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Abstract— In the present paper, the nonlinear Internal Model
Control (IMC) method is introduced and applied to linearize
high frequency Power Amplifiers (PAs). The IMC is based on the
description of a process model and of a controller. It is shown
that baseband frequency descriptions are suitable for the model
and the controller. Their description parameters are derived from
input and output modulation signals processed in Cartesianform.
Simulation results are given to illustrate the design procedure and
to demonstrate the performances of the IMC linearizer.

I. I NTRODUCTION

Traditionally, techniques used for amplifiers linearizarion
are based on predistortion and feedback techniques [1][2][3].
The predistortion technique involves the creation of an in-
verse characteristic complementary to the amplifier nonlin-
earity [4][5]. Performances can be improved by adding a
feedback control to deal with external perturbations, parameter
variations or operating frequency modifications. Design of
conventional feedback circuit requires considering carefully
performances in term of gain-bandwidth product and stability
[6][7]. The nonlinear IMC is an alternative solution using a
model of the nonlinear system to be controlled [8]. If the
model is a perfect representation of the non linear system, the
controller can be design without concern for system stability.
Furthermore, the control method of the IMC is very simple
and comprehensive, leading to an easy tuning of the controller
parameters.

For radio communications applications, the model and the
controller are difficult to design because of the high operating
frequency used and time delay introduced [9][10]. A solution
consists in using baseband signals to describe the behaviorof
system parts. For feedback implementation, an error signal
can be given by the comparison of the input and output
envelope signal [11][12]. More advanced techniques used
polar or Cartesian signal formats to take into account the phase
distortion [1][13]. In this paper, we proposed to design an IMC
structure using Cartesian signal. The model and the controller
are then described by mathematical expressions derived from
measurements of the downconverted output signals and of the
input modulating signal. Then, the technique results in the
linearization of the overall transmitter.

Different stages leading to the description of the IMC
structure are introduced and illustrated by nonlinear simulation
results. At first, a model is established to describe the behavior

of the transmitter and secondly a design of the nonlinear
controller is presented. IMC is analyzed and compared to
standard predistortion method trough simulation usingADS
software.

II. I NTERNAL MODEL CONTROL

IMC was originally developed for chemical engineering
applications [14], and is considered as a robust control method.
The IMC structure is shown in Fig. 1.
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Fig. 1. Schematic of the IMC structure

The structure uses an internal model̂H(s) in parallel
with the system to be linearizedH(s). The control loop is
augmented by a block filterR(s), so-called theIMC controller.

A. IMC analysis

The closed loop transfer function describing the inpute(t)
and the disturbanced(t) to outputy(t) relationship is given
by:

Y (s) =
R(s)H(s)

1 + R(s) (H(s) − Ĥ(s))
E(s)

+
1 − R(s) Ĥ(s)

1 + R(s) (H(s) − Ĥ(s))
D(s) (1)

The IMC loop computes the differencew(t) between the
system outputH(s) and the model output̂H(s). This residual
signalw(t) represents the effects of the disturbanced(t) and
of the modeling error between the model and the system.
The IMC structure has advantages over conventional feedback
control loop. If a perfect model is used, i.e.Ĥ(s) = H(s) there
exists no feedback, and the closed loop system is affected only



by the disturbanced(t). In this case, the closed loop system
has the transfer function

Y (s) = R(s)H(s)E(s) +
(
1 − R(s) Ĥ(s)

)
D(s) (2)

Noted that without disturbance the system is effectively
open-loop hence no stability problems can arise. Also, if the
systemH(s) is stable, which is the case for application to
power amplifiers, the closed-loop will be stable for any stable
controller R(s). Furthermore, the controller can be designed
as a feedforward controller in the IMC scheme.

An ideal control system, would suppress all disturbances
and insure the instantly traking of the inpute(t). From
equation (2), the ideal control system is achieved for :

R(s).Ĥ(s) = 1 (3)

So, the ideal choice for the controllerR(s) is the model inverse
Ĥ(s)−1. For the investigated application, the IMC must allow
to compensate the static non linearity of the amplifier. The
model of the system includes a model of the non linear
static characteristic and the IMC controller includes the inverse
static characteristic. If the inversion of the static characteristic
model is perfect, the IMC scheme allows a rejection of the
disturbance and of the non linearity effects.

B. Design procedure for PA linearization

The block diagram of IMC structure is shown in Fig. 2. All
signal designations refer either to complex baseband signals
and don’t depend on the modulation format.
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Fig. 2. Baseband equivalent scheme of the IMC structure

The proposed IMC structure allows linearizing the transmit-
ter composed of the I/Q modulator, amplifier and demodulator
blocks. The output of the demodulator is compared with the
output of the baseband model of the amplifier and the resulting
error signalw(t), normalized according to PA gainG, is used
to modify the input modulation signal.
The critical point in the IMC structure is the description ofthe
inverse amplifier static nonlinearity. A solution consistsin us-
ing a complex polynomial function, composed by even terms,
to describe the inverse AM/AM and AM/PM characteristics.
The main advantage of such models is that they are linear-
in-parameters allowing Least Mean Square (LMS) estimation
techniques.

III. B ASEBAND PA CHARACTERIZATION

In IMC structure (Fig. 2), it is necessary to have a descrip-
tion of the process in continuous time domain. In this paper,
a special case of Volterra series, the Hammerstein memory
polynomial, is used.

