjectData/GENDER’ ,
, ’male’), ’AND’]

interface .manage.search.save(’search_name’,
row, columns, criteria , users)

interface .manage.search.get (’search_name’)

__

criteria = [(’xnat:subjectData /GENDER’ ,
, 'gender’), ’AND’]
interface .manage.search.save_template (’

template_name’, row, columns, criteria ,
users)
interface .manage.search.use_template (’
template_.name’, {’gender’: ’male’})

Usage examples

PyXNAT is a powerful and easy to use library to
build client applications for XNAT. As an example,
NiPyPE (Ghosh et al., 2010) is a Python module
that interfaces to existing neuroimaging software
such as SPM, FSL or FreeSurfer. It is also able to
distribute jobs over clusters, which makes it very
efficient to process large amounts of data. Its data
connection method was originally file system based
but it can now in addition access an XNAT server
through PyXNAT. PyXNAT and NiPype are being
used jointly to run analysis on IMAGEN, which is
a European project that aims to study addiction

10

risk factor in a database containing over 2000 ado-
lescents. Figure 8 depicts how the two packages
interact.

Other projects have started or already support
XNAT through PyXNAT. Among them are the
XNAT tools from the XNAT group, which were
originally written in Java and are currently being
re-written in Python using PyXNAT. Another ex-
ample is the Connectome Viewer (Gerhard et al.,
2011), which can now read and write data on
XNAT.

3 Discussion and Conclusion

Historically, neuroimaging researchers have used
ad-hoc procedures for maintaining their analysis
and data. Over the last few years, there have been
several attempts to build databases to manage neu-
roimaging data. The ability to programmatically
access neuroimaging databases is becoming increas-
ingly important to perform batch analysis and ad-
ministration tasks, as their growth makes them all
but impossible to operate manually. However it
has been difficult to use standard analysis tools and
these database systems together.

One of the most widely used neuroimaging
database systems is XNAT. XNAT is an open-
source database that incorporates many useful and
powerful features including an efficient search en-
gine and a REST API. However, being written in
Java and having a REST API, it offers no natural
bridge to the most common analysis tools, that are
accessible from a scripting language (like Matlab or
Python) or from the command line.

PyXNAT provides a bridge between XNAT
and analysis tools. Combined with an interac-
tive Python terminal such as IPython (Perez and
Granger, 2007), it can also be used as an alter-
native front-end for XNAT. Since it is written in
Python, it becomes readily accessible to the vast
and relevant set of Python tools in the neuroscience
domain. Moreover, command line tools can easily
be developed using PyXNAT, as such, popular pro-
gramming languages can easily benefit from PyX-
NAT merely by issuing system calls. The XNAT
team is currently rewriting its command line tools
using PyXNAT. Most programming languages pro-
vide bridges toward other languages. As an ex-

HTTP request without cache

GET /images/T1.nii.gz

headers [HTTPA.1 200 0K

cHentEiii\

[——=—]

(o] 8-

server

HTTP request with cache

GET /images/T1.nii.gz

/e/_\

cHent

headers (HTTPA.1 304 Not Modified | e

\e_»\ .
cache

server

Figure 7: HTTP cache mechanism

YXNAT
pull data push results

results

G
"j?
distrib&
workflows

environment

Figure 8: PyXNAT and NiPyPE interactions

11

ample, PyMat 2 enables Python scripts to exe-
cute Matlab commands, and pass back and forth
Numpy arrays. While these solutions are not as ro-
bust as keeping a single programming environment,
they provide a viable option to use existing code.
Another solution to use PyXNAT from other lan-
guages is to use the softwares wrapped by NiPyPE.

PyXNAT focuses on ease of use, combining
RESTful services with clear semantics and adding
helper features. It also makes PyXNAT highly ef-
ficient: being a thin layer over HT'TP with a cache
mechanism, it is at least as efficient as native REST
calls. The package is open-source under the BSD
license. It is available for download'® and has an
online documentation'®, which covers installation
and usage.

There are several areas where PyXNAT, in its
current version (0.9.3), needs to be improved. One
of the most important areas that could be im-
proved is the PyXNAT cache, which is currently
only disk-based. If several processes share the same
cache folder, one has to be careful to avoid concur-
rent read and write operations on the same files.
The cache could be replaced by a full featured lo-
cal database. It would support concurrent access

2http://claymore.engineer.gvsu.edu/ steri-
ana/Python/pymat.html
B3http://pypi.python.org/pypi/pyxnat/

Mhttp://packages.python.org/pyxnat/

and also enable an offline mode for PyXNAT with
search capabilities. One could also add synchro-
nization features to update the local database and
push back generated results to the remote server.
Users would then be able to work seemlessly on
and offline. Other possible improvements include
a logging framework to trace all the REST calls,
advanced data filtering capabilities from the REST
API, or the prearchive mechanism from XNAT.

