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The Finite Difference Time Domain method (FDTD), based anYhe’s scheme, is one of the
most commonly used time methods for the modeling of electigimatic waves propagation and
diffraction. It was first introduced by Yee in 1966 [1] in thertext of differential equations
resolution and the first articles recommending its futurligapons are published from 1975
[2,13,/4]. Due to the simplicity of its implementation and t@id growth of computing capacity,
the FDTD is gaining users in all areas of electromagnetisptieations. It allows a real-time
monitoring of the electromagnetic wave evolution in anydkai environment (dielectric, metal,
plasma...). Its theoretical formulation is very easy siitgequires no matrix inversion and
could take into account the more complex geometric shapeisjetts in the studied system. In
addition, using this time domain method, a wide spectrajeacharacterization can be obtained
from one temporal calculation via a simple Fourrier transfo

In this chapter, we present a brief review on the fundamsrmtiaihe FDTD method. We
show how to adapt it to the calculation of the photonic bangl gfauctures in the case of 2D
periodic (invariant in the third direction) structures. €rhoth in-plane, for the TE and TM
polarizations, and off-plane propagations are considérbd last part of this chapter is devoted
to FDTD general formulation, based on the Split Field Metkexxhnique, for the modeling of
bi-periodic gratings that are finished according to thedtdirection.

9.1 Fundamentalsof the FDTD method
9.1.1 TheYee'salgorithm

The FDTD method is based on the numerical resolution of thawéd's equations using a
centered finite difference schema to approximate the pdeiavatives both in time and space.
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Let us start from these equations expressed in their diffedeformulation:

o8B
oD

The electromagnetic properties of the medium are desctlyedgh the so-called constitutive
relationships:

D — ¢E 9.3)
B - uH (9.4)
€ andyu are respectively the dielectric permittivity and magnegcmeability of the medium.

In a Cartesian coordinate systém, X, y, z), the Maxwell’s equations in the time domain
are written as:

aaHtX _ %z%_‘;_'iz: (9.5.0)
% _ %z%_ﬁaEzX: (9.5.b)
0(9!:2 _ % :00?_%2 (9.5.c)
00? _ %z%_%z (9.5.d)
% _ %:aﬁHZX_d;)I(Z: (9.5.e)
% _ %_%_0;;_ (9.5.f)

The numerical treatment of the partial differential eqoias[9.5 requires a space and time dis-
cretization. The calculation volume, shown in figure 9.1 is@angular parallelepiped divided
into (Nx x Ny x N;) cells, each one with elementary volurfiex x Ay x Az) whereAx, Ay and

Az are the spatial discretization steps according tdkeOy andOzdirections respectively.

Each well defined node of the grid is associated with a tripléttegers(i, j, k) so that
the coordinate$x;, y;, z) of the node satisfy:

Xi = 1i-AX
yj = i-by
Z = k-Az

The computational time is also discretized witAtatime step. Each computing tintés asso-
ciated with the integen defining the number of temporal sampling:

t=n-At
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Figure 9.1: An exemple of the FDTD calculation volume.

Temporal and spatial derivatives of the field componelis &y, E;, Hy, Hy, H;) are approxi-
mated from their Taylor development to the first order. Thiu¥, is one of these components,
we will adopt the following notation:

U (X|7y]72k7t) :Ui?Lk (96)

The temporal derivative of tHé component attime and(xi, Yi, zk) node is approximated with
finite centred difference as follows:
n+1 n-1
U U 2-u'?
[‘9—} — SRl L o (o) 9.7)
ot Jijik

The spatial derivatives of tHé component are approximated in the same manner:

ou Uiljrljk_uinljk 2
— 200 VAR E
{—thm — +O([Ax] ) (9.8.9)
un —un
(9U} ijrdk i3k 2
— = +0( Ay (9.8.b)
{dy ik.n JA\Y; ([ ]>
un —un
dU _ |7J7k+:_2L I?Jyki% 2
[ELM - — +o([Az]) (9.8.c)

As explicitly mentioned in equations 9.8, the use of cemtelifference scheme allows a
precision of the second order even if a first order Taylor tigwaent is considered. This greatly
enhances the numerical convergence of the FDTD algorithm.
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Figure 9.3: Temporal discretization into the Yee’s scheme.

Yee's algorithm

The algorithm proposed by Kane Yee in 1966 [1] uses in a clessr this discretization for
solving the system of equatioris (9.5). In the Yee's schehegetectromagnetic field compo-
nents are located at different points in a unit cell (FigL2®&9The electric field components are
calculated along the edges of the cell while the perpenaliquiagnetic field components are
calculated at the centers of the cell faces. Thus, eactrieléetd component is surrounded by
four magnetic field components and similarly for each magrieid component.

The temporal increment into the Yee’s scheme is done thrautgapfrog" discretization
schema. The field componen?s(or E) are calculated at times odd multiples of the half time
step%, while the field componentE (respectivelyH ) are updated at the times even multiples
of % as shown in figuré 913. Such a discretization allows evaigdtie time derivatives by
keeping a centered difference schema as for spatial deggat
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Consequently, replacing the partial derivatives in equmti(9.5) by central difference
(9.719.8), according to the Yee’s scheme leads to the ugdeqeations of electromagnetic
components in the FDTD algorithm:

1 -1 At
H 2 — M3 /v n =
Xiivdwed) — X(iivded)  UoA { { Z(i.j+1ke 3) Z(i.j.k+%>:| *

lE;(i-i%k) - E{/](LH%.kH)} } (9.9.9)

n+; EETLES _ﬂ n =
Hy(i+%.j.k+%>_Hy(i+%,j,k+%) Lo/ EX(i+%,j,k+l> EX(H%.j.k) +

n+3 :Hn_% _ﬁ n _En
2030030 kb0 Hod | Vi) Yk | T

Bt B ©99

Ext  =Ep — < |Hy —H;
X(+3.1.%) X(i+3.1.%) + e { [ (43,04 3.%) Z(i+%.j%,k):| T

At
En+1 —_ EN - Hn o Hn
Y(i.i+3.x) Ey(i,jJr%.k) e { [ (i3 d) X(i.j+%,k%):| +

At
n+1 n n n
E —< [H —H
Z(i,j,k+%) Z(i,j,k+%) + eN { [ y(i+%ﬁjﬁk+%) y(i%ﬁjﬁk%)} +
H —HI 9.9.f
{ X(i-33) X(i.j+%,k+%)} } (9:9.9

Let us note that this last equation system can be simplifggafgtantly in case of 2D structures
(see section 2 of this chapter).

