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Finite Difference Time Domain Method For
Grating Structures

Fadi Issam Baida1 and Abderrahmane Belkhir2

1 Institut FEMTO-ST, Département d’Optique P.M. Duffieux, UMR 6174 CNRS
Université de Franche–Comté, 25030 Besançon Cedex, France

2 Université Mouloud Mammeri, Laboratoire de Physique et Chimie Quantique,
Tizi-Ouzou, Algeria

fbaida@univ-fcomte.fr

The Finite Difference Time Domain method (FDTD), based on the Yee’s scheme, is one of the
most commonly used time methods for the modeling of electromagnetic waves propagation and
diffraction. It was first introduced by Yee in 1966 [1] in the context of differential equations
resolution and the first articles recommending its futur applications are published from 1975
[2, 3, 4]. Due to the simplicity of its implementation and therapid growth of computing capacity,
the FDTD is gaining users in all areas of electromagnetism applications. It allows a real-time
monitoring of the electromagnetic wave evolution in any kind of environment (dielectric, metal,
plasma. . . ). Its theoretical formulation is very easy sinceit requires no matrix inversion and
could take into account the more complex geometric shapes ofobjects in the studied system. In
addition, using this time domain method, a wide spectral range characterization can be obtained
from one temporal calculation via a simple Fourrier transform.

In this chapter, we present a brief review on the fundamentals of the FDTD method. We
show how to adapt it to the calculation of the photonic band gap structures in the case of 2D
periodic (invariant in the third direction) structures. The both in-plane, for the TE and TM
polarizations, and off-plane propagations are considered. The last part of this chapter is devoted
to FDTD general formulation, based on the Split Field Methodtechnique, for the modeling of
bi-periodic gratings that are finished according to the third direction.

9.1 Fundamentals of the FDTD method

9.1.1 The Yee’s algorithm

The FDTD method is based on the numerical resolution of the Maxwell’s equations using a
centered finite difference schema to approximate the partial derivatives both in time and space.

mailto:fbaida@univ-fcomte.fr


9.2 Gratings: Theory and Numeric Applications, 2012

Let us start from these equations expressed in their differential formulation:

∇×−→
E = −∂−→B

∂ t
(9.1)

∇×−→
H =

∂−→D
∂ t

(9.2)

The electromagnetic properties of the medium are describedthrough the so-called constitutive
relationships:

−→
D = ε−→E (9.3)
−→
B = µ−→H (9.4)

ε andµ are respectively the dielectric permittivity and magneticpermeability of the medium.

In a Cartesian coordinate system(O, x, y, z), the Maxwell’s equations in the time domain
are written as:

∂Hx

∂ t
=

1
µ

[

∂Ey

∂z
− ∂Ez

∂y

]

(9.5.a)

∂Hy

∂ t
=

1
µ

[

∂Ez

∂x
− ∂Ex

∂z

]

(9.5.b)

∂Hz

∂ t
=

1
µ

[

∂Ex

∂y
− ∂Ey

∂x

]

(9.5.c)

∂Ex

∂ t
=

1
ε

[

∂Hz

∂y
− ∂Hy

∂z

]

(9.5.d)

∂Ey

∂ t
=

1
ε

[

∂Hx

∂z
− ∂Hz

∂x

]

(9.5.e)

∂Ez

∂ t
=

1
ε

[

∂Hy

∂x
− ∂Hx

∂y

]

(9.5.f)

The numerical treatment of the partial differential equations 9.5 requires a space and time dis-
cretization. The calculation volume, shown in figure 9.1 is arectangular parallelepiped divided
into (Nx×Ny×Nz) cells, each one with elementary volume(∆x×∆y×∆z) where∆x, ∆y and
∆zare the spatial discretization steps according to theOx, OyandOzdirections respectively.

Each well defined node of the grid is associated with a tripletof integers(i, j, k) so that
the coordinates

(

xi , y j , zk
)

of the node satisfy:

xi = i ·∆x

y j = j ·∆y

zk = k ·∆z

The computational time is also discretized with a∆t time step. Each computing timet is asso-
ciated with the integern defining the number of temporal sampling:

t = n ·∆t
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Unit Cell

Dz

Dx

Dy

z, k

y, j

x, i

Figure 9.1: An exemple of the FDTD calculation volume.

Temporal and spatial derivatives of the field components (Ex, Ey, Ez, Hx, Hy, Hz) are approxi-
mated from their Taylor development to the first order. Thus,if U is one of these components,
we will adopt the following notation:

U
(

xi , y j , zk, t
)

=Un
i, j ,k (9.6)

The temporal derivative of theU component att time and
(

xi , y j , zk
)

node is approximated with
finite centred difference as follows:

[

∂U
∂ t

]

i, j ,k
=

U
n+ 1

2
i, j ,k −U

n− 1
2

i, j ,k

∆t
+0

(

[∆t]2
)

(9.7)

The spatial derivatives of theU component are approximated in the same manner:

[

∂U
∂x

]

j ,k,n
=

Un
i+ 1

2 , j ,k
−Un

i− 1
2 , j ,k

∆x
+0

(

[∆x]2
)

(9.8.a)

[

∂U
∂y

]

i,k,n
=

Un
i, j+ 1

2 ,k
−Un

i, j− 1
2 ,k

∆y
+0

(

[∆y]2
)

(9.8.b)

[

∂U
∂z

]

i, j ,n
=

Un
i, j ,k+ 1

2
−Un

i, j ,k− 1
2

∆z
+0

(

[∆z]2
)

(9.8.c)

As explicitly mentioned in equations 9.8, the use of centered difference scheme allows a
precision of the second order even if a first order Taylor development is considered. This greatly
enhances the numerical convergence of the FDTD algorithm.
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(i, j, k)

Hy (i+1/2, j, k+1/2) H x (i, j+1/2, k+1/2)

H z (i+1/2, j+1/2, k)

Ez (i, j, k+1/2)

Ex (i+1/2, j, k)

z

y

x
cell number (i,j,k)

Figure 9.2: Spatial discretization : Yee’s cell.

En En+1 En+2Hn+1/2

2n t/2D (2n+1) t/2D (2n+2) t/2D (2n+3) t/2D (2n+4) t/2D

Hn+3/2

Figure 9.3: Temporal discretization into the Yee’s scheme.

Yee’s algorithm

The algorithm proposed by Kane Yee in 1966 [1] uses in a cleverway this discretization for
solving the system of equations (9.5). In the Yee’s scheme, the electromagnetic field compo-
nents are located at different points in a unit cell (Figure9.2). The electric field components are
calculated along the edges of the cell while the perpendicular magnetic field components are
calculated at the centers of the cell faces. Thus, each electric field component is surrounded by
four magnetic field components and similarly for each magnetic field component.

The temporal increment into the Yee’s scheme is done througha "leapfrog" discretization
schema. The field components

−→
H (or

−→
E ) are calculated at times odd multiples of the half time

step∆t
2 , while the field components

−→
E (respectively

−→
H ) are updated at the times even multiples

of ∆t
2 as shown in figure 9.3. Such a discretization allows evaluating the time derivatives by

keeping a centered difference schema as for spatial derivatives.
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Consequently, replacing the partial derivatives in equations (9.5) by central difference
(9.7-9.8), according to the Yee’s scheme leads to the updated equations of electromagnetic
components in the FDTD algorithm:

H
n+ 1

2
x(i, j+ 1

2 ,k+
1
2)

= H
n− 1

2
x(i, j+ 1

2 ,k+
1
2)

− ∆t
µ0∆

{[

En
z(i, j+1,k+ 1

2)
−En

z(i, j,k+ 1
2)

]

+

[

En
y(i, j+ 1

2 ,k)
−En

y(i, j+ 1
2 ,k+1)

]}

(9.9.a)

H
n+ 1

2
y(i+ 1

2 , j,k+ 1
2)

= H
n− 1

2
y(i+ 1

2 , j,k+ 1
2)

− ∆t
µ0∆

{[

En
x(i+ 1

2 , j,k+1)
−En

x(i+ 1
2 , j,k)

]

+

[

En
z(i, j,k+ 1

2)
−En

z(i+1, j,k+ 1
2)