PyXNAT could be used to develop a federa-
tion layer between XNAT servers. It would mostly
help to access the data, but using its introspection
functions, it could issue simple queries on multi-
ple XNAT instances. PyXNAT could also help to
federate heterogeneous databases systems, but as
a component along similar librairies. The com-
plex challenges of data integration, such as data
alignment would however have to be addressed
separately. The INCF (International Neuroinfor-
matics Coordinating Facility), and in particular
its datasharing task force, is currently working on
these issues. For example, the datasharing task
force is working on an API for accessing differ-
ent neuroimaging databases (XNAT, HID, IDA,
...), that could eventually be re-used in PyXNAT.
Its goal is not to promote a specific database, but
rather standards and methods to share and re-use
neuroimaging data. However due to its popularity
and relevance, XNAT and therefore PyXNAT are
part of the components being used to build proto-
types for the initiative.

In conlusion, PyXNAT enables XNAT access in
the Python environment. It can be used both as an
interactive command line interface and as a back-
end communication library. We see PyXNAT as
an major step to help process and administrate
datasets in XNAT servers.

4 Acknowledgements

We thank Jarrod Millman for helpful reading of the
original manuscript. We also thank the NIPY com-
munity for their tools and advice in general, and all
the PyXNAT users for their feedback and patience.
Support was provided by the IMAGEN project,
which receives research funding from the Euro-
pean Community’s Sixth Framework Programme
(LSHM-CT-2007-037286). This manuscript reflects
only the author’s views and the Community is not

12

liable for any use that may be made of the infor-
mation contained therein.

References

Angles, R. and C. Gutierrez (2008). Survey of
graph database models. ACM Computing Sur-
veys (CSUR) 40(1), 1.

Bug, W., G. Ascoli, J. Grethe, A. Gupta,
C. Fennema-Notestine, A. Laird, S. Larson,
D. Rubin, G. Shepherd, J. Turner, and Others
(2008). The NIFSTD and BIRNLex vocabular-
ies: building comprehensive ontologies for neuro-
science. Neuroinformatics 6(3), 175-194.

Cattell, R., D. Barry, D. Bartels, M. Berler, J. East-
man, S. Gamerman, D. Jordan, A. Springer,
H. Strickland, and D. Wade (1997). The object
database standard: ODMG 2.0, Volume 5. Mor-
gan Kaufmann Los Altos, CA.

Fielding, R. (2000). Representational state transfer
(REST). Chapter 5 in Architectural Styles and
the Design of Networkbased Software Architec-
tures. Ph. D. thesis, University of California,
Irvine, CA.

Gadde, S., N. Aucoin, J. Grethe, D. Keator,
D. Marcus, S. Pieper, and (2012). Xcede: An
extensible schema for biomedical data. Neuroin-
formatics 10, 19-32. 10.1007/s12021-011-9119-9.

Gerhard, S., A. Daducci, A. Lemkaddem, R. Meuli,
J. Thiran, and P. Hagmann (2011). The connec-
tome viewer toolkit: an open source framework
to manage, analyze, and visualize connectomes.
Frontiers in neuroinformatics 5.

Ghosh, S., C. Burns, D. Clark, K. Gorgolewski,
Y. Halchenko, C. Madison, R. Tungaraza, and
K. J. Millman (2010). Nipype: Opensource plat-
form for unified and replicable interaction with
existing neuroimaging tools. In 16th Annual
Meeting of the Organization for Human Brain
Mapping, Barcelona.

Jones, E.,; T. Oliphant, and P. Peterson (2001).
SciPy: Open source scientific tools for Python.
URL http://www. scipy. org.

Kakazu, K., L. Cheung, and W. Lynne (2004). The
Cancer Biomedical Informatics Grid (caBIG):
pioneering an expansive network of informa-
tion and tools for collaborative cancer research.
Hawaii medical journal 63(9), 273.

Keator, D. B., J. S. Grethe, D. Marcus, B. Ozyurt,
S. Gadde, S. Murphy, S. Pieper, D. Greve,
R. Notestine, H. J. Bockholt, P. Papadopou-
los, BIRN Function, BIRN Morphometry, and
BIRN Coordinating (2008). A National Hu-
man Neuroimaging Collaboratory Enabled by
the Biomedical Informatics Research. IEEE
Transactions on Information Technology in
Biomedicine 12(2), 162-172.

Langtangen, H. (2011). A primer on scientific
programming with Python, Volume 6. Springer-
Verlag New York Inc.

Larson, S., S. Maynard, F. Imam, and M. Martone
(2009). NeuroLex. org-A semantic wiki for neu-
roinformatics based on the NIF Standard Ontol-
ogy. frontiersin.org.

Maier, D. (1983). The Theory of Relational
Databases. Computer Science Press, Rockville,
MD.