For the modeling of structures with a symmetry of revoluti@ibasis change from Carte-
sian to cylindrical coordinates is strongly recommendeddourately describe the fine details
of the samples and to make more flexible the FDTD calculatimtes. In these so-called BOR-
FDTD (Body of Revolution FDTD) codes, the symmetry of revaa is exploited to express
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the azimuthal dependence)(of the electromagnetic fields as Fourrier series. BOR-FRI-D
gorithm can, in this case, compute solutions for all Foumedes through one simulation per
mode. This code is commonly called 2.5D since the azimutkdl frariation is analytically
accounted for. Thus, there is no griding in tpalirection. This implies that the BOR-FDTD
algorithm is two-dimensional in terms of computer ressewsage even 3D structures are mod-
eled.

9.1.2 Spatiotemporal criteria of convergence

As all explicit schemes, Yee’s algorithm is subjected toabiity condition setting the time
step from the space discretization. Arbitrary values ofispamporal discretization can lead to
infinite solutions of the electromagnetic field. Stabilitpplems in explicit numerical methods
have been analyzed in detail by Courant, Friedrichs and [B@nd Von Neumann, from
a mathematically rigorous approach. This analysis shoasstkie explicit schemes are stable
under a condition called CFL (for Current, Friedrich andy)eand applied to the FDTD method
in the case of a regular mesh [6]:

-1

(9.10)

1 1 1
At < |Vmax- m-l‘A—yz-l-E

wherevmayx is the maximum velocity of light propagation in the studigdtem, generally the
velocity of light in vacuum.

In case of uniforme mesfiA\x = Ay = Az= A), the CFL criterion becomes:

1 A .
At < — in3D (9.11)
Vmax \/§
1 A .
At < C— in2D (9.12)
Vmax \/Q

However, it is possible to overcome the restrictive asswonpif regular mesh that achieves
the above result with the following generalized criterion:

-1
1 1 1
At < | Vmax: + + (9.13)
[ \/AXZ Ayrznin AZr2nin

min
whereAXmin, AYmin €t Azmin are the smallest step in the three directisngandz respectively.

In addition to the numerical instability problem, the traios from continuous forms of
Maxwell’'s equations to the discrete numerical approxioragican cause a parasitic effect called
"numerical dispersion”. This is due to the fact that nunedrstgnals are propagated over time
in the FDTD grid, with a phase velocity less than the actu&baity. This dispersion varies
with frequency, propagation direction in the grid and thatsp discretization[[6]. Numerical
dispersion errors increase with the signal frequency arelsithe computational domain, thus
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making the simulation results less reliable. They may appes&arious forms: phase error,
signal distortion, loss of amplitude, pulse broadening ...

The solution to this problem requires a very fine mesh in th@ Brid, so that the
maximum discretization is of the ord@n/20 [6], Aminbeing the minimum wavelength of
propagating waves in the FDTD grid.

9.1.3 Absorbing boundary conditions - Perfectly Matched Layers

Such conditions allow us to describe open systems wherdeshor reflected waves propa-
gate to infinity. Indeed, the limited memory space of computequires users to truncate their
FDTD computational domain. At the limits of this truncateshthin, components of the elec-
tromagnetic field can not be calculated by the discretizadttgns [(9.D). Therefore special
treatment at the borders is needed to avoid the incidentreteagnetic wave on these "edges
does reflect back and contaminate the actual physical si@ma of the most widely used tech-
nique is that proposed by Berenger [7] called Perfectly MaticLayer (PML). This technique
consists of adding around the studied domain not neceggduyisical layer causing no reflec-
tion and almost totally absorbing all the propagating etentgnetic field. Its use is based on
the condition of impedance matching of two waves at the faterbetween two media with the
same index but which one is absorbing (with nonzero eledtdonductivityc and magnetic
equivalent conductivity™ as shown in figure 914).

Incident medium

—>

€ Ho
(c°=0,0"=0 )

Figure 9.4: Impedance matching principle.

This condition is expressed as:

o o

- = (9.14)

€ Ho
Thus, a magnetic conductivity is needed to fulfill this impede matching condition. In addi-
tion, absorption is needed only for components of the fidids propagates perpendicularly to
the interface (the FDTD window border) and not in the pataliection. Bérenger solved this
problem by proposing an artificially biaxial absorbing medi The absorption is not zero in
the direction normal to the interface between the two meddia zero along the axis parallel
to the interface. In the PML medium, the incident plane waveplit into two fictitious waves

(see figuré 9J5):

1) A wave propagating at normal incidence and satisfyingetipgatiori 9.74. This wave
is attenuated and absorbed by the PML medium and undergbegesy low reflectivity to the
incident medium.



9.8 Gratings: Theory and Numeric Applications, 2012

Grazing wave

€, Ho
Normally
propagating
incident medium | wave
y (main grid)
(05=0,0;=0)
x (o7=0,0]=0)

Figure 9.5: Schematic of the PML principle.

2) A second grazing incidence wave that shows no absorptidmei PML medium. This
wave, propagating parallel to the interface between twoian@adergoes no reflection and sees
a medium identical to that of the main grid window.

Abrupt changes in conductivities at this interface degthdgerformances of absorption.
This effect is, however, reduced by imposing a progressviation of the absorption according
to a polynomial law given by |7]:

o= Umax(xpem'> " (9.15)

where Omax is the maximum value of the conductivityyy, represents the depth in the PML
region measured from the interfacedenotes the thickness of the PML layer amds the
polynomial order generally fixed to 2.

Let us note that in the case of gratings such conditions areewessary according to the
periodicity directions. The absorbing boundaries condgiare hereby replaced by Floguet-
Bloch periodic conditions in order to describe periodicistures (see section 2 of this chapter).
Nevertheless, for a 2D periodic structure, PML are needetthenthird direction where the
structure is usually finite.

9.1.4 Dispersive media

The dispersive media, such as metals in the optical rangesharacterized by a complex per-
mittivity frequency dependerg(w) = €'(w) +i€”(w). As the FDTD method is temporal, in
such environments the direct implementation of the abouvatgans, in which appear explicitly
permittivity and hence the frequency, is impossible. THatgan for this problemis to calculate
the displacement vectdd components in the classical Yee’'s scheme and then backdiele
cal field components using the constitutive equation of tbdiom established in the frequency
domainB(w) = ¢£(w) E (w). The temporal nature of the FDTD needs a temporal constiutiv
equation written as a convolution prodLBt(t) =egt)® E(t). It is a non local relationship
whose resolution requires the knowledge of the electrid aekll previous times. Numerically,
this leads to a storage of a very large amount of data andftimenequires to have a very large
memory space. This issue can be bypassed using analyticlIsndescribing the dielectric
function e(w) of these metals. The choice of adapted analytical modelrdizpen the type of
metal as well as the spectral range of study.
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9.1.4.1 Drude Modd

The Drude model of free electroris [&, 9] for the dielectrindtion which, although based on
a purely classical approach, can well account for intraldaaakitions. In this model, firstly
proposed in 1908 by P. Drude, a gas of free electrons moviagnmmobile metal ions lattice.
Thus, the electron-electron interactions and electros-iare not taken into account and the
movement of all the electron cloud is thus the average of tements of individual electrons.
The relative permittivity given by this model is:

2

Ep = & “%

T SR 9.16
W? +iwyp (9-16)

where wp is the "plasma frequency" of the metal aad its relative permittivity at infinite
frequenciesyp represents a damping term that is inversely proportionddgaelaxation time.