]}

(9.9.b)

H
n+ 1

2
z(i+ 1

2 , j+ 1
2 ,k)

= H
n− 1

2
z(i+ 1

2 , j+ 1
2 ,k)

− ∆t
µ0∆

{[

En
y(i+1, j+ 1

2 ,k)
−En

y(i, j+ 1
2 ,k)

]

+

[

En
x(i+ 1

2 , j,k)
−En

x(i+ 1
2 , j+1,k)

]}

(9.9.c)

En+1
x(i+ 1

2 , j,k)
= En

x(i+ 1
2 , j,k)

+
∆t
ε∆

{[

Hn
z(i+ 1

2 , j+ 1
2 ,k)

−Hn
z(i+ 1

2 , j− 1
2 ,k)

]

+

[

Hn
y(i+ 1

2 , j,k− 1
2)

−Hn
y(i+ 1

2 , j,k+ 1
2)

]}

(9.9.d)

En+1
y(i, j+ 1

2 ,k)
= En

y(i, j+ 1
2 ,k)

+
∆t
ε∆

{[

Hn
x(i, j+ 1

2 ,k+
1
2)

−Hn
x(i, j+ 1

2 ,k−
1
2)

]

+

[

Hn
z(i− 1

2 , j+ 1
2 ,k)

−Hn
z(i+ 1

2 , j+ 1
2 ,k)

]}

(9.9.e)

En+1
z(i, j,k+ 1

2)
= En

z(i, j,k+ 1
2)

+
∆t
ε∆

{[

Hn
y(i+ 1

2 , j,k+ 1
2)
−Hn

y(i− 1
2 , j,k+ 1

2)

]

+

[

Hn
x(i, j− 1

2 ,k+
1
2)

−Hn
x(i, j+ 1

2 ,k+
1
2)

]}

(9.9.f)

Let us note that this last equation system can be simplified significantly in case of 2D structures
(see section 2 of this chapter).

For the modeling of structures with a symmetry of revolution, a basis change from Carte-
sian to cylindrical coordinates is strongly recommended toaccurately describe the fine details
of the samples and to make more flexible the FDTD calculation codes. In these so-called BOR-
FDTD (Body of Revolution FDTD) codes, the symmetry of revolution is exploited to express
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the azimuthal dependence (φ ) of the electromagnetic fields as Fourrier series. BOR-FDTDal-
gorithm can, in this case, compute solutions for all Fouriermodes through one simulation per
mode. This code is commonly called 2.5D since the azimuthal field variation is analytically
accounted for. Thus, there is no griding in theφ -direction. This implies that the BOR-FDTD
algorithm is two-dimensional in terms of computer ressource usage even 3D structures are mod-
eled.

9.1.2 Spatiotemporal criteria of convergence

As all explicit schemes, Yee’s algorithm is subjected to a stability condition setting the time
step from the space discretization. Arbitrary values of spatiotemporal discretization can lead to
infinite solutions of the electromagnetic field. Stability problems in explicit numerical methods
have been analyzed in detail by Courant, Friedrichs and Levy[5] and Von Neumann, from
a mathematically rigorous approach. This analysis shows that the explicit schemes are stable
under a condition called CFL (for Current, Friedrich and Levy) and applied to the FDTD method
in the case of a regular mesh [6]:

∆t ≤
[

vmax·
√

1
∆x2 +

1
∆y2 +

1
∆z2

]−1

(9.10)

wherevmax is the maximum velocity of light propagation in the studied system, generally the
velocity of light in vacuum.

In case of uniforme mesh(△x=△y=△z=△), the CFL criterion becomes:

∆t ≤ 1
vmax

· ∆√
3

in3D (9.11)

∆t ≤ 1
vmax

· ∆√
2

in2D (9.12)

However, it is possible to overcome the restrictive assumption of regular mesh that achieves
the above result with the following generalized criterion:

∆t ≤
[

vmax·
√

1

∆x2
min

+
1

∆y2
min

+
1

∆z2
min

]−1

(9.13)

where∆xmin, ∆ymin et ∆zmin are the smallest step in the three directionsx, y andz respectively.

In addition to the numerical instability problem, the transition from continuous forms of
Maxwell’s equations to the discrete numerical approximations can cause a parasitic effect called
"numerical dispersion". This is due to the fact that numerical signals are propagated over time
in the FDTD grid, with a phase velocity less than the actual velocity. This dispersion varies
with frequency, propagation direction in the grid and the spatial discretization [6]. Numerical
dispersion errors increase with the signal frequency and size of the computational domain, thus
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making the simulation results less reliable. They may appear in various forms: phase error,
signal distortion, loss of amplitude, pulse broadening ...

The solution to this problem requires a very fine mesh in the FDTD grid, so that the
maximum discretization is of the orderλmin/20 [6], λminbeing the minimum wavelength of
propagating waves in the FDTD grid.

9.1.3 Absorbing boundary conditions - Perfectly Matched Layers

Such conditions allow us to describe open systems where emitted or reflected waves propa-
gate to infinity. Indeed, the limited memory space of computers requires users to truncate their
FDTD computational domain. At the limits of this truncated domain, components of the elec-
tromagnetic field can not be calculated by the discretized equations (9.9). Therefore special
treatment at the borders is needed to avoid the incident electromagnetic wave on these "edges"
does reflect back and contaminate the actual physical signal. One of the most widely used tech-
nique is that proposed by Berenger [7] called Perfectly Matched Layer (PML). This technique
consists of adding around the studied domain not necessarily physical layer causing no reflec-
tion and almost totally absorbing all the propagating electromagnetic field. Its use is based on
the condition of impedance matching of two waves at the interface between two media with the
same index but which one is absorbing (with nonzero electrical conductivityσ and magnetic
equivalent conductivityσ⋆ as shown in figure 9.4).

Incident medium

Absorbing medium

( )s , s

e, m 0 e, m 0

e m

( 0 0 )s  = , s  =e m

Figure 9.4: Impedance matching principle.

This condition is expressed as:
σ
ε
=

σ⋆

µ0
(9.14)

Thus, a magnetic conductivity is needed to fulfill this impedance matching condition. In addi-
tion, absorption is needed only for components of the fields that propagates perpendicularly to
the interface (the FDTD window border) and not in the parallel direction. Bérenger solved this
problem by proposing an artificially biaxial absorbing medium. The absorption is not zero in
the direction normal to the interface between the two media and is zero along the axis parallel
to the interface. In the PML medium, the incident plane wave is split into two fictitious waves
(see figure 9.5):

1) A wave propagating at normal incidence and satisfying theequation 9.14. This wave
is attenuated and absorbed by the PML medium and undergoes only very low reflectivity to the
incident medium.
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e, m 0

( 0 0)s  = , s  =e e
x y

( 0 0)s  = , s  =m m
x y

( 0), s  =s  = 0e e
x y

( 0), s  =s  = 0m m
yx

incident medium
(main grid)

PML medium
Normally
propagating
wave

Grazing wave

e

e, m 0

x

y

Figure 9.5: Schematic of the PML principle.

2) A second grazing incidence wave that shows no absorption in the PML medium. This
wave, propagating parallel to the interface between two media undergoes no reflection and sees
a medium identical to that of the main grid window.

Abrupt changes in conductivities at this interface degradethe performances of absorption.
This effect is, however, reduced by imposing a progressive variation of the absorption according
to a polynomial law given by [7]:

σ = σmax

(xpml

e

)m
(9.15)

whereσmax is the maximum value of the conductivity,xpml represents the depth in the PML
region measured from the interface,e denotes the thickness of the PML layer andm is the
polynomial order generally fixed to 2.

Let us note that in the case of gratings such conditions are not necessary according to the
periodicity directions. The absorbing boundaries conditions are hereby replaced by Floquet-
Bloch periodic conditions in order to describe periodic structures (see section 2 of this chapter).
Nevertheless, for a 2D periodic structure, PML are needed inthe third direction where the
structure is usually finite.

