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Abstract— The Fe
3+: Al2O3 Whispering Gallery Mode Maser

Oscillator is presented in this paper. Preliminary results already
show a frequency stability of about 10

−14 for integration times
up to 30 s. A model combining the rate equations and the
electromagnetic field in the sapphire is presented. Paramagnetic
properties and maser sensitivity to external parameters have been
conducted to verify the validity of our model.

I. INTRODUCTION

A number of scientific and technical applications requires

very high frequency stability oscillators in the 10−14 range.

Essential for metrological issues, deep space tracking, radar

systems and fundamental physics such as Lorentz invari-

ance violation theories, the Cryogenic Sapphire Resonator

Oscillator (CSRO) is generally considered as the unique

solution nowadays to reach such performances. An alterna-

tive/promising way to the CSRO is the ’WHIGMO’ (WHIs-

pering Gallery mode MASER Oscillator). At the end of the year

2004 was discovered, at FEMTO-ST Institute, a bistability

effect in a cryogenic Fe3+ doped sapphire whispering gallery

mode resonator. This effect is similar to that of lasers con-

taining a saturable absorber [9]. Combining then a zero-field

3-level atomic system in the sapphire lattice with the very high

Q-factor of the resonator at cryogenic temperatures (Q∼ 109@

4 K), the first whispering gallery mode MASER oscillator

became possible in the early 2005 at FEMTO-ST [1]. Research

about this topic is currently being undertaken through an ad

hoc international scientific collaboration involving the NPL

(National Physical Laboratory) and UWA (the University of

Western Australia).

II. THE Fe3+ MASER OSCILLATOR

Among the different paramagnetic impurities that can be

found in high purity sapphire crystal there is the Fe3+ ion

presenting at zero dc magnetic field three levels: |1/2〉,

|3/2〉 and |5/2〉. Near the liquid helium temperature, there

are significant differences in the populations of these levels.

Transitions between any of these levels are allowed and their

linewidths are of a few tens of MHz. A 31.3 GHz pump signal

causes a net transfert of Fe3+ ions from the |1/2〉 level to the

|5/2〉 level. In turn non-radiative transitions |5/2〉 7→ |3/2〉
create a negative population difference between the two lower

states, making possible maser oscillation at 12.04 GHz if

the resonator presents a high-Q mode at this frequency. The

principle of our first whispering-gallery-mode maser oscillator

(WhigMO) is represented in Figure 1. It is based on sapphire

resonator whose WGH17,0,0 mode frequency coincides with

the |1/2〉 7→ |3/2〉 frequency, i.e. 12.04 GHz. Another WG

mode at 31.3 GHz is used to pump the cristal. A 2mW

pump signal generated by a microwave synthetizer is sufficient

to obtain a -56dBm maser signal, available outside of the

cryostat.

SignalWG-mode Q=109

|5/2〉

|3/2〉

|1/2〉

T=4.2K

12.04 GHz31.3 GHz

Maser signal

sapphire

12 GHz

31.3 GHz

Fig. 1. Principle of the whispering gallery mode maser oscillator.

The validity of the maser operation has been demonstrated

at FEMTO-ST in early 2005 with this simple cryogenic ex-

periment. With only a temperature control at the turning point

at 8 K, preliminary results shown a 2.5 ×10−14 frequency
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instability at 32 seconds by comparing the maser with a

microwave synthesizer referenced to a hydrogen maser.

To measure the short term frequency instability it is possible

to compare two masers providing a frequency separation of a

few hundreds of kHz. The signal resulting from the compari-

son can then be directly sent to a high resolution low frequency

electronic counter. The Allan deviation is finally computed

from the extracted frequency data over the integration time.

The major problem of this technique is mixing to low-power

signals. It could be then an opportunity to compare the maser

to a cryogenic sapphire resonator oscillator oscillating on the

WGH17,0,0 mode by using the twin resonator of the maser.

Nevertheless in our case, we conducted some experiment to

compare the maser signal to the state-of-the-art CSRO from

UWA and operating at 11.200 GHz. In the case of comparing

ultrastable oscillators with operating frequencies differences

>>100 kHz, the use of an external microwave synthesis

chain is required to generate the appropriate beatnote. Figure

2 shows the simplified setup used for the comparison. The

beatnote between the CSRO and the maser produces a 838

MHz signal.
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(low noise amp)838 MHz
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Synth. chain
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Readout

Fig. 2. Frequency stability measurement scheme : maser vs UWA’s CSO

Through the microwave synthesis chain, the 9th harmonics

of a 100 MHz signal locked to the CSRO and referenced by a

hydrogen maser is mixed with the previous signal. The mixing

stage delivers a 62 MHz signal. An external 62 MHz low-

frequency generator locked to the microwave synthesis chain

delivers the required 62 MHz signal used to downconvert the

microwave beatnote to some 100 kHz. Finally the obtained

signal feeds a low noise preamplifier and is send to a high

resolution low-frequency reciprocal counter.