Marcus, D., T. Olsen, M. Ramaratnam, and
R. Buckner (2007). The extensible neuroimaging
archive toolkit. Neuroinformatics 5(1), 11-33.

Montagnat, J. and A. Gaignard (2008). Neu-
roLOG: a community-driven middleware design.
Studies In Health Technology And Informat-
ics 138, 49-58.

Oliphant, T. (2006). A Guide to NumPy, Volume 1.
Trelgol Publishing, Spanish Fork, UT.

Ozyurt, 1. B., D. B. Keator, D. Wei, C. Fennema-
Notestine, K. R. Pease, J. Bockholt, and J. S.
Grethe (2010, December). Federated Web-
accessible Clinical Data Management within an
Extensible Neurolmaging Database. Neuroinfor-
matics 8(4), 231-49.

Perez, F. and B. Granger (2007). IPython: a sys-
tem for interactive scientific computing. Com-
puting in Science & Engineering 9, 21-29.

13

Petersen, R., P. Aisen, L. Beckett, M. Dono-
hue, A. Gamst, D. Harvey, C. Jack, W. Ja-
gust, L. Shaw, A. Toga, and Others (2010).
Alzheimer’s Disease Neuroimaging Initiative
(ADNI). Neurology 74(3), 201.

Schumann, G., E. Loth, T. Banaschewski, A. Bar-
bot, G. Barker, C. Biichel, P. J. Conrod,
J. W. Dalley, H. Flor, J. Gallinat, H. Garavan,
A. Heinz, B. Itterman, M. Lathrop, C. Mallik,
K. Mann, J.-L. Martinot, T. Paus, J.-B. Po-
line, T. W. Robbins, M. Rietschel, L. Reed,
M. Smolka, R. Spanagel, C. Speiser, D. N.
Stephens, A. Strohle, and M. Struve (2010, De-
cember). The IMAGEN study: reinforcement-
related behaviour in normal brain function and
psychopathology. Molecular psychiatry 15(12),
1128-39.

Van Essen, D. (2002). Windows on the brain: the
emerging role of atlases and databases in neuro-
science. Current Opinion in Neurobiology 12(5),
574-579.

Van Horn, J. D. and A. W. Toga (2009, October).
Is it time to re-prioritize neuroimaging databases
and digital repositories? NeuroImage 47(4),
1720-34.

5 Appendix

This small example illustrates how to download T1 images from subjects over 80 years old on XNAT

Central'®

with PyXNAT, and process them in parallel on a computer. For the sake of simplicity, we

chose the BET command line tool, which extracts the brain from the image of the whole head, as an
analysis example. The functions, that distribute the processing on several processors, are part of the
standard library of Python. The example is also available on github'®, and requires FSL'7 and pyxnat
version 0.9.3 or above to run. The script will prompt the user for a login and password, so one may

need to first register on XNAT CENTRAL.

import os
from subprocess import Popen
import multiprocessing as mp

import pyxnat

URL "https://central.xnat.org’ # central URL
BET = ’fsl4.1—bet2’ # BET executable path

central = pyxnat.Interface (URL) # connection object

def bet(in_-img, in_hdr): # Python wrapper on FSL BET, essentially a system call

in_.image = in_img.get () # download .img

in_hdr.get () # download . hdr

path, name = os.path.split (in_image)

in_image = os.path.join (path, name.rsplit(’.’)[0])

out_image = os.path.join(path, name.rsplit(’.’)[0] + ’_brain’)
print '=—> %s’ % in_image[—120:]

Popen ("%s %s %s’ % (BET, in_image, out_image),
shell=True) . communicate ()
return out_image

notify = lambda m: sys.stdout.write (<= %s\n’ % m[—120:]) # print finish message
pool = mp. Pool(processes=mp.cpu_count () * 2) # pool of concurrent workers
images = {}
query = (’/projects /CENTRAL_OASIS.CS/subjects /x’
>/experiments /« MR1/scans /mpr—1%/resources /x/files /*)
filter- = [(’xnat:mrSessionData/AGE’, '>’, ’80’), ’AND’]

for f in central.select (query).where(filter.):
label = f.label ()

images are stored in pairs of files (.img, .hdr) in this project
if label.endswith(’.img’):

images.setdefault (label.split(’.7)[0], []).append(f)
if f.label().endswith(’.hdr’):

images.setdefault (label.split(’.)[0], []).append(f)

download and process both occur in parallel within the workers
for name in images.keys():
if len (images[name]) = 2: # if .img and .hdr XNAT references are ready
img, hdr = images.pop (name) # get references
pool.apply_async(bet, (img, hdr), callback=notify) # start worker
pool.close ()
pool.join ()

15https://central.xnat.org
6https://gist.github.com /1816347
17fs]-bet path may have to be changed in the script to match your installation

14

	Material and methods
	Results
	Discussion and Conclusion
	Acknowledgements
	Appendix