9.1.4 Dispersive media

The dispersive media, such as metals in the optical range, are characterized by a complex per-
mittivity frequency dependentε(ω) = ε ′(ω)+ iε ′′(ω). As the FDTD method is temporal, in
such environments the direct implementation of the above equations, in which appear explicitly
permittivity and hence the frequency, is impossible. The solution for this problem is to calculate
the displacement vector

−→
D components in the classical Yee’s scheme and then back to electri-

cal field components using the constitutive equation of the medium established in the frequency
domain

−→
D (ω) = ε(ω)

−→
E (ω). The temporal nature of the FDTD needs a temporal constitutive

equation written as a convolution product
−→
D (t) = ε(t)⊗−→

E (t). It is a non local relationship
whose resolution requires the knowledge of the electric field at all previous times. Numerically,
this leads to a storage of a very large amount of data and therefore requires to have a very large
memory space. This issue can be bypassed using analytical models describing the dielectric
functionε(ω) of these metals. The choice of adapted analytical model depends on the type of
metal as well as the spectral range of study.
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9.1.4.1 Drude Model

The Drude model of free electrons [8, 9] for the dielectric function which, although based on
a purely classical approach, can well account for intrabandtransitions. In this model, firstly
proposed in 1908 by P. Drude, a gas of free electrons moving ina immobile metal ions lattice.
Thus, the electron-electron interactions and electron-ions are not taken into account and the
movement of all the electron cloud is thus the average of the movements of individual electrons.
The relative permittivity given by this model is:

εD = ε∞ − ω2
D

ω2+ iωγD
(9.16)

whereωD is the "plasma frequency" of the metal andε∞ its relative permittivity at infinite
frequencies.γD represents a damping term that is inversely proportional tothe relaxation time.

FDTD implementation of the Drude model

The principle consists in replacing the electric field vector
−→
E by

−→
D/ε in Maxwell’s equations

in order to eliminateε term. In dispersive media, equations (9.9.d, 9.9.e et 9.9.f) are replaced
by:

Dn+1
x(i+ 1

2 , j,k)
= Dn

x(i+ 1
2 , j,k)

+
∆t
∆

{[

Hn
z(i+ 1

2 , j+ 1
2 ,k)

−Hn
z(i+ 1

2 , j− 1
2 ,k)

]

+

[

Hn
y(i+ 1

2 , j,k− 1
2)

−Hn
y(i+ 1

2 , j,k+ 1
2)

]}

(9.17)

Dn+1
y(i, j+ 1

2 ,k)
= En

y(i, j+ 1
2 ,k)

+
∆t
∆

{[

Hn
x(i, j+ 1

2 ,k+
1
2)

−Hn
x(i, j+ 1

2 ,k−
1
2)

]

+

[

Hn
z(i− 1

2 , j+ 1
2 ,k)

−Hn
z(i+ 1

2 , j+ 1
2 ,k)

]}

(9.18)

Dn+1
z(i, j,k+ 1

2)
= Dn

z(i, j,k+ 1
2)
+

∆t
∆

{[

Hn
y(i+ 1

2 , j,k+ 1
2)
−Hn

y(i− 1
2 , j,k+ 1

2)

]

+

[

Hn
x(i, j− 1

2 ,k+
1
2)

−Hn
x(i, j+ 1

2 ,k+
1
2)

]}

(9.19)

Once the components of the displacement vector
−→
D are updated from the previous equations, we

proceed to the determination of the
−→
E components using the relation

−→
D = ε(ω)

−→
E . Replacing

ε(ω) by its expression given by the Drude model, we get to:

(ω2+ iωγD)
−→
D = ε0ε∞(ω2+ iωγD)

−→
E − ε0ω2

D
−→
E (9.20)
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Assuming time dependance of electromagnetic field ine−iωt , a simple Fourier transform (ω →
t) of this last equation leads to:

d2−→D
dt2

+ γD
d
−→
D

dt
= ε0(ε∞

d2−→E
dt2

+ ε∞γD
d
−→
E

dt
+ω2

D
−→
E )

The partial derivatives of this equations are then replacedby their expressions through the cen-
tered finite difference schema. The electric field updated equation in the dispersive media is
then obtained:

ξ−→E n+1 =−χ−→E n−1+4ε∞ε0
−→
E n+

−→
D n+1[γD∆t+2]−4

−→
D n+[−γD∆t +2]

−→
D n−1 (9.21)

with ξ = ε0[ω2
D∆t2+ε∞γD∆t+2ε∞] andχ = ε0[ω2

D∆t2−γDε∞∆t+2ε∞]. Due to the dispersion,
an additional step of calculation is necessary. It consistsof determining the displacement field
components for all nodes representing the dispersive media. In addition and as can be seen in
equation (9.21), we need to store the

−→
E and

−→
D components on two time steps, which has the

effect of increasing the memory space to be allocated and thecomputation time.

9.1.4.2 Drude-Lorentz Model

In addition to the conduction electrons, the Drude-Lorentzmodel takes into account the bound
electrons. The interband transition of electrons from filled bands to the conduction band can
significantly influence the optical response. In alkali metals, these transitions occur at high
frequencies and provide only small corrections to the dielectric function in the optical domain.
These metals are well described by the Drude model. On the other side, in noble metals a
correction must be made to the dielectric function. It is dueto transitions between the bands d
and the conduction band s-p. The contribution of bound electrons to the dielectric function can
be described by the Lorentz model. To the above Drude dielectric function, a Lorentzian term
is added:

εDL(ω) = εD(ω)+ εL(ω)

EstimatingεL(ω), the bound electrons are described by forced and damped harmonic oscilla-
tors. Vialet al. [10] suggested a single oscillator leading to a single Lorentzian additional term
to well describe the permittivity of gold in the optical range compared with the classical Drude
model. In this case, the relative dielectric function is:

εDL (ω) = ε∞ −
ω2

p

ω2+ iωγ
− ∆ε ·Ω2

L
(

ω2−Ω2
L

)

+ iΓLω
(9.22)

whereΓL et ΩL stand for the spectral width and the strength of the Lorentz oscillator respec-
tively. ∆ε is a weighting factor.

The FDTD implementation of this model can be done with the Auxilliary Differential
Equations (ADE) method previously described above in the case of the Drude model or the
so-called Recursive Convolution (RC) method [10]. Becauseof the additional Lorentzian term,
its use requires the introduction of additional intermediate electromagnetic components in the
algorithm. Thus, a larger memory space is required comparedto the case of the Drude model.
In general, many involving multiple oscillators Lorentz terms are needed to accurately model
the permittivity of noble metals in the optical range.
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9.1.4.3 Drude critical points model

The optical properties of some metals, particularly gold, are more difficult to be analytically
described in the visible/near-UV region. This comes from much more important role, in the
case of gold, played by interband transitions in this region. Some attempts to add Lorentz
oscillators to the classical Drude term to account for thesetransitions rapidly face limitations
[11]. In fact, besides the huge simulation time, increasingthe number of parameters (mainly
non-physical and not well defined) would not provide more insight than quality fit (itself non-
physical) with a polynomial high degree or a simple numerical interpolation of the experimental
data.

In order to achieve a reasonable representation of the dielectric function, Etchegoinet al.
[12] took inspiration from the parametric critical points model developed for semiconductors
[13]. This model is very suitable for the description of optical properties of metals (such as gold)
for which the band structure is quite complex. In this approach, the frequency dependence of
the optical properties of gold in the visible/near-UV may bewell described by an analytical
formula with three main contributions that can be expressedas follows:

εD2CP(ω) = ε∞ − ω2
D

ω2+ iωγD
+

p=2

∑
p=1

Gp(ω) (9.23)

with

Gp(ω) = ApΩp

(

eiφp

Ωp−ω − iΓp
+

e−iφp

Ωp+ω + iΓp

)

(9.24)

The two first terms of equation (9.23) represents the standard contribution of the classical Drude
Model. The sum in equation (9.23) is the contribution of the inter-band transitions with the
amplitudeAp, gap energyΩp, phaseφp and broadeningΓp.

In a comparative study of this Drude critical points (CP) model with the so-called L4
model which consists of four Lorentzian terms [14], Vialet al. [15] show the possibility to
increase the accuracy of gold and silver permittivity description by using the CP model with
fewer parameters to determine and less memory use within theFDTD method.