In order to qualify the noise budget of the overall readout

system we have used a noise measurement bench as shown on

figure 4.

The maser frequency instability is short-term limited by the

microwave synthesis chain at 10−14 up to 30 s as shown

on figure 3. For integration times higher than 30 s, the

Allan deviation
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11.300 GHz

CSO

11.200 GHz

Fig. 3. Bench scheme for the readout system noise measurement.

maser presents a random walk process (characterized by a√
τ slope.). This effect is probably due to the pump power

fluctations.

Maser

Readout system

 1  10  100  1000  10000

σy(τ)

10−12

10−13

10−14

10−15

10−16

Integration time τ (s)

√

(τ)

Fig. 4. Allan deviation of the readout system and the maser.

III. THE Fe3+ : Al2O3 RESONATOR BISTABILITY

Usually the transmission coefficient of WG modes is inde-

pendent of the injected power at the resonator input. In our

experiment, for a particular mode (i.e. WGH17,0,0 at 12.038

GHz) we observed a non linear response for the transmission

coefficient versus the injected power, while for others modes

(for example the WGH18,0,0 at 12.6 GHz) the response appears

totally linear (fig.5).

Compared to the typical behavior of a common WGH-

mode, our relevant WGH17,0,0 mode clearly presents two

thresholds depending on the direction of the power sweep.

It has also been observed that the hysteresis bandwidth is a

function of temperature. This bistability phenomenon can only

be explained by the saturation of the Fe3+ ions at 12.04 GHz,

which is analogous to that of “optical bistability” exhibited by
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Experimental data

−30 −10 −5  0

−10

−20

−30

−40

−50

−60

−70

−80

−90
−20−25 −15

Injected power (dBm)

S21 (dB)
Transmission coefficient

Fig. 5. Anomalous resonator behavior at 12 GHz.

a saturable absorber. Starting from -30 dBm, for low applied

powers the WGH17,0,0 mode is embedded into the noise floor:

the whole atomic system is purely absorbtive. By increasing

slightly the injected power to -18.6 dBm the saturation process

starts. This induce stored energy enhancement which in turn

enhances the saturation process until the system becomes

bistable. At this point, the mode WGH17,0,0 would suddenly

appear and its behavior become then similar to other “nor-

mal” modes when increasing the injected power. Conversely,

starting from a completely saturated Fe3+ transition state and

decreasing power, the second threshold appears at a lower

power (-26 dBm) than in the first case, in the sense that enough

energy still remains in the system to deliver the resonance

before vanishing into the noise again.

A. Transmission line model for a resonator without impurity

The WGM resonator can be assimiled to a dielectric wave

guide out of ring.

ρ

z
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b− b+

θ

a−

Fig. 6. Modeling of a whispering gallery mode resonator.

This dielectric guide constitutes a closed transmission line

(figure 6, right). It’s impedance Zc can be calculated by the

knowledge of the geometrical and physical properties of the

resonator. In this line two waves a+ and a− can be propagated

in opposite directions. If the resonator is perfect then the two

waves are uncoupled. In this condition the resonance imposes

that the phase Φ accumulated on a ring turn is equal to 2mπ.
{

a−(θ) = a−(θ)e−jΦ

a+(θ) = a+(θ)e−jΦ
=⇒ Φ = 2mπ (1)

Then the voltage along the ring is:

V (θ) = (a−(θ) + a+(θ))/
√

ZC = V (0) cos mθ (2)

1) Resonator coupling and unloaded quality factor: The

couplings with the external circuit are modelled thanks to

hybrid couplers, as indicated on the figure 7.

bin ain

ae a′e

aout bout

bin ain

aout bout

a1 a2

b2b1

A)

a1 a2

b1 b2

b′ebe
jk jk

B)

Fig. 7. Modeling of couplings : A) real resonator coupled by antenna. B)

Hybrid couplers modeling.