FDTD implementation of the Drude model

The principle consists in replacing the electric field ved byD /e in Maxwell’'s equations
in order to eliminates term. In dispersive media, equations (9.9.d, 9.9[e ef)%®ef replaced

by:

At
DI’H—l — Dn i Hn o Hn
ik ) (i 3) 2 { [ Y(i+3.ik+) y(i%.j.k+%):| *
{H”_ _ —H } } (9.19)
Once the components of the displacement veﬁt(are updated from the previous equations, we

proceed to the determination of t@ components using the relatid® — £(w) E. Replacing
£(w) by its expression given by the Drude model, we get to:

(ou2+iwyD)B> = eoem(w2+iwyo)ﬁ—eoaﬁﬁ (9.20)
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Assuming time dependance of electromagnetic fiele i, a simple Fourier transforna—
t) of this last equation leads to:

@_1_ @—8(8 E_’_g E_i_ 2?)

a2 Pgr T BTy TEWT TP

The partial derivatives of this equations are then repldgettheir expressions through the cen-
tered finite difference schema. The electric field updatadatgn in the dispersive media is

then obtained:
FE™I— _yE™"lyde,e0E"+ B”“[yﬂt +2]— 48"+ [— bt + 2]5”“1 (9.21)

With & = o[ WBAL? + £ Yot 4 2€5] and) = £o[WBAL? — yb £t + 2€,]. Due to the dispersion,
an additional step of calculation is necessary. It consistietermining the displacement field
components for all nodes representing the dispersive méadiaddition and as can be seen in
equation[(9.21), we need to store tReand B components on two time steps, which has the
effect of increasing the memory space to be allocated andaimputation time.

9.1.4.2 Drude-Lorentz Moddl

In addition to the conduction electrons, the Drude-Lorent@el takes into account the bound
electrons. The interband transition of electrons fromdilbands to the conduction band can
significantly influence the optical response. In alkali netthese transitions occur at high
frequencies and provide only small corrections to the dtalefunction in the optical domain.
These metals are well described by the Drude model. On ther sttle, in noble metals a
correction must be made to the dielectric function. It is tugansitions between the bands d
and the conduction band s-p. The contribution of bound eldastto the dielectric function can
be described by the Lorentz model. To the above Drude dretdanction, a Lorentzian term
is added:
épL(w) = ep(w) + &L (w)

Estimatinge (w), the bound electrons are described by forced and dampedharmwscilla-
tors. Vialetal. [10] suggested a single oscillator leading to a single Ltmian additional term
to well describe the permittivity of gold in the optical rangompared with the classical Drude
model. In this case, the relative dielectric function is:

w} Ag-Q?F

oL (W) = Ew — — .
oL () W +iwy (W2-Q)+ilw

(9.22)

wherel | et Q_ stand for the spectral width and the strength of the Lorestllator respec-
tively. A¢ is a weighting factor.

The FDTD implementation of this model can be done with the ilkaxy Differential
Equations (ADE) method previously described above in tree cd the Drude model or the
so-called Recursive Convolution (RC) method [10]. Becafg¢be additional Lorentzian term,
its use requires the introduction of additional intermé&zlelectromagnetic components in the
algorithm. Thus, a larger memory space is required compardte case of the Drude model.
In general, many involving multiple oscillators Lorentzrtes are needed to accurately model
the permittivity of noble metals in the optical range.
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9.1.4.3 Drudecritical points model

The optical properties of some metals, particularly gole, more difficult to be analytically
described in the visible/near-UV region. This comes froncimmore important role, in the
case of gold, played by interband transitions in this regi@ome attempts to add Lorentz
oscillators to the classical Drude term to account for themeasitions rapidly face limitations
[11]. In fact, besides the huge simulation time, increashrgnumber of parameters (mainly
non-physical and not well defined) would not provide moreghsthan quality fit (itself non-
physical) with a polynomial high degree or a simple numéiridarpolation of the experimental
data.

In order to achieve a reasonable representation of thectlieléunction, Etchegoiret al.
[12] took inspiration from the parametric critical pointdel developed for semiconductors
[13]. This model is very suitable for the description of agtiproperties of metals (such as gold)
for which the band structure is quite complex. In this apphdhe frequency dependence of
the optical properties of gold in the visible/near-UV mayweell described by an analytical
formula with three main contributions that can be expresseillows:

W
Ep2cp (W) = Ew — oo2+|ooyD Z Gp( (9.23)

with

&% e '® ) (9.24)

Gp(w) =ApQ . .
(@) P p(Qp—w—|Fp+Qp+w+|Fp
The two first terms of equatioh (9.23) represents the standtartribution of the classical Drude

Model. The sum in equation (9.23) is the contribution of thei-band transitions with the
amplitudeAp, gap energ¥d,, phasep, and broadening p.

In a comparative study of this Drude critical points (CP) mlodith the so-called L4
model which consists of four Lorentzian termis|[14], Velal. [15] show the possibility to
increase the accuracy of gold and silver permittivity diggiom by using the CP model with
fewer parameters to determine and less memory use withiRDA® method.

I mplementation of the CP model in FDTD using ADE technique

As in the previous case of the Drude model, the techniquedaltmlate the displacement vector
components by the FDTD equatiofs (9.17,9.18[and 9.19) aedndime electrical components
using the following relationship:

D = &epcpE (9.25)

— . -
In the case of the CP model) can be written as the sum of the electric displacement
vectors corresponding to each of the contributions in tleéedtric function expression:

2
— —
=Dp+ Y Doy (9.26)
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with
3[) = &[€x— %]E (9.27.a)
Bep eo[Apr(Qp_éf_irp + pr;liirp)]ﬁ (9.27.b)

As before the temporal evolution of the fieldsan'®® is considered. By inverse Fourier trans-

form, we obtain:
92 0
(WﬂLVE)
92 ]
2
(@+ o+ 5+ 2 ogp)

S

Ul

Cp

where: 0, = arctar(?—s)

£0E (9.28.a)

92 0 wgﬁ
o)

2 + VE +
2e0ApQp(1/ 3+ Q3 sin(6p — @) — singop%)ﬁ (9.28.b)

By centered difference discretization of the equationesyd.28) and taking into account
the split equation of the displacement vector (9.26), wehdhe updated equations system for
the electric field vector at each poifit j, k) of the calculation window:

Bl _ Bn+1 BD Bn 1+i5>n _@En—l_‘lgoeoogn
ap ap
_|_
Z1
p=2
Z Dl 4ﬁ>gp)+ (%) En-t (9.29.a)
=1 ap p=1 ap
Dt — —[—BD “1_AD0 4 xpE™ 4 HE™ 1+4soew€] (9.29.b)
1
Dt = a—[—ﬁpﬁg;1+4ﬁgp+xpﬁn+l+5pE”—1] (9.29.¢)
p
with:
op = —2—yAt (9.30a)
Bo = —2+yht (9.30b)
XD = E0&x|—2— YAt — (wpht)?/ew) (9.30c)
b = €0Ew[—2+4 yAt — (Wpht)?/ex] (9.30d)
ap = [Q5+T3JAP+ 27 pAt+2 (9.30e)
Bo = [Q5+T3|At2—2r pAt+2 (9.30f)
Xp = 2ApQpeolAt?,/Q2+2sin(6p— @p) — Atsingp| (9.309)
O = 2ApQpeolAt?,/Q2+TZsin(6,— @)+ Atsing) (9.30h)

Let us mention that the displacement vector split into tlu@etributions avoids doing appear
derivatives of order higher than 2 in the equations sysfe@8f9 As seen on the equations
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system[(9.29), taking into consideration the two criticailgs in the FDTD algorithm does not
need to stor&e and D components over more than two time steps. However, agaefiitude
model implementation, additional calculation stages appeorder to determine the two parts
of the displacement vector corresponding to the two ctitoatributions.

9.2 Band gap calculation for 2D periodic structures

In this section, we describe how to adapt the FDTD calcutetoo photonic bandgap structures
(PBG) of periodic arrays. The biperiodic structures cagbese considered. These 2D struc-
tures are photonic crystals (PhC) whose permittivity isqaic in two dimensionsX andy for
example) and remains invariant according to the third @pelfhey mainly include three main
families that are square, triangular and hexagonal Iatti€®r this type of structures, we can
distinguish two kinds of propagation, in the plane (in-@dg = 0) and out of plane (off-plane,
nonzerok;). The system of equations (9.5) becomes easier dependitigedppe of propaga-
tion. To illustrate this, let us assume in what follows the PhC is periodic along theandy
directions and infinite alongdirection.

9.2.1 In-planepropagation: TE and T M polarizations

In that case the propagation is done in the plane and the fagdtion vanishes along the
third direction. The system of equations (9.5) is simplifead divided into two independent
subsystems giving rise to two polarizations: transversetet (T E) and transverse magnetic
(TM):
TE Polarization
OH; 1 0Ex OEy

ot H(d—y_ﬁ) (9.31a)

% = %da—';z (9.31b)

% _ _%‘90'12 (9.31c)
T M Polarization

0(;* = —%‘2—% (9.32a)

% = %% (9.32b)

% = %(%—0;)';) (9.32c)

In case ofT E polarization, the electrical components are transverdeey &re in the plane
of periodicity of the PhC. On the other hand, for th& polarization, the electric field is
perpendicular to the directions of periodicity and the negncomponents are transverse.

Let us note that the two polarizations can be studied by theessystem of equations
(9.5) without separating it into two sub-systems. But tofify the calculation codes and gain
memory space, it is recommended to study these two polenzaseparately.
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9.2.2 Off-plane propagation

Off-plane propagation is characterized by a nonzero praf@ag constank, according toz
direction. Diagram dispersion is generally determinedddixed value ofk,. Thus, the z-
derivatives in Maxwell equations become analytical whike¢lectric and magnetic field vectors
can be written as follows:

Exyzt) = Eolxyt)explik2) (9.33a)
ﬁ(x,y,z,t) = H_>o(x,y,t)exp(ikzz) (9.33b)

The Maxwell’'s system of equatiors (9.5) becomes:

JoH 1. JOE

0tx - E(IkZEy - 0—yz) (9348.)
oH 1 0E, .

a = plax kB (9:340)
ot u( dy  0x ) (9:34c)
JE 1 0H;, .

mx = 0yz—|szy) (9.34d)
JE, 1. J0H;

0E, 1 0H, JH

ot E( ox c?y> (9341

In this case, it is no longer possible to separate the systemwo subsystems as before. The
TE andT M cases are therefore mixed together and can not be treataectsdp. However, we
can note that the calculation code is simplified sincezttierivatives are analytically evaluated
so there is no discretization along thdirection. A 2D algorithm is still needed.

9.2.3 Periodic boundary conditions

As the CPU time and space memory is limited, the FDTD calcadalvindow must also be
finite. Because of symmetry, only one unit cell is consideréal reproduce the crystal at the
truncated domain boundaries, the Floquet-Bloch peripdmonditions [9] are applied to the
electric and magnetic components. Despite the fact thaetperiodicity conditions are general
and can be applied to any periodic structure, their exppassilepend on the Bravais lattice.
Consequently, we will consider the two most used Bravatecksd i.e. the rectangular and the
triangular ones.

Rectangular cell

Let us consider a PhC made of cylinders (refractive intgxmmersed in a medium of refrac-
tive indexn,. a andb are the lattice constants in tlke@andy directions respectively (see figure
[9.68). The FDTD window calculation is shown in figurel9.6-b.
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Figure 9.6: Rectangular structure and FDTD window calcidat

The Floguet-Bloch conditions are applied to the electrid aragnetic components as
follows:

E(x=0yt) = E(x=a,y,t)exp—iky-a) (9.35a)
E(xy=01t) = E(xy=bt)exp—iky-b) (9.35h)
Hx=ayt) = H(x=0,y,t)expiky-a) (9.35¢)
Hxy=bt) = H(xy=0,1t)exgikyb) (9.35d)

Triangular cell

Similarly to the rectangular cell, the calculation FDTD wdaw is limited to a single unit cell. To
model the triangular photonic structure (see figuré 9.7kage choices of the FDTD window
are possible. The first one is to take a non-orthogonal utiit(cell 1 in figure[9.T7-a) and
implement the periodic boundary conditions in a Non orthmd-DTD algorithm [[16] 17]
for which the classical FDTD developed in an orthogonal dowte system is not suitable. To
bypass this constraint and remaining in the conventiondlilF-ith orthogonal coordinates, the
second rectangular cell (celle 2 in figurel9.7-a) can be usefbtive the periodic conditions.
Nevertheless, this cell contains two patterns. This mdaatstie rectangular periodic conditions
lead to a less-description of all the possible solutionsngegquently, an aliasing effect will
appear in the dispersion diagram.