Implementation of the CP model in FDTD using ADE technique

As in the previous case of the Drude model, the technique is tocalculate the displacement vector
components by the FDTD equations (9.17,9.18 and 9.19) and determine electrical components
using the following relationship:

−→
D = ε0εDCP

−→
E (9.25)

In the case of the CP model,
−→
D can be written as the sum of the electric displacement

vectors corresponding to each of the contributions in the dielectric function expression:

−→
D =

−→
D D +

2

∑
p=1

−→
DCp (9.26)
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with

−→
D D = ε0[ε∞ − ω2

P

ω2+ iγω
]
−→
E (9.27.a)

−→
DCp = ε0[ApΩp(

eiφp

Ωp−ω − iΓp
+

e−iφp

Ωp+ω + iΓp
)]
−→
E (9.27.b)

As before the temporal evolution of the fields ine−iωt is considered. By inverse Fourier trans-
form, we obtain:

(
∂ 2

∂ t2 + γ
∂
∂ t

)
−→
DD = ε0ε∞(

∂ 2

∂ t2 + γ
∂
∂ t

+
ω2

P

ε∞
)
−→
E (9.28.a)

(Ω2
p+Γ2

p+
∂ 2

∂ t2 +2Γp
∂
∂ t

)
−−→
DCp = 2ε0ApΩp(

√

Γ2
p+Ω2

psin(θp−φp)−sinφp
∂
∂ t

)
−→
E (9.28.b)

where:θp = arctan(Ωp
Γp
)

By centered difference discretization of the equation system (9.28) and taking into account
the split equation of the displacement vector (9.26), we reach the updated equations system for
the electric field vector at each point(i, j, k) of the calculation window:

−→
E n+1 =

1

χD
αD

+
p=2

∑
p=1

(
χp

αp
)

[

−→
D n+1+

βD

αD

−→
D n−1

D +
4

αD

−→
D n

D − δD

αD

−→
E n−1− 4ε0ε∞

αD

−→
E n

+
p=2

∑
p=1

(
βp

αp

−→
D n−1

Cp − 4
αp

−→
D n

Cp)+
p=2

∑
p=1

(
δp

αp
)
−→
E n−1

]

(9.29.a)

−→
D n+1

D =
1

αD

[

−βD
−→
D n−1

D −4
−→
D n

D+χD
−→
E n+1+δD

−→
E n−1+4ε0ε∞

−→
E n

]

(9.29.b)

−→
D n+1

Cp =
1

αp
[−βp

−→
D n−1

Cp +4
−→
D n

Cp+χp
−→
E n+1+δp

−→
E n−1] (9.29.c)

with:

αD = −2− γ∆t (9.30a)

βD = −2+ γ∆t (9.30b)

χD = ε0ε∞[−2− γ∆t − (ωp∆t)2/ε∞] (9.30c)

δD = ε0ε∞[−2+ γ∆t − (ωp∆t)2/ε∞] (9.30d)

αp = [Ω2
p+Γ2

p]∆t2+2Γp∆t+2 (9.30e)

βp = [Ω2
p+Γ2

p]∆t2−2Γp∆t+2 (9.30f)

χp = 2ApΩpε0[∆t2
√

Ω2
p+Γ2

psin(θp−φp)−∆t sinφp] (9.30g)

δp = 2ApΩpε0[∆t2
√

Ω2
p+Γ2

psin(θp−φp)+∆t sinφp] (9.30h)

Let us mention that the displacement vector split into threecontributions avoids doing appear
derivatives of order higher than 2 in the equations system (9.28). As seen on the equations
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system (9.29), taking into consideration the two critical points in the FDTD algorithm does not
need to store

−→
E and

−→
D components over more than two time steps. However, against the Drude

model implementation, additional calculation stages appear in order to determine the two parts
of the displacement vector corresponding to the two critical contributions.

9.2 Band gap calculation for 2D periodic structures

In this section, we describe how to adapt the FDTD calculation for photonic bandgap structures
(PBG) of periodic arrays. The biperiodic structures case isthere considered. These 2D struc-
tures are photonic crystals (PhC) whose permittivity is periodic in two dimensions (x andy for
example) and remains invariant according to the third one (z). They mainly include three main
families that are square, triangular and hexagonal lattices. For this type of structures, we can
distinguish two kinds of propagation, in the plane (in-plane,kz= 0) and out of plane (off-plane,
nonzerokz). The system of equations (9.5) becomes easier depending onthe type of propaga-
tion. To illustrate this, let us assume in what follows that the PhC is periodic along thex andy
directions and infinite alongzdirection.

9.2.1 In-plane propagation: TE and TM polarizations

In that case the propagation is done in the plane and the field variation vanishes along the
third direction. The system of equations (9.5) is simplifiedand divided into two independent
subsystems giving rise to two polarizations: transverse electric (TE) and transverse magnetic
(TM):

TE Polarization
∂Hz

∂ t
=

1
µ
(
∂Ex

∂y
− ∂Ey

∂x
) (9.31a)

∂Ex

∂ t
=

1
ε

∂Hz

∂y
(9.31b)

∂Ey

∂ t
= −1

ε
∂Hz

∂x
(9.31c)

TM Polarization
∂Hx

∂ t
= − 1

µ
∂Ez

∂y
(9.32a)

∂Hy

∂ t
=

1
µ

∂Ez

∂x
(9.32b)

∂Ez

∂ t
=

1
ε
(
∂Hy

∂x
− ∂Hx

∂y
) (9.32c)

In case ofTE polarization, the electrical components are transverse. They are in the plane
of periodicity of the PhC. On the other hand, for theTM polarization, the electric field is
perpendicular to the directions of periodicity and the magnetic components are transverse.

Let us note that the two polarizations can be studied by the same system of equations
(9.5) without separating it into two sub-systems. But to simplify the calculation codes and gain
memory space, it is recommended to study these two polarizations separately.
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9.2.2 Off-plane propagation

Off-plane propagation is characterized by a nonzero propagation constantkz according toz
direction. Diagram dispersion is generally determined fora fixed value ofkz. Thus, the z-
derivatives in Maxwell equations become analytical while the electric and magnetic field vectors
can be written as follows:

−→
E (x,y,z, t) =

−→
E0(x,y, t)exp(ikzz) (9.33a)

−→
H (x,y,z, t) =

−→
H0(x,y, t)exp(ikzz) (9.33b)

The Maxwell’s system of equations (9.5) becomes:

∂Hx

∂ t
=

1
µ
(ikzEy−

∂Ez

∂y
) (9.34a)

∂Hy

∂ t
=

1
µ
(
∂Ez

∂x
− ikzEx) (9.34b)

∂Hz

∂ t
=

1
µ
(
∂Ex

∂y
− ∂Ey

∂x
) (9.34c)

∂Ex

∂ t
=

1
ε
(
∂Hz

∂y
− ikzHy) (9.34d)

∂Ey

∂ t
=

1
ε
(ikzHx−

∂Hz

∂x
) (9.34e)

∂Ez

∂ t
=

1
ε
(
∂Hy

∂x
− ∂Hx

∂y
) (9.34f)

In this case, it is no longer possible to separate the system into two subsystems as before. The
TE andTM cases are therefore mixed together and can not be treated separately. However, we
can note that the calculation code is simplified since thez derivatives are analytically evaluated
so there is no discretization along thezdirection. A 2D algorithm is still needed.

9.2.3 Periodic boundary conditions

As the CPU time and space memory is limited, the FDTD calculation window must also be
finite. Because of symmetry, only one unit cell is considered. To reproduce the crystal at the
truncated domain boundaries, the Floquet-Bloch periodicity conditions [9] are applied to the
electric and magnetic components. Despite the fact that these periodicity conditions are general
and can be applied to any periodic structure, their expressions depend on the Bravais lattice.
Consequently, we will consider the two most used Bravais lattices i.e. the rectangular and the
triangular ones.