In the absence of impurity (or if the paramagnetic transition

is satureted), one can show that the resonator unloaded Q

factor is :

QWG
0 = ω0

Energy stored in the resonator

Dissipeted power
= ω0

WT

Pa
=

mπ

α
(3)

where α is the wave attenuation coefficient along a turn in

the resonator. This term reflects the material dielectric losses

tangent (tanδ):

α = m π tanδ (4)

The resonator coupling coefficients β1 and β2 are defined

as:

β1 =
k2
1

2α
and β2 =

k2
2

2α
(5)

where k1 and k2 depends on the geometry of the device

coupling.

2) Transmission coefficient S21: The resonator transmission

coefficient (S21) can be expressed as [10]:

S21 = − k1k2 e−
α+jΦ

2

1 −
√

1 − k2
1

√

1 − k2
2 e−(α+jΦ)

(6)

In a WGM resonator, it’s justified to consider k1, k2, α,

and ℑ(Φ) ≪ 1. In the same way, near the resonance : ℜ(Φ) ≈
2mπ. With these assumptions, S21 becomes:

S21 = − k1k2

k2
1

2 +
k2
2

2 + α + j(Φ − 2mπ)
(7)

In the theory of lines Φ can be expressed as a fonction of

the wave number, Φ = kg Re, where Re is the transmission

line equivalent radius.
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Then, in the absence of paramagnetic impurities and at a

frequency ν, the equation 1 becomes:

Φ = 2πkgRe =
4π2Reν

c

√
ǫz (8)

with ǫz is the sapphire relative permittivity along the resonator

C-axis.

B. Two levels system

In order to introduce the important parameters, it is neces-

sary to start with a study of a two levels system. These two

levels can correspond to the levels |1/2 > and |3/2 > of the

ion Fe3+ ion. In the absence of any pump signal and if the

frequency injected into the resonator remains close to 12.04

GHz, the level |5/2 > can be temporarily forgotten. Under

these conditions the system is equivalent to a spin 1/2. This is

for a system with S=1/2 that the following expressions were

derived. However, the various expressions which follow can

be generalized without much difficulty for a more complex

system. The forms of these expressions remain unchanged,

only numerical coefficients will vary. Let us consider 2 levels

separated by an energy hν12.

1

2

W21

W12 Γ21

Γ12

Fig. 8. Two-level system.

The dynamics of this ions system subjected to a resonant

interaction is described by 4 parameters:

- W12: absorption probability per unit of time. The absorption

of an incidental photon induces the transition of the ion from

level 1 towards level 2.

- W21: stimulated emission probability per unit of time.

- Γ12: Rate of relaxation 1 → 2. The vibrations of the crystal

lattice (phonons) can cause relaxation without absorption of

the radiation and thus induce a transition.

- Γ21: Rate of relaxation 2 → 1: idem.

N is the total density of ions, N1 et N2 are the populations

of the levels at the thermodynamic equilibrium and ∆12 =
hν12

kT
:

N2

N1
= e−∆12 ≈ 1 − ∆ for

hν12

kT
≪ 1 (9)

In general, the populations of the two levels are noted n1

and n2. The differences of populations will be:

∆N = N1 −N2 ≈ hν12

2kT
N and ∆n = n1 − n2 (10)

1) Absorbed power: The absorbed power per volume is

equal to (for a spin 5/2):

dP = (W12n1 − W21n2) hνdV = W12∆nhνdV

=
1

2
γ2hνH2∆n g(ν) dV

(11)

where dP and dV are the power and the volume densities

respectively, γ the gyromagnetic ratio, H the amplitude of the

magnetic field, and g(ν) the line shape function. A simple

form of this function is the Lorentz line shape, given by the

expression:

g(ν) =
2T2

1 + (2πT2)
2
(ν − ν12)

2 (12)

This function has a width ∆νESR = 1
πT2

and its value at

ν = ν12 is equal to 2T2 ; two times the spin-spin relaxation

time.

If the incidental signal is weak, the difference of population

is not notably influenced:

∆n ≈ ∆N (13)

The absorbed power will grow proportionally to the inten-

sity of the incidental radiation:

dP =
(hν12)

2
N

2πkT

(γH)
2

∆νESR
dV (14)

If the wave intensity is still growing, the difference of

population ∆n will not remain equal any more to ∆N , the

solution of the rate equations gives:

∆n = ∆N
1

1 + 2W12T1
= ∆N

1

1 + 2 (γH)
2
T1T2

δ (15)

The thermodynamic equilibrium is broken, and the absorbed

power becomes:

dP = hν12∆N
W12

1 + 2W12T1
dV (16)

where T1 = (Γ12 + Γ21)
−1 is interpreted as the caracteristics

time necessary for the system to return to its thermodynamic

equilibrium.