In order to get gain in computational time and space and pteties band folding while
remaining with the orthogonal FDTD algorithm, a rectangwell can be defined with only
one pattern (cell 3 in figure_9.7-a). Within this FDTD caldida cell (9.7-b), the periodic
conditions above are therefore replaced by:

-along thex direction :

E(x:o,y,z,t) = E(x:a,y,z,t)exp(—ikx-a) (9.36a)
Hx=ayzt) = H(x=0,y,zt)exgliky a) (9.36b)
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Figure 9.8: Brillouin zone

- along they direction withx > 0 andx < a/2
Exy=0zt) = E(x+ g,y: b,z t)exgli(—k-b—k-a/2))  (9.37a)

Hixy=bzt) = ﬁ(x+g,y:o,z,t)exp(i(ky-b—kx-a/z)) (9.37b)

- along they direction withx > a/2 andx < a
E(xy=0zt) = E(x— g,y: b,z t)exgi(—k,-b+ke-a/2))  (9.38a)

Hixy=bzt) = ﬁ(x—g,yzo,z,t)exp(i(ky-b+kx-a/2)) (9.38b)

By the way, the dispersion diagram of a triangular or honeye®ravais lattices can be calcu-
lated without modifying the orthogonal Cartesian Yee scaem

9.24 Some examples of band gap calculation

To o_b)tain a photonic band diagram, several FDTD calculatame necessary done by varying
the k wavevector that must scan the irreducible Brillouin zongu(f[9.8).I X, XM andMTI
highest symmetry directions are then discretized.

For this band gap calculation, the N-Order FDTD algorithmssd [18] 19]. This basis
of this algorithm is quite simple: a signal is injected to iex@ll possible frequencies of the
structure. This signal is introduced in accordance to thewdli-Gauss Iawoliv(ﬁ) =0) and
given as follows:

E- g(V/\ (K+C)expi(K+C)-T) (9.39)
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V is a random vectork anda denote the wavevector and the reciprocal lattice vectpe®es
tively.

After injecting this last initial signal, and for a givek, the FDTD simulation is run and
electromagnetic energy density time-evolution is cat®das a function of the frequency. This
later is calculated through:

1
W = 2 (&0 |E[* + p[H|?) (9.40)

Only eigenmodes of the structure persist and evanescesigoadually disappear. After a large
number of time iterations (typically 2Da permanent regime is then reached and the electro-
magnetic energy density spectrum exhibits several peakssponding to the eigenfrequencies
of the studied structure. An example of eigenfrequenciézutaion for a triangular structure
inthel™ pointis shown in figure 919. The structure is made of air h@tgs= 1) into a dielectric
medium which is lithium niobatel{NbOs3) with refractive indexn, = 2.1421. The radius of
the holes i = 0.25a which corresponds to a filling factor oQ@67%. The FDTD grid, one
PhC period, contains 6952 spatial grids. To satisfy the stability criterion and iavoumerical
dispersion, the time step is takenas = a/(120-c).

To get the complete photonic band structure, it is necedsasgan thek values over
all the contour of the irreducible Brillouin zon€XM). Figure[9.10 shows the photonic band
diagram calculated for bothE andT M polarizations for a structure parameters similar to those
used above in the case of figlrel9.9.

We can note the emergence of a photonic bandga@&2rrc between (B2 and 035 in
the case of the TE polarization (figure 9.10-a). This bandame exist in the case of the TM
polarization (figuré 9.10-b) so it is called "partial".

Note here that, for a dispersive material, the calculatibthe electromagnetic energy
density is no more given by equatign 9.40 that is only valid dilectrics (no dispersion).
In the case of metallic dispersive material, the electrameéig energy density is given by (no
magnetic dispersion):

1 J(wepe)

W4( ow

E|2+uH %) (9.41)
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Figure 9.11: In-plane photonic band diagram for annular aipee arrays engraved into silver (T E polarization).

The calculation of the energy density depends then on theedieon model introduced
in the FDTD. Accordingly, an analytic expression\df is obtained through the calculation
of the frequency derivative in equation 9.41. Its numericale is then performed by the
determination of the spectral responses of both the twdreleeand magnetic fields that are
determined by the FDTD code.

Another example of band diagram, corresponding to a metthucture made of annular
aperture arrays (AAA) engraved into silver layer and aremhip a square lattice, is shown in
figure[9.11. The AAA structure has been proposed by F. BaidaCarvvan Labeke[[20] for
Enhanced Optical Transmission (EOT) applications. It wasred that transmission through
AAA sub-wavelength structure could reach 90% in the visiblege [21]. This EOT is due to the
excitation and the propagation of a guided mode inside epelte. The main transmission
peak corresponds to the excitation of the;TEhode at its cutoff wavelength [19]. This later
only depends on the value of the inner and the outer radiirjiFers0nm and .= 75nm and a
lattice constant o& = 160nm one gets the band diagram of figure ©.11.

In case of the figure 9.11, corresponding to The polarization, we note the presence
of two photonic bandgaps. the first is ranging from zero feggy (infinite wavelength) to
the frequency value of.0835c/a) (A = 872nm). The second gap is in the visible range be-
tween 492nm and 630nm. Note that these bandgaps are "toted' the corresponding eigen
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Figure 9.12: Off-plane photonic band diagram for annulaeature arrays made in silver.
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Figure 9.13: Dispersion curves &t point for the coaxial structure made in silver (lattice ctarste a= 160nm
inner radius f = 50nmand outer radius g = 75nm silver dispersion is modeled by a Drude model).

frequencies of M polarization are located aboveldd x c/a.

The figurd 9.1R illustrates photonic band diagrams for tineeseonsidered AAA structure
but in the case of off-plane propagation with two differealfines ok,. There is occurrence of an
additional photonic band relative to the in-plane cases Thdue to the transverse electromag-
netic (T EM) mode excited now at a nonzero frequency (far from the cutéfrk, = 17/(3a),
the bandgaps are located in the ran#&¥3nmeo[, |723nm 1668 nnj and|458 nm 575 nnj.
These bandgaps becoj6&3nmo|, |512nm 574nnj and|378nm 431nn whenk; = 1/a.
According to the theory, this band gap shift is due to thetta&t the eigenfrequencies of guided
modes increase witky.

Figure[9.18, showing the dispersion curvesl{gioint) of the guided modes depending
on ky, clearly confirms thel EM nature of the additional mode excited in the off-plan case.
This mode band starts from zero frequency, and thereforebasutoff frequency. An EOT
based on the excitation of this peculiar mode can be obtainddr two conditions: an oblique
incidence with TM polarizatiori [22]. The last section ofglthapter is devoted to the study of
EOT obtained through the excitation of this peculiar mode.

An example of time evolution of the electromagnetic energydity is given on figure
[@.174. The considered structure is an array of coaxial wadegumade in perfectly electric
conductor (PEC). All the geometrical parameters are givethe caption in addition to the
FDTD simulation ones. One notes that the main peak corresptmthe Tk, guided mode
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W (arb. units)

Figure 9.14: Time evolution of the electromagnetic energygity spectrum. The modeled structure is an array
of coaxial waveguides made in perfectly electric condu(®&C) and arranged in square lattice. The inner and
outer radii is ; = 100nm and g = 140nm respectively. The period of the grating is=8800nm but the obtained

results are independent on this value because there is ngpliog between tow adjacent waveguides. The FDTD

simulations are done with a uniform spatial meshaf= Ay = ;35 and the temporal step was fixedAb= %
where c is the light velocity in vacuum.