A. PA model description

The nonlinear block presented here operates on baseband
quadrature I/Q time-domain waveforms [8]. The complex low-
pass equivalent representation of the communication signal is
used to avoid the high sampling rate required at the carrier
frequency.
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Fig. 3. Radio frequency power amplifier model

As shown in Fig. 3, the two-box model includes a memoryless
nonlinearity and a Laplace filter matrix. The complex gain
gives a nonlinear versionV

NL
= INL + j.QNL of the

transmitted input signalV
in

= Iin + j.Qin according to the
polynomial function composed by even terms which produces
harmonic distortions inside the PA bandwidth:

V NL =

P∑

k=0

c2k+1 · |V in|
2k.V in (4)

wherec2k+1 are the complex power series coefficients.

The dynamical model including memory effects caused by
the PA may be expressed with a differential equation. As
shown in Fig. 3, the inputV

NL
to outputV̂

out
= Îout+j Q̂out

relation of thisnth order filter can be written as:

H(s) =
Îout

INL

=
Q̂out

QNL

=

∑m

k=0 bk · sk

sn +
∑n−1

k=0 ak sk
(5)

where the coefficients{ak} and {bk} are real scalars that
define the model.

B. Identification algorithm

The parametersak, bk and c
k

of previous PA model have
been identified by Output-Error technique (see also [15]).
Thus, we define the transposed parameter vector:

θ =
[
a0 · · · an−1 b0 · · · bm c1 · · · c2P+1

]T
(6)

As shown in Fig.4, we obtain the optimal values ofθ by
Non Linear Programming techniques. Practically, Marquardt’s
algorithm [16] is used for the the minimization of quadratic
criterion based on the error between measured data and
estimation.

Identification results are shown on Fig.5 for aMESFET
power amplifier, used at a center frequency of 900 MHz. The
input signal is a pseudo random binary sequences (PRBS) at
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Fig. 4. PA identification scheme
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Fig. 5. Comparison of time-domain measurement and estimation

rate of 60 Mbits/s, filtered by a low pass root-raised cosine
with α = 0.35. For the amplitude and phase identification,
third order polynomial expressions and 1st order filter H(s)
are used and allow achieving a good agreement between the
amplifier behavior and its estimation.
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Fig. 6. Comparison between a frequency responses of the PA circuit and the
obtained filter

The dynamic characteristic of the PA system can be de-
scribed by a MIMO coupled filter. The real filterH(s) and
the obtained filterĤ(s) characteristics are represented in Fig.
(6) by the gain and phase curves. The cut off frequency of the

corresponding filter is around76 MHz.

IV. SIMULATION AND INVESTIGATION

The IMC structure is evaluated by nonlinear simulations
using circuit envelope algorithm with Agilent ADS simulator.
The described class AB PA presented in figure (7), is a single
stage structure composed of a MESFET device by Infineon
(CLY 5). The behavior of the transistor is described by a table
based model of the nonlinear drain current source associated
to a junction model for the gate to source capacitance.
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Fig. 7. PA circuit implemented on ADS software

The matching topology is designed to ensure optimum power
and efficiency performances at the 900MHz operating fre-
quency. The output matching has a low pass T structure
composed of a capacitor to ground and two transmission lines.
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Fig. 8. Comparison of the dynamic envelope variations at theoutput of
amplifier, model, controller ans the dynamic AM/AM characteristic of the
IMC system.

The input signal is a 16-QAM at a bite rate of 2.5Mb/s,
modulated at 900 MHz and shaped with a raised-cosine pulse
with 35 % . This signal is applied to the IMC system. On Fig.
8 are presented the dynamic envelope variations of amplifier
and model output, for such input signal. Also plotted are the
dynamic enveloppe at the output of controller and of overall
IMC system versus the instantaneous input enveloppe. This
last curve allows to verify that the nonlinear behavior and the
hysteresis effects are reduced, showing the interest of theIMC
system.



Fig. 9 shows the output spectrum without linearization,
with standard predistortion and with IMC linearizer for an
output power backoff of 3 dB. Using IMC structure, an
improvement of approximatively 10dB is obtained according
to standard predistortion and of 30dB according to PA without
linearization.
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Fig. 9. Output spectrum for the amplifier without linearization, with
predistorsion and with IMC.

Due to memory effects, linearization performances can de-
pend on baseband signal frequency. To verify the performances
of IMC, simulations have been performed for a two tones
excitation with a difference of 2KHz to 20MHz between the
carrier frequencies. Results are plotted on Fig. 10 in termsof
carrier to third order intermodualtion ratio C/I in dBc. Forthe
standart predistorsion designed with the previous 2.5Mb/s16-
QAM modulation, performances are reduced and degraded at
low baseband frequencies. Whereas, the IMC system allows to
improve the nonlinear performances for the whole bandwidth
considered.
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V. CONCLUSION

In this paper, internal model control was introduced and ap-
plied to power amplifier linearization with different baseband
signals. Design of the IMC system, using baseband signal, is
described. Simulations are presented to demonstrate the inter-
est of the technique. For a 16-QAM at a bite rate of 2.5Mb/s,
IMC allows to reduce nonlinear and hysteresis effects on
the dynamic enveloppe characteristic. Simulated performances
show improvement of the ACPR of 30 dB for the amplifier at
high output power, and 10 dB in comparison to predistorsion.
Furthermore, IMC allows to improve performances in term of
linerarity for different output levels and signal bandwidths.
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