Rectangular cell

Let us consider a PhC made of cylinders (refractive indexn1) immersed in a medium of refrac-
tive indexn2. a andb are the lattice constants in thex andy directions respectively (see figure
9.6). The FDTD window calculation is shown in figure 9.6-b.
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Figure 9.6: Rectangular structure and FDTD window calculation

The Floquet-Bloch conditions are applied to the electric and magnetic components as
follows:

−→
E (x= 0,y, t) =

−→
E (x= a,y, t)exp(−ikx ·a) (9.35a)

−→
E (x,y= 0, t) =

−→
E (x,y= b, t)exp(−iky ·b) (9.35b)

−→
H (x= a,y, t) =

−→
H (x= 0,y, t)exp(ikx ·a) (9.35c)

−→
H (x,y= b, t) =

−→
H (x,y= 0, t)exp(iky ·b) (9.35d)

Triangular cell

Similarly to the rectangular cell, the calculation FDTD window is limited to a single unit cell. To
model the triangular photonic structure (see figure 9.7-a),three choices of the FDTD window
are possible. The first one is to take a non-orthogonal unit cell (cell 1 in figure 9.7-a) and
implement the periodic boundary conditions in a Non orthogonal-FDTD algorithm [16, 17]
for which the classical FDTD developed in an orthogonal coordinate system is not suitable. To
bypass this constraint and remaining in the conventional FDTD with orthogonal coordinates, the
second rectangular cell (celle 2 in figure 9.7-a) can be used to derive the periodic conditions.
Nevertheless, this cell contains two patterns. This means that the rectangular periodic conditions
lead to a less-description of all the possible solutions. Consequently, an aliasing effect will
appear in the dispersion diagram.

In order to get gain in computational time and space and prevent this band folding while
remaining with the orthogonal FDTD algorithm, a rectangular cell can be defined with only
one pattern (cell 3 in figure 9.7-a). Within this FDTD calculation cell (9.7-b), the periodic
conditions above are therefore replaced by:

-along thex direction :

−→
E (x= 0,y,z, t) =

−→
E (x= a,y,z, t)exp(−ikx ·a) (9.36a)

−→
H (x= a,y,z, t) =

−→
H (x= 0,y,z, t)exp(ikx ·a) (9.36b)
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Figure 9.7: Triangular structure and FDTD calculation window
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Figure 9.8: Brillouin zone

- along they direction withx≥ 0 andx≤ a/2

−→
E (x,y= 0,z, t) =

−→
E (x+

a
2
,y= b,z, t)exp(i(−ky ·b−kx ·a/2)) (9.37a)

−→
H (x,y= b,z, t) =

−→
H (x+

a
2
,y= 0,z, t)exp(i(ky ·b−kx ·a/2)) (9.37b)

- along they direction withx> a/2 andx≤ a

−→
E (x,y= 0,z, t) =

−→
E (x− a

2
,y= b,z, t)exp(i(−ky ·b+kx ·a/2)) (9.38a)

−→
H (x,y= b,z, t) =

−→
H (x− a

2
,y= 0,z, t)exp(i(ky ·b+kx ·a/2)) (9.38b)

By the way, the dispersion diagram of a triangular or honeycomb Bravais lattices can be calcu-
lated without modifying the orthogonal Cartesian Yee schema.

9.2.4 Some examples of band gap calculation

To obtain a photonic band diagram, several FDTD calculations are necessary done by varying
the

−→
k wavevector that must scan the irreducible Brillouin zone (figure 9.8).ΓX, XM andMΓ

highest symmetry directions are then discretized.

For this band gap calculation, the N-Order FDTD algorithm isused [18, 19]. This basis
of this algorithm is quite simple: a signal is injected to excite all possible frequencies of the
structure. This signal is introduced in accordance to the Maxwell-Gauss law (div(

−→
E ) = 0) and

given as follows: −→
E = ∑

G

(−→v ∧ (
−→
k +

−→
G)exp(i(

−→
k +

−→
G) ·−→r ) (9.39)
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Figure 9.9: Normalized electromagnetic energy density atΓ point for triangular structure of air holes (of radius
r = 0.25a) into lithium niobate. TM Polarization.

−→v is a random vector,
−→
k and

−→
G denote the wavevector and the reciprocal lattice vector respec-

tively.

After injecting this last initial signal, and for a given
−→
k , the FDTD simulation is run and

electromagnetic energy density time-evolution is calculated as a function of the frequency. This
later is calculated through:

W =
1
4
(ε0ε|E|2+µ|H|2) (9.40)

Only eigenmodes of the structure persist and evanescent ones gradually disappear. After a large
number of time iterations (typically 105) a permanent regime is then reached and the electro-
magnetic energy density spectrum exhibits several peaks corresponding to the eigenfrequencies
of the studied structure. An example of eigenfrequencies calculation for a triangular structure
in theΓ point is shown in figure 9.9. The structure is made of air holes(n1 = 1) into a dielectric
medium which is lithium niobate (LiNbO3) with refractive indexn2 = 2.1421. The radius of
the holes isr = 0.25a which corresponds to a filling factor of 0.2267%. The FDTD grid, one
PhC period, contains 60×52 spatial grids. To satisfy the stability criterion and avoid numerical
dispersion, the time step is taken as△t = a/(120·c).

To get the complete photonic band structure, it is necessaryto scan thek values over
all the contour of the irreducible Brillouin zone (ΓXM). Figure 9.10 shows the photonic band
diagram calculated for bothTE andTM polarizations for a structure parameters similar to those
used above in the case of figure 9.9.

We can note the emergence of a photonic bandgap forω a/2π c between 0.32 and 0.35 in
the case of the TE polarization (figure 9.10-a). This band does not exist in the case of the TM
polarization (figure 9.10-b) so it is called "partial".

Note here that, for a dispersive material, the calculation of the electromagnetic energy
density is no more given by equation 9.40 that is only valid for dielectrics (no dispersion).
In the case of metallic dispersive material, the electromagnetic energy density is given by (no
magnetic dispersion):

W =
1
4
(
∂ (ωε0ε)

∂ω
|E|2+µ|H|2) (9.41)
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Figure 9.10: Photonic band diagram for triangular structure of air holes (of radius r= 0.25a) into lithium niobate.
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Figure 9.11: In-plane photonic band diagram for annular aperture arrays engraved into silver (TE polarization).

The calculation of the energy density depends then on the dispersion model introduced
in the FDTD. Accordingly, an analytic expression ofW is obtained through the calculation
of the frequency derivative in equation 9.41. Its numericalvalue is then performed by the
determination of the spectral responses of both the two electric and magnetic fields that are
determined by the FDTD code.

Another example of band diagram, corresponding to a metallic structure made of annular
aperture arrays (AAA) engraved into silver layer and arranged in a square lattice, is shown in
figure 9.11. The AAA structure has been proposed by F. Baida and D. Van Labeke [20] for
Enhanced Optical Transmission (EOT) applications. It was showed that transmission through
AAA sub-wavelength structure could reach 90% in the visiblerange [21]. This EOT is due to the
excitation and the propagation of a guided mode inside each aperture. The main transmission
peak corresponds to the excitation of the TE11 mode at its cutoff wavelength [19]. This later
only depends on the value of the inner and the outer radii. Forr i = 50nm andre= 75nm and a
lattice constant ofa= 160nm one gets the band diagram of figure 9.11.

In case of the figure 9.11, corresponding to theTE polarization, we note the presence
of two photonic bandgaps. the first is ranging from zero frequency (infinite wavelength) to
the frequency value of 0.1835(c/a) (λ = 872nm). The second gap is in the visible range be-
tween 492nm and 630nm. Note that these bandgaps are "total" since the corresponding eigen
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Figure 9.13: Dispersion curves atΓ point for the coaxial structure made in silver (lattice constante a= 160nm,
inner radius ri = 50nmand outer radius re = 75nm; silver dispersion is modeled by a Drude model).

frequencies ofTM polarization are located above 0.45×c/a.

The figure 9.12 illustrates photonic band diagrams for the same considered AAA structure
but in the case of off-plane propagation with two different values ofkz. There is occurrence of an
additional photonic band relative to the in-plane case. This is due to the transverse electromag-
netic (TEM) mode excited now at a nonzero frequency (far from the cutoff). Forkz = π/(3a),
the bandgaps are located in the ranges]1873nm,∞[, ]723nm, 1668nm[ and ]458nm, 575nm[.
These bandgaps become]653nm,∞[, ]512nm, 574nm[ and ]378nm, 431nm[ whenkz = π/a.
According to the theory, this band gap shift is due to the factthat the eigenfrequencies of guided
modes increase withkz.