T(ri+re)

that has a cutoff wavelength afg = —-—=.

9.3 Scattering calculation for 3D biperiodic nanostructures

In this section, we will focus on the FDTD modeling of dielectand metallic bi-periodic
structures. For normal incidence, the FDTD method, basdt@nlassical Yee’'s scheme, is a
powerful tool that can simply model such periodic strucsyi&t,[25] 26]. In fact, in this sim-
ple case, the Floquet-Bloch periodic boundary conditi®"®Q) can be easily applied without
any change because these conditions are independent oktheeiicy. However, at oblique
incidence, applying PBC implicitly involves a frequencyntethat must be integrated into the
FDTD algorithm that operates in the temporel domain. Thusrder to adapt FDTD to oblique
incidence case, Veysoglu [27] introduced the field tramsiron method applied t& and
toward newl_D> and Q fields. By the way, the PBC conditions become similar to thesarf nor-
mal incidence case nevertheless the immediate consequétiis transformation is the need
to modify the Yee’s scheme. Several techniques of impleatemt are then proposed including
that of Split-Field Method (SFM) [28].

In the following, we present the reformulation of the FDTDthuad, based on this SFM
technique to adapt it to the case of any incidence. Maxwedjisations are modified and ex-
pressed withP anda variables. They are then discretized using SFM technigueavbid
reflections at the edges of the computational window, theaggus in the Berenger's PML
medium are also modified and expressed in the new domainnvthki SFM technique. In ad-
dition, the dispersion models mentioned above (Drude, BMuarentz and Drude Ciritical point
models) are also described by modifying and adapting thetmet&FM technique.
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Figure 9.15: Sketch of the biperiodic structure illumingtgy plane wave propagating along th_é vector defined
by its Euler angle® and ¢.

9.3.1 Position of the problem: New I_:’> — 6 variables

Let us consider a bi-periodic structure, finished along kel tdirection and illuminated by a
plane wave propagating at oblique incidence (see figur.9.15

According to the notations of figuke 9]15, the electric andynadic fields of the incident
plane wave can be written as:

B, = Egeloxthyezior] (9.42.a)
Hi = Hoelsxryrezror] (9.42.b)
where:
w .
ky = vsmecosqb (9.43)
k = %’sinesincp (9.44)
Ky — %’ cosf (9.45)

For the periodic object, a single pattern (one period) i ttensidered for the FDTD calculation
(see figuré 9]6). The periodic conditions are then writtethst the fields on one side of the
calculation window are expressed versus the fields on thesigpside through the Floquet-
Bloch conditions. Fok (lattice constan&) andy (lattice constanb) periodic structures, these
conditions are expressed as follows:

E(x, y,zt) = E(x+a Y,z t) e kxa (9.46.a)
E(xy.zt) = E(xy+b zt) eikb (9.46.b)
Hx+ay,zt) = Hxyzt) dka (9.46.c)
Hxy+bzt) = H(xyzt) dkb (9.46.0)
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As the FDTD method operates in the temporal domainkaradhdky, components explic-
itly depend ofw, the direct application of these periodic conditions idyiibded. Consequently,
a change of variables is performed so tRaand H components are replaced by two new com-

ponents? and6 respectively in order to eliminate ttkg andk, dependence in the PBC. These
new fields are defined as follows:

B = F.ekx. g iky (9.47.a)
Q = H-elox. giky (9.47.b)

Therefore, the new periodic conditions can be applied anlyilto the case of normal
incidence through the relations:

B(X,y,z,t> = Tﬁ(x+a,y,z,t) (9.48.a)
Sx+ayzt) = Gxyzt) (9.48.b)
Pxyzt) = P(xy+bzt) (9.48.¢)
G(xy+bzt) = 6(x,y,z,t) (9.48.d)

Replacingﬁ andH by their expressions in terms & anda through equatioris 9.47 in
Maxwell's equations system 9.5 leads to:

a(;fx _ %:%_%—F;Z_ikypz] (9.49.2)
e (9.49.0)
ad?z _ %:%_I;xﬂkypx %_ikxpy] (9.49.0)
% _ %:aa?/ZJriksz_i%y] (9.49.d)
% = %:a(gX_ad?(z—ikXQz] (9.49.€)
% - %:%%ymkqu %—ikyqx] (9.49.1)

We can notice that for a wave propagating at normal incidetiheesystem[(9.49) above
is equivalent to the conventional Maxwell’ equations esgesl inE — H. Nonetheless, in the
oblique case, additional terms appear in the second righthees of equation§ (9.49) and they
explicitly depend orkyx andky i.e. on the frequencw. Even if these terms are equivalent to
time derivatives, the direct implementation of the FDTDhistcase is impossible. Many im-
plementation techniques have been proposed [29, 30, 332283] to overcome this problem.
One of them is the Split Field Method [32,]28] which will be debed below.
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9.3.2 Split Field Method

SFM technique is based on the splitﬁfanda field components. To illustrate the method, let
us take for example the split of i@, component occurring in equation (9.49.a). By reducing
the frequency additional term on the left hand, this equaten be written as:

& .k 1[P, 4P
ot +Iwuw : = ez ay (9.50a)
According to [9.42]Ja) and (9.47.a), equatibn (9150a) bexsom
0 k .1 1[oP, oP,
7 o R = |5 5 5518
Ky

This leads to a new compone@k, = Qx + 5P, which satisfies Maxwell's equation as for

u
normal incidence. Similarly, the split of all the others qmments in th@ — 8 domain gives:

Qa = Qx+:—Z)Pz (9.52.a)
Qa = Qy—:—;Pz (9.52.0)
Qza = Qz—:—ZJPer:—;Py (9.52.c)
Pa = PX—Sk—ZJ , (9.52.d)
Ra = py_|_;(_;)Qz (9.52.e)
P = P-4+, (9.52.7)
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The six components thereby obtained satisfy the followiggagions that can be discretized
according to the classical Yee’s scheme:

6§txa _ %:%_%_Fﬂ (9.53.a)
5§tya _ % :%_%} (9.53.h)
a;?tza _ % :0;_ %} (9.53.0)
d;’txa _ %:00?/2_‘9%: (9.53.d)
% _ % :‘igx_ﬁﬁ%: (9.53.¢)
0;’tza _ %:%_00?/X: (9.53.f)

Once the updated components%g andaa completed, the second step of the algorithmis to

calculateP and components through the system of equatigéns (9.52) thas gifter simple
algebra the system below:

1 k k
@ = g (Ot P P (6548
T etpw?
1 k k
PZ = W [Pza+ ﬁ)an_ i’Qxa:| (954b)
A
k
Qx = Qxa—u—z:)Pz (9.54.0)
k
Q = an—Fu—z)Pz (9.54.d)
k
B = an‘f‘ﬁ)Qz (9.54.e)
k
R = Pya—ﬁ)Qz (9.54.1)

This system[(9.54) needs to calculﬁeand@ components at the same time iteration%
and Q4 components. This is in contradiction with the traditionak¥% scheme. Consequently,
the new @, 6) and (Ba, aa) fields will be calculated at timeAt and time(n+ %)At in order
to reach a stable numerical schema. To this end, each comipenealculated twice in one
time iteration by introducing other intermediate compdsean the calculation program (see
referencel[34]).
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Stability criterion

As the transition to the nev — 6 domain, the stability criterion is also modified. Based on
the calculation of Kao [29, 30] and in the case of 3D unifornshieg, this later is expressed
as:

S
At ~ VPue —sir? ()

{Isin(B)-cos(¢)|+|sin(B) -sin(¢)|+

/32 —2.sir? (8) (1 [sin(¢) -cos(¢)|)} (9.55)

wherey; is the phase velocity of the incident wave andnd i are chosen to be the character-
istics of the less dense medium in the computational domain.

Let us note here that the time step decreases with the ircedamgled and hence the
computational time becomes very long for large incidenagesm Nonetheless, the computa-
tional time is relatively acceptable up to an incidence amgI8( .

9.3.3 Absorbing boundary conditions: PML

The implementation of absorbing boundary conditions indbkque case requires to make a
change of variables on the fields components in the PML mediomtarly to the changes made
in the main computational grid [34]. Farandy periodic structure, only PML is needed in the
third direction ©2). In this case, the new fields components are defined as fallow

P = BEuu Ll grikyy (9.56.a)
Quu = Hyy-e . gy (9.56.b)
P, = E,- e_ikXX . e_ikyy (9560)

wherev representx or y and 1 denotesx, y or z. E,;, andQ,, are the field components in
the classical PML shell corresponding to the componenth@two fictitious waves resulting
from the split of the plane wave inside the PML (see sectiofi this chapter). For details of
implementing these PML at oblique incidence, the readeretan to [34].

9.34 SFM-FDTD in dispersive media

For oblique incidence, and according to the two systems o&tons [(9.58) and (9.54), the
components that require particular treatment in the dspemedium arePxa, Ra, Pra, Qz, Py,

P, andPR,. Direct calculation of these components by equatibns %68 [9.54) involves the
permittivity term which is frequency-dependent. In thistgan, we only show how to take into
account the media dispersion in FDTD oblique incidenceaxtse of the Drude critical points
model [35]. The implementation details of the other of drspe models by SFM-FDTD are
given in [36] for Debye model, and in [37] for both Drude anduDe-Lorentz models.
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Let us quote that equations (9153) for the calculatioR@f Ra and P, are similar to
traditional Maxwell’s equations. Accordingly, the calatibn of these components in the dis-
persive medium will not require any further treatment coragao the normal incidence case.
Contrarily, equationg (9.54) for th@,, P,, P, andR, need a different way to be processed.

Pra, Praand Paimplementation: These three components are calculated in a similar way.
So let us take as an example only g calculation. By analogy with the normal incidence
case (equation 9.25), we introduced a new compobgntequivalent to théd, component in
the classical case) defined as:
Lxa = &0- €pcp- Pa (9.57)

Equation[(9.53.d) is therefore wrote as:

Olxa [0Q; 0Qy
= — 9.58
ot { dy 0z ( )
The discretization of this last equation allows us to caltaithel 4, variable as follows:
At {
Ln+l — " = n N =t n N
Xa(.+% i.K) Xa(i+%.j.k) +Ay l Z(i+%.j+%,k) Qz<i+%.j%,k>:| +AZ [Qy(i+%,j,k%) Qy(i+%.j.k+%)
(9.59)
Analogically to equation$ (9.26), (9.2V.a) ahd (9.271k),can be expressed as follows:
p=2
Lxa = Lxap + Z Lxec, (9.60)
p=1
with:
b
anD = 80[800 — m]an (961&)
L ApQ i e'® p 9.61.b
xec, = €olAp p<Qp—w—irp+Qp+w+irp)] xa (9.61.b)

As before, after the inverse Fourier transforms and finiteéree differences discretization of
different partial derivatives, we reach the updated equatfor the componeR, :

1 4 AgyEe
PQ;]- - p=2 LQ+1 o LQaD + LQaD %P)?a t- C;) P)?a
Xo Z (ﬁ) D
ap = a
Bp |Ln=- 1 4 n P> 5p n—1
—L —)P 9.62.a
+ Z ap xacp ap Xan)+F)Z1<ap) xa ( )
Lo = a_D [—Bol eyt — 45, + XDPRE 4+ 3Pl -+ dg0gwPly (9.62.b)
Ll = (Bl + A, + XPRL BRI (9.62.0)
Xacp ap P=xacp Xacp XpFxa pPFxa .0z,

Qz P, Pcand R, implementation: The calculation of the remaining compone@s P,
P andR, needs the introduction of other variables involving otlgraions. We consider as an
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example thé>, component for which implementation equations are detalepiation[(9.54]b)
involves the following one:

Ky ky k2 + k2
M, == S —P 9.63
€-M; waa Qxa+ g2 ( )
with:
MZ = PZ_ Pza (964)
By setting:
Ky ky k2 + k2
=X Qya— Y >*_Yp 9.65
© Qya w Qxa+ nw? - ( )
equation|[(9.63) becomes:

As considered above, tiig component can be expressed as:

p=2
T=Tap+ ) T, (9.67)

p=1

with:
w3
Ty = €0l€w— m]Mz (9.68.a)
g e %

T, = €0[ApQp( — )M, (9.68.b)

P Qp—w—irp+Qp+w+|Fp
Based on the inverse Fourier transforms of the equatiofi8)8bove, centered difference
approximations for the derivatives and taking into accainet equations (9.65)[ (9.67) and

(9.66), we get:

2 2
MFH-]. _ 1 k +k}’ I’H—l kXQn+1 QFH-]. BDTH 1+ 4 -I-n
z p=2 2,12 IJOJZ ap D
0,y (ﬁ)_@
ap p=1 ap #
_ D yn-1 HEe + ZZ(B"T” 1o )+ Z |v|n 1 (9.69.a)
ap z ap z & ap Zcp .0Y.
1
T = a_D [—BoTh t — 4T, + XDMQ+1+5DMQ—1+45050°MQ] (9.69.b)
Tzrf]:tl = [ BoTz, LAty +XpMQ+1+5pM271] (9.69.c)
Pl — MZ”+1+P;;1 (9.69.d)

The equations to update tk, Pc andR, components are obtained by the same process.
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Figure 9.16: Up: Transmission spectra at normal incidentam AAA structure made in silver film with different
thicknesses values (H). The geometrical parameters of tinellar apertures ared = 75 nm,; = 50 nm and

the period is fixed to a 300nm. Down: Electric field intensity distributions around thpertures showing the
interference patterns that take place inside them alongntie¢al thickness direction. For bRpeak, the T
guided mode is excited at its cutoff wavelength so that tlees@hlelocity tends to infinity and the effective index
falls to zero. In this case, EOT occurs whatever is the vafubethickness because the phase matching condition
is automatically fulfilled.