Figure 9.13, showing the dispersion curves (atΓ point) of the guided modes depending
on kz, clearly confirms theTEM nature of the additional mode excited in the off-plan case.
This mode band starts from zero frequency, and therefore hasno cutoff frequency. An EOT
based on the excitation of this peculiar mode can be obtainedunder two conditions: an oblique
incidence with TM polarization [22]. The last section of this chapter is devoted to the study of
EOT obtained through the excitation of this peculiar mode.

An example of time evolution of the electromagnetic energy density is given on figure
9.14. The considered structure is an array of coaxial waveguides made in perfectly electric
conductor (PEC). All the geometrical parameters are given in the caption in addition to the
FDTD simulation ones. One notes that the main peak corresponds to the TE21 guided mode
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Figure 9.14: Time evolution of the electromagnetic energy density spectrum. The modeled structure is an array
of coaxial waveguides made in perfectly electric conductor(PEC) and arranged in square lattice. The inner and
outer radii is ri = 100nm and re = 140nm respectively. The period of the grating is a= 300nm but the obtained
results are independent on this value because there is non coupling between tow adjacent waveguides. The FDTD
simulations are done with a uniform spatial mesh of∆x = ∆y = a

400 and the temporal step was fixed to∆t = ∆x
4c

where c is the light velocity in vacuum.

that has a cutoff wavelength ofλ c
TE21

= π(r i+re)
2 .

9.3 Scattering calculation for 3D biperiodic nanostructures

In this section, we will focus on the FDTD modeling of dielectric and metallic bi-periodic
structures. For normal incidence, the FDTD method, based onthe classical Yee’s scheme, is a
powerful tool that can simply model such periodic structures [24, 25, 26]. In fact, in this sim-
ple case, the Floquet-Bloch periodic boundary conditions (PBC) can be easily applied without
any change because these conditions are independent of the frequency. However, at oblique
incidence, applying PBC implicitly involves a frequency term that must be integrated into the
FDTD algorithm that operates in the temporel domain. Thus, in order to adapt FDTD to oblique
incidence case, Veysoglu [27] introduced the field transformation method applied to

−→
E and

−→
H

toward new
−→
P and

−→
Q fields. By the way, the PBC conditions become similar to the ones of nor-

mal incidence case nevertheless the immediate consequenceof this transformation is the need
to modify the Yee’s scheme. Several techniques of implementation are then proposed including
that of Split-Field Method (SFM) [28].

In the following, we present the reformulation of the FDTD method, based on this SFM
technique to adapt it to the case of any incidence. Maxwell’sequations are modified and ex-
pressed with

−→
P and

−→
Q variables. They are then discretized using SFM technique. To avoid

reflections at the edges of the computational window, the equations in the Berenger’s PML
medium are also modified and expressed in the new domain within the SFM technique. In ad-
dition, the dispersion models mentioned above (Drude, Drude-Lorentz and Drude Critical point
models) are also described by modifying and adapting them tothe SFM technique.
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Figure 9.15: Sketch of the biperiodic structure illuminated by plane wave propagating along the
−→
k vector defined

by its Euler anglesθ andφ .

9.3.1 Position of the problem: New
−→
P −−→

Q variables

Let us consider a bi-periodic structure, finished along the third direction and illuminated by a
plane wave propagating at oblique incidence (see figure 9.15).

According to the notations of figure 9.15, the electric and magnetic fields of the incident
plane wave can be written as:

−→
E i =

−→
E 0i e

i[kx·x+ky·y+kz·z+ω·t] (9.42.a)
−→
H i =

−→
H 0i e

i[kx·x+ky·y+kz·z+ω·t] (9.42.b)

where:

kx =
ω
v

sinθ cosϕ (9.43)

ky =
ω
v

sinθ sinϕ (9.44)

kz =
ω
v

cosθ (9.45)

For the periodic object, a single pattern (one period) is then considered for the FDTD calculation
(see figure 9.6). The periodic conditions are then written sothat the fields on one side of the
calculation window are expressed versus the fields on the opposite side through the Floquet-
Bloch conditions. Forx (lattice constanta) andy (lattice constantb) periodic structures, these
conditions are expressed as follows:

−→
E (x, y, z, t) =

−→
E (x+a, y, z, t) ·e−ikx·a (9.46.a)

−→
E (x, y, z, t) =

−→
E (x, y+b, z, t) ·e−iky·b (9.46.b)

−→
H (x+a, y, z, t) =

−→
H (x, y, z, t) ·eikx·a (9.46.c)

−→
H (x, y+b, z, t) =

−→
H (x, y, z, t) ·eiky·b (9.46.d)
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As the FDTD method operates in the temporal domain andkx andky components explic-
itly depend ofω, the direct application of these periodic conditions is prohibited. Consequently,
a change of variables is performed so that

−→
E and

−→
H components are replaced by two new com-

ponents
−→
P and

−→
Q respectively in order to eliminate thekx andky dependence in the PBC. These

new fields are defined as follows:

−→
P =

−→
E ·e−ikxx ·e−ikyy (9.47.a)

−→
Q =

−→
H ·e−ikxx ·e−ikyy (9.47.b)

Therefore, the new periodic conditions can be applied similarly to the case of normal
incidence through the relations:

−→
P (x, y, z, t) =

−→
P (x+a, y, z, t) (9.48.a)

−→
Q (x+a, y, z, t) =

−→
Q (x, y, z, t) (9.48.b)

−→
P (x, y, z, t) =

−→
P (x, y+b, z, t) (9.48.c)

−→
Q (x, y+b, z, t) =

−→
Q (x, y, z, t) (9.48.d)

Replacing
−→
E and

−→
H by their expressions in terms of

−→
P and

−→
Q through equations 9.47 in

Maxwell’s equations system 9.5 leads to:

∂Qx

∂ t
=

1
µ0

[

∂Py

∂z
− ∂Pz

∂y
− ikyPz

]

(9.49.a)

∂Qy

∂ t
=

1
µ0

[

∂Pz

∂x
+ ikxPz−

∂Px

∂z

]

(9.49.b)

∂Qz

∂ t
=

1
µ0

[

∂Px

∂y
+ ikyPx−

∂Py

∂x
− ikxPy

]

(9.49.c)

∂Px

∂ t
=

1
ε

[

∂Qz

∂y
+ ikyQz−

∂Qy

∂z

]

(9.49.d)

∂Py

∂ t
=

1
ε

[

∂Qx

∂z
− ∂Qz

∂x
− ikxQz

]

(9.49.e)

∂Pz

∂ t
=

1
ε

[

∂Qy

∂x
+ ikxQy−

∂Qx

∂y
− ikyQx

]

(9.49.f)

We can notice that for a wave propagating at normal incidence, the system (9.49) above
is equivalent to the conventional Maxwell’ equations expressed in

−→
E −−→

H . Nonetheless, in the
oblique case, additional terms appear in the second right members of equations (9.49) and they
explicitly depend onkx andky i.e. on the frequencyω. Even if these terms are equivalent to
time derivatives, the direct implementation of the FDTD in this case is impossible. Many im-
plementation techniques have been proposed [29, 30, 31, 28,32, 33] to overcome this problem.
One of them is the Split Field Method [32, 28] which will be described below.
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9.3.2 Split Field Method

SFM technique is based on the split of
−→
P and

−→
Q field components. To illustrate the method, let

us take for example the split of theQx component occurring in equation (9.49.a). By reducing
the frequency additional term on the left hand, this equation can be written as:

∂Qx

∂ t
+ iω

ky

µω
Pz =

1
µ

[

∂Py

∂z
− ∂Pz

∂y

]

(9.50a)

According to (9.42.a) and (9.47.a), equation (9.50a) becomes:

∂
∂ t

[

Qx+
ky

µω
Pz

]

=
1
µ

[

∂Py

∂z
− ∂Pz

∂y

]

(9.51a)