9.35 3D-SFM-FDTD application: EOT at oblique incidence through AAA structures

Let us recall the origin of the EOT through the AAA structuas: mentioned before, at normal
incidence it is only due to the excitation of the thEjuided mode inside each annular aperture.
In this case, the obtained EOT is angle and polarizatioepeddent and its spectral position
corresponds to the cutoff wavelength of this guided modens€quently, it does not depends
either on the metal thickness even if some additional pepfsar in the transmission spectrum
when the thickness increases (see figurel9.16).

These peaks (named fiPm € O on figure[9.16) are Fabry-Perot harmonics of thgTE
mode that occur at fixed values of the wavelength fulfillindhage matching condition:

ATE,(MIT— @) = ZHnLEf“H (9.70)

wherenlefll is the real part of the effective index of the guided mogeis the phase
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Figure 9.17: Schematic of a classical annular aperture gr(AAA). g is the outer radius,jris the inner one, a is
the period and is the angle of incidence.

change induced by the reflection on the two ends of the anapkture andH is the metallic
film thickness. At the cutoff, the effective index of the gertimnode becomes very small leading
to a phase matching that does not depend on the metal th&ckNegertheless, a small spectral
shift can appear between the cutoff value and the positioth@ftransmission peak due to
@ # 0. This shift is clearly shown on all the spectra of figlre 9blé it seems to be more
important in the case of thicker plates (héte= 300 nm). In fact, the phasg can be seen
as the result of the conversion between the incident plane w&ad the guide mode through
diffraction phenomenon that must depends on the metalrbigk

Let us now consider the case of oblique incidence (see figdi®:9as mentioned before,
EOT can appear through the excitation of both the T&hd the TEM modes. In fact only
few papers have discussed on this made [38, 39] while itdatian conditions were recently
analytically derived reference [22].

Indeed, this later is only excited with the TM polarizatioongponent of the incident
beam. FDTD simulations in the case of both PEC (see figure) i@ real dispersive metal
(figure 9 of reference [37, 40]) are done and demonstratedtiereence of additional transmis-
sion peaks due to the excitation of the TEM guided mode. Nlegksss, others configurations
such as the Slanted AAA (SAAA), that was proposed first by Sadlland J.J. Greffet [41], also
demonstrate a possible excitation of the TEM mode for aniglerce angle including normal

incidence.

Moreover, as for the TE mode, the spectral position of the TEM-transmission peaks
is driven by a similar phase matching condition given by ¢igud.70. Nonetheless, the zero
harmonic (Fg for m= 0) is now expelled to infinity and only higher orders corresto a finite
value of the wavelength. In this case, the metal thicknessrbes a very important parameter
that permits to adapt the transmission peak at a desire@ whlwavelength. Unluckily, only
relatively thick metal plates allow the excitation and tmegagation of the TEM mode.

Nevertheless, even if the TEM mode is excited in obliquedance with conventional
AAA (see figurd9.20a) or at normal incidence through SAAAWf&9.20b), the transmission



9.30 Gratings: Theory and Numeric Applications, 2012

TE polarization TM polarization

(@) s (b)s ;

4.5} 40"
c g 4.5 :
S | S |
7 2 *
= ‘=35(" e
% = |
c c 3 :
© © s
- — o
2.5+ ":25 L
() : o
2o ‘ T 2 :
(@] 0 @) ; o
O 1.5}-- o151 2
o : O i

0.5} 05

0 Il Il \ Il Il
1.5 25 3 35 4 45
AMp

Figure 9.18: Transmission spectra through AAA structurelenim perfectly electric conductor and illuminated by
a TE (left) and TM (right) linearly polarized plane wave. Aepitted on figure 9.19 and ¢ denote the incidence
and azimuthal angle respectively. The geometrical paramaftthe AAA structure are:er=a/3,r; = a/4 and

H = 2a (please see figufe 9J17 for notations). Two families of TE&kpare pointed out using two white vertical
rectangles. The right one corresponds here to the first Fddampt harmonic and the left one frames the second
harmonic. Note that other higher harmonics also occur atlgnavavelength values.
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Figure 9.19: Real part £ ; and logo of the imaginary part fe¢¢ of the effective index associated with the TEM-

like mode of an infinite coaxial waveguide as a function ofilier radius . The inner radius is set tq & 65nm
and the working wavelength is= 1550nm.

efficiency remains very weak with regard to the;TEnode. This is essentially due to metal
losses. In fact, and as it can be shown in figurel9.19, the imaagpart of the effective index of
the TEM-like guided mode is fairly consistent and can not eégligible.

Fortunately, another solution that is currently used inrtdio-frequency domain to in-
crease the impedance adaptation between a coaxial antethttzeavacuum can be envisaged to
enhance the transmission coefficient: it consists in dtnegoout the central metallic part of the
coaxial waveguide with respect to the outside electrodés ddnfiguration was implicitly pro-
posed in referencé [42] to achieve 90% light transmissiankhk to the excitation of the TEM
mode. This kind of structure design and fabrication is ngaalthievable at radio frequencies.
Unfortunately, this becomes more difficult in the visiblega but remains possible through
manufacturing process having nanometric resolution sschesv generation of Focused lon
Beam.
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Figure 9.20: Zero-order transmission spectra for thredet#nt AAA configurations where outer and inner radii
are fixed to g = 130nm and r = 65nm respectively. (a) Conventional structure illuminatéds® (metal thickness

of h=495nm). (b) SAAA with tilt angle &5° with respect to the vertical direction. The thickness ofrtieallic
film (h=430nm) is chosen in order to get a TEM peak transmissioA at 1550nm. (c) SAAA structure with
inner metallic parts that stretch out from the metallic filmeo a distance e- 80 nm. This allows increasing of the
impedance matching between the in- and out-coming planeswa&ith the TEM guided mode inside the apertures.
The metal thickness is also adjusted to in order to get a TEdk A = 1550nm with a transmission efficiency
of 48%
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9.4 Conclusion

The FDTD is a powerful tool to model periodic and aperioditstures. The time evolution
of the electromagnetic field is directly evaluated and afldw follow the light propagation
inside and around the studied structure. The SFM technigtenés the FDTD capabilities
to treat the diffraction problem for any incidence angle my polarization. The integration of
dispersion models such as Drude critical point allows aeusimulations that take into account
the effective dispersion of noble metals in the considepetisal range especially in the visible
domain. Nevertheless, the number of electromagnetic frtponents grows rapidly and can
be larger than 100 in some particular cases (in the PML regitnDrude-Lorentz dispersion
model for instance). In spite of all these criticisms, thelEDs actually one of the most used
method to model experiments in Nano-Optics as attestedeoguimber of publications in this
area.
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