This leads to a new componentQxa = Qx +
ky

µω Pz which satisfies Maxwell’s equation as for

normal incidence. Similarly, the split of all the others components in the
−→
P −−→

Q domain gives:

Qxa = Qx+
ky

µω
Pz (9.52.a)

Qya = Qy−
kx

µω
Pz (9.52.b)

Qza = Qz−
ky

µω
Px+

kx

µω
Py (9.52.c)

Pxa = Px−
ky

εω
Qz (9.52.d)

Pya = Py+
kx

εω
Qz (9.52.e)

Pza = Pz−
kx

εω
Qy+

ky

εω
Qx (9.52.f)
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The six components thereby obtained satisfy the following equations that can be discretized
according to the classical Yee’s scheme:

∂Qxa

∂ t
=

1
µ

[

∂Py

∂z
− ∂Pz

∂y

]

(9.53.a)

∂Qya

∂ t
=

1
µ

[

∂Pz

∂x
− ∂Px

∂z

]

(9.53.b)

∂Qza

∂ t
=

1
µ

[

∂Px

∂y
− ∂Py

∂x

]

(9.53.c)

∂Pxa

∂ t
=

1
ε

[

∂Qz

∂y
− ∂Qy

∂z

]

(9.53.d)

∂Pya

∂ t
=

1
ε

[

∂Qx

∂z
− ∂Qz

∂x

]

(9.53.e)

∂Pza

∂ t
=

1
ε

[

∂Qy

∂x
− ∂Qx

∂y

]

(9.53.f)

Once the updated components of
−→
P a and

−→
Qa completed, the second step of the algorithm is to

calculate
−→
P and

−→
Q components through the system of equations (9.52) that gives after simple

algebra the system below:

Qz =
1

1− k2
x+k2

y

εµω2

[

Qza+
ky

µω
Pxa−

kx

µω
Pya

]

(9.54.a)

Pz =
1

1− k2
x+k2

y

εµω2

[

Pza+
kx

εω
Qya−

ky

εω
Qxa

]

(9.54.b)

Qx = Qxa−
ky

µω
Pz (9.54.c)

Qy = Qya+
kx

µω
Pz (9.54.d)

Px = Pxa+
ky

εω
Qz (9.54.e)

Py = Pya−
kx

εω
Qz (9.54.f)

This system (9.54) needs to calculate
−→
P and

−→
Q components at the same time iteration as

−→
P a

and
−→
Qa components. This is in contradiction with the traditional Yee’s scheme. Consequently,

the new (
−→
P ,

−→
Q) and (

−→
P a,

−→
Qa) fields will be calculated at timen∆t and time(n+ 1

2)∆t in order
to reach a stable numerical schema. To this end, each component is calculated twice in one
time iteration by introducing other intermediate components in the calculation program (see
reference [34]).
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Stability criterion

As the transition to the new
−→
P −−→

Q domain, the stability criterion is also modified. Based on
the calculation of Kao [29, 30] and in the case of 3D uniform meshing, this later is expressed
as:

∆
∆t

≥ vi

v2
i µε −sin2(θ)

{|sin(θ) ·cos(ϕ)|+ |sin(θ) ·sin(ϕ)|+
√

3v2
i µε −2 ·sin2(θ)(1−|sin(ϕ) ·cos(ϕ)|)

}

(9.55)

wherevi is the phase velocity of the incident wave andε andµ are chosen to be the character-
istics of the less dense medium in the computational domain.

Let us note here that the time step decreases with the incidence angleθ and hence the
computational time becomes very long for large incidence angles. Nonetheless, the computa-
tional time is relatively acceptable up to an incidence angle of 80o.

9.3.3 Absorbing boundary conditions : PML

The implementation of absorbing boundary conditions in theoblique case requires to make a
change of variables on the fields components in the PML mediumsimilarly to the changes made
in the main computational grid [34]. Forx andy periodic structure, only PML is needed in the
third direction (Oz). In this case, the new fields components are defined as follows:

Pνµ = Eνµ ·e−ikxx ·e−ikyy (9.56.a)

Qνµ = Hνµ ·e−ikxx ·e−ikyy (9.56.b)

Pz = Ez ·e−ikxx ·e−ikyy (9.56.c)

whereν representsx or y andµ denotesx, y or z. Eνµ andQνµ are the field components in
the classical PML shell corresponding to the components of the two fictitious waves resulting
from the split of the plane wave inside the PML (see section 1 of this chapter). For details of
implementing these PML at oblique incidence, the reader canrefer to [34].

9.3.4 SFM-FDTD in dispersive media

For oblique incidence, and according to the two systems of equations (9.53) and (9.54), the
components that require particular treatment in the dispersive medium are:Pxa, Pya, Pza, Qz, Pz,
Px andPy. Direct calculation of these components by equations (9.53) and (9.54) involves the
permittivity term which is frequency-dependent. In this section, we only show how to take into
account the media dispersion in FDTD oblique incidence in the case of the Drude critical points
model [35]. The implementation details of the other of dispersion models by SFM-FDTD are
given in [36] for Debye model, and in [37] for both Drude and Drude-Lorentz models.
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Let us quote that equations (9.53) for the calculation ofPxa, Pya andPza are similar to
traditional Maxwell’s equations. Accordingly, the calculation of these components in the dis-
persive medium will not require any further treatment compared to the normal incidence case.
Contrarily, equations (9.54) for theQz, Pz, Px andPy need a different way to be processed.

Pxa, Pya and Pza implementation: These three components are calculated in a similar way.
So let us take as an example only thePxa calculation. By analogy with the normal incidence
case (equation 9.25), we introduced a new componentLxa (equivalent to theDx component in
the classical case) defined as:

Lxa = ε0 · εDCP ·Pxa (9.57)

Equation (9.53.d) is therefore wrote as:

∂Lxa

∂ t
=

[

∂Qz

∂y
− ∂Qy

∂z

]

(9.58)

The discretization of this last equation allows us to calculate theLxa variable as follows:

Ln+1
xa(i+ 1

2 , j,k)
=Ln

xa(i+ 1
2 , j,k)

+
∆t
∆y

[

Qn
z(i+ 1

2 , j+ 1
2 ,k)

−Qn
z(i+ 1

2 , j− 1
2 ,k)

]

+
∆t
∆z

[

Qn
y(i+ 1

2 , j,k− 1
2)

−Qn
y(i+ 1

2 , j,k+ 1
2)

]

(9.59)
Analogically to equations (9.26), (9.27.a) and (9.27.b),Lxa can be expressed as follows:

Lxa = LxaD +
p=2

∑
p=1

LxaCp (9.60)

with:

LxaD = ε0[ε∞ − ω2
P

ω2+ iγω
]Pxa (9.61.a)

LxaCp
= ε0[ApΩp(

eiφp

Ωp−ω − iΓp
+

e−iφp

Ωp+ω + iΓp
)]Pxa (9.61.b)

As before, after the inverse Fourier transforms and finite centred differences discretization of
different partial derivatives, we reach the updated equations for the componentPxa :

Pn+1
xa =

1

χD
αD

+
p=2

∑
p=1

(
χp

αp
)

[

Ln+1
xa +

βD

αD
Ln−1

xaD
+

4
αD

Ln
xaD

− δD

αD
Pn−1

xa − 4ε0ε∞
αD

Pn
xa

+
p=2

∑
p=1

(
βp

αp
Ln−1

xaCp
− 4

αp
Ln

xaCp
)+

p=2

∑
p=1

(
δp

αp
)Pn−1

xa

]

(9.62.a)

Ln+1
xaD

=
1

αD

[

−βDLn−1
xaD

−4Ln
xaD

+χDPn+1
xa +δDPn−1

xa +4ε0ε∞Pn
xa

]

(9.62.b)

Ln+1
xaCp

=
1

αp
[−βpLn−1

xaCp
+4Ln

xaCp
+χpPn+1

xa +δpPn−1
xa ] (9.62.c)

Qz, Pz, Px and Py implementation: The calculation of the remaining componentsQz, Pz,
Px andPy needs the introduction of other variables involving other equations. We consider as an
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example thePz component for which implementation equations are detailed. Equation (9.54.b)
involves the following one:

ε ·Mz=
kx

ω
Qya−

ky

ω
Qxa+

k2
x +k2

y

µω2 Pz (9.63)

with:
Mz= Pz−Pza (9.64)

By setting:

Tz=
kx

ω
Qya−

ky

ω
Qxa+

k2
x +k2

y

µω2 Pz (9.65)

equation (9.63) becomes:
Tz = ε ·Mz= ε0εDCPMz (9.66)

As considered above, theTz component can be expressed as:

Tz= TzD +
p=2

∑
p=1

TzCp (9.67)

with:

TzD = ε0[ε∞− ω2
P

ω2+ iγω
]Mz (9.68.a)

TzCp
= ε0[ApΩp(

eiφp

Ωp−ω − iΓp
+

e−iφp

Ωp+ω + iΓp
)]Mz (9.68.b)

Based on the inverse Fourier transforms of the equations (9.68) above, centered difference
approximations for the derivatives and taking into accountthe equations (9.65), (9.67) and
(9.66), we get:

Mn+1
z =

1

χD
αD

+
p=2

∑
p=1

(
χp

αp
)− k2

x+k2
y

µω2

[

k2
x +k2

y

µω2 Pn+1
z +

kx

ω
Qn+1

ya − ky

ω
Qn+1

xa +
βD

αD
Tn−1

zD
+

4
αD

Tn
zD

− δD

αD
Mn−1

z − 4ε0ε∞
αD

Mn
z+

p=2

∑
p=1

(
βp

αp
Tn−1

zCp
− 4

αp
Tn

zCp
)+

p=2

∑
p=1

(
δp

αp
)Mn−1

z

]

(9.69.a)

Tn+1
zD

=
1

αD

[

−βDTn−1
zD

−4Tn
zD
+χDMn+1

z +δDMn−1
z +4ε0ε∞Mn

z

]

(9.69.b)

Tn+1
zCp

=
1

αp
[−βpTn−1

zCp
+4Tn

zCp
+χpMn+1

z +δpMn−1
z ] (9.69.c)

Pn+1
z = Mn+1

z +Pn+1
za (9.69.d)

The equations to update theQz, Px andPy components are obtained by the same process.
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Figure 9.16: Up: Transmission spectra at normal incidence of an AAA structure made in silver film with different
thicknesses values (H). The geometrical parameters of the annular apertures are re = 75 nm,ri = 50 nm and
the period is fixed to a= 300nm. Down: Electric field intensity distributions around theapertures showing the
interference patterns that take place inside them along themetal thickness direction. For FP0 peak, the TE11
guided mode is excited at its cutoff wavelength so that the phase velocity tends to infinity and the effective index
falls to zero. In this case, EOT occurs whatever is the value of the thickness because the phase matching condition
is automatically fulfilled.

9.3.5 3D-SFM-FDTD application: EOT at oblique incidence through AAA structures

Let us recall the origin of the EOT through the AAA structure:as mentioned before, at normal
incidence it is only due to the excitation of the TE11 guided mode inside each annular aperture.
In this case, the obtained EOT is angle and polarization-independent and its spectral position
corresponds to the cutoff wavelength of this guided mode. Consequently, it does not depends
either on the metal thickness even if some additional peaks appear in the transmission spectrum
when the thickness increases (see figure 9.16).

These peaks (named FPm, m∈ ℜ on figure 9.16) are Fabry-Perot harmonics of the TE11

mode that occur at fixed values of the wavelength fulfilling a phase matching condition:

λTE11(mπ −φr) = 2πnTE11
e f f H (9.70)

wherenTE11
e f f is the real part of the effective index of the guided mode,φr is the phase
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Figure 9.17: Schematic of a classical annular aperture array (AAA). re is the outer radius, ri is the inner one, a is
the period andθ is the angle of incidence.

change induced by the reflection on the two ends of the annularaperture andH is the metallic
film thickness. At the cutoff, the effective index of the guided mode becomes very small leading
to a phase matching that does not depend on the metal thickness. Nevertheless, a small spectral
shift can appear between the cutoff value and the position ofthe transmission peak due to
φr 6= 0. This shift is clearly shown on all the spectra of figure 9.16but it seems to be more
important in the case of thicker plates (hereH = 300 nm). In fact, the phaseφr can be seen
as the result of the conversion between the incident plane wave and the guide mode through
diffraction phenomenon that must depends on the metal thickness.

Let us now consider the case of oblique incidence (see figure 9.17): as mentioned before,
EOT can appear through the excitation of both the TE11 and the TEM modes. In fact only
few papers have discussed on this mode [38, 39] while its excitation conditions were recently
analytically derived reference [22].

Indeed, this later is only excited with the TM polarization component of the incident
beam. FDTD simulations in the case of both PEC (see figure 9.18) and real dispersive metal
(figure 9 of reference [37, 40]) are done and demonstrate the occurrence of additional transmis-
sion peaks due to the excitation of the TEM guided mode. Nevertheless, others configurations
such as the Slanted AAA (SAAA), that was proposed first by S. Nosal and J.J. Greffet [41], also
demonstrate a possible excitation of the TEM mode for any incidence angle including normal
incidence.

Moreover, as for the TE11 mode, the spectral position of the TEM-transmission peaks
is driven by a similar phase matching condition given by equation 9.70. Nonetheless, the zero
harmonic (FP0 for m=0) is now expelled to infinity and only higher orders correspond to a finite
value of the wavelength. In this case, the metal thickness becomes a very important parameter
that permits to adapt the transmission peak at a desired value of wavelength. Unluckily, only
relatively thick metal plates allow the excitation and the propagation of the TEM mode.

Nevertheless, even if the TEM mode is excited in oblique incidence with conventional
AAA (see figure 9.20a) or at normal incidence through SAAA (figure 9.20b), the transmission
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Figure 9.18: Transmission spectra through AAA structure made in perfectly electric conductor and illuminated by
a TE (left) and TM (right) linearly polarized plane wave. As depicted on figure 9.15,θ andφ denote the incidence
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efficiency remains very weak with regard to the TE11 mode. This is essentially due to metal
losses. In fact, and as it can be shown in figure 9.19, the imaginary part of the effective index of
the TEM-like guided mode is fairly consistent and can not be negligible.

Fortunately, another solution that is currently used in theradio-frequency domain to in-
crease the impedance adaptation between a coaxial antenna and the vacuum can be envisaged to
enhance the transmission coefficient: it consists in stretching out the central metallic part of the
coaxial waveguide with respect to the outside electrode. This configuration was implicitly pro-
posed in reference [42] to achieve 90% light transmission thanks to the excitation of the TEM
mode. This kind of structure design and fabrication is readily achievable at radio frequencies.
Unfortunately, this becomes more difficult in the visible range but remains possible through
manufacturing process having nanometric resolution such as new generation of Focused Ion
Beam.
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Figure 9.20: Zero-order transmission spectra for three different AAA configurations where outer and inner radii
are fixed to re= 130nm and ri = 65nm respectively. (a) Conventional structure illuminated at 45o (metal thickness
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film (h= 430nm) is chosen in order to get a TEM peak transmission atλ = 1550nm. (c) SAAA structure with
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impedance matching between the in- and out-coming plane waves with the TEM guided mode inside the apertures.
The metal thickness is also adjusted to in order to get a TEM peak atλ = 1550nm with a transmission efficiency
of 48%.
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9.4 Conclusion

The FDTD is a powerful tool to model periodic and aperiodic structures. The time evolution
of the electromagnetic field is directly evaluated and allows to follow the light propagation
inside and around the studied structure. The SFM technique extends the FDTD capabilities
to treat the diffraction problem for any incidence angle or any polarization. The integration of
dispersion models such as Drude critical point allows accurate simulations that take into account
the effective dispersion of noble metals in the considered spectral range especially in the visible
domain. Nevertheless, the number of electromagnetic field components grows rapidly and can
be larger than 100 in some particular cases (in the PML regionwith Drude-Lorentz dispersion
model for instance). In spite of all these criticisms, the FDTD is actually one of the most used
method to model experiments in Nano-Optics as attested by the number of publications in this
area.
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