At the limit when the power of the signal is very strong, the

ions system is saturated and the absorbed power tends towards

the limit:

lim
H→∞

dP =
hν12∆N

2T1
dV (17)

2) Magnetic susceptibility: Macroscopically the presence

of the ions in the sapphire matrix is described by the appear-

ance of magnetic susceptibility χ(ν) = χ′(ν) + jχ′′(ν). The

imaginary part χ” is classically connected to the magnetic

losses. Thus a medium having a susceptibility χ absorbs a

power:

P =
1

2
ωµ0

∫∫∫

H⋆χ”H dV (18)
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While comparing with the equation 11:

χ” = − (gµB)
2
2µ0∆n

~
g(ν) (19)

By introducing the expressions of ∆n (solution of the two

levels rate equations) and g(ν) [3], [11] and by supposing

that the frequency of the signal is close to the spin resonance

(ν ≈ ν12) wa can expressed the imaginary part of the magnetic

susceptibility:

χ” = −2πν12T2χ0
1

1 + (2πT2)
2
(ν − ν12)

2
+ T1T2 (γH)

2

(20)

where χ0 is the dc susceptibility:

χ0 =
(gβ)2µ0

kT
N (21)

χ′ et χ” are connected by the Kramer-Krönig relation and

finally we get:

χ(ν) = χ′(ν) + jχ”(ν)

= −2π T2 ν12χ0

[

2πT2∆ν + j

1 + (2πT2)
2
(ν − ν12)

2
+ T1T2 (γH)

2

]

(22)

For a very weak signal being propagated in the resonator

(T1T2 (γH)
2 ≪ 1). The magnetic susceptibility induces losses

and a considerable frequency shift of the whispering gallery

modes located on both sides of the spin resonance. When the

intensity of the signal increases, the saturation of the transition

decreases the influence of χ.

0,5

1

1

−χ”

χ′

2πT2 (ν − ν12)

Saturation effect

Fig. 9. Real and imaginary parts of the magnetic susceptibility (arbitrary

unities).

The real part χ′ extends very largely around the center

frequency. χ′ induces a displacement of frequency of the

various gallery modes located on both sides of the spin

resonance. This property was used to determine the spin-spin

relaxation time T2.

C. The resonator behavior equation

1) Dephasing along a turn: While taking in consideration

the presence of the parmagnetic ions, the dephasing (eq.8)

becomes:

Φ =
4π2Reν

c

√
ǫz

[

1 +
χ′

eff

2
+ j

χ′′

eff

2

]

(23)

χeff is the effective susceptibility of the resonator taking into

account the distribution of the magnetic field:

χeff (ν) =

∫∫∫

H⋆(r)χ(ν, r)H(r)dV
∫∫∫

H⋆HdV
≡ ηχ(ν) (24)

where η is the magnetic filling factor, and χ(ν) the susceptibil-

ity of the material in the presence of a homogenous magnetic

field of intensity equal to the peak value of the field in the

real resonator.

By introducing ∆ν0 = ν − ν0: the frequency shift between

the signal and the resonance of the whispering gallery mode,

it comes:

Φ =
4π2Reν0

c

√
ǫz

(

1 +
∆ν0

ν0

)[

1 +
χ′

eff

2
+ j

χ′′

eff

2

]

(25)

Φ − 2mπ = mπ

[

2
∆ν0

ν0
+ χ′

eff + jχ′′

eff

]

(26)

2) The internal magnetic field H: To introduce the ions

resonance saturation farther, it’s necessary to express the

magnetic field in the resonator on the way (bias) of the line

transmission model. The wave a+ in any resonator plan is

connetcted to the outgoing wave (boils) bout as follow:

|bout| =
√

2jk2 |a+| (27)

The average power circulating in the resonator is equal to:

Power =
1

2

a2
+

ZC
(28)

Where ZC is the whispering gallery mode impédance.

Moreover, in terms of magnetic field, this power can be

expressed according to the Poynting vector:

Power = ∇•ℜ
[∫

surface

1

2
E+ × H+dS

]

≡ 1

2
ZC |H+|2×Seff

(29)

where Seff is the effective area which depends on the distri-

bution of the field in the meridian section of the resonator. It

corresponds at first approximation to wide of the mode in the

plan (ρ, θ). An approximation of this value is given by:

Seff ≈ hS
Re√
m

(30)

Finally:

|a+| = ZC

√

Seff |H+| (31)

The total magnetic field results from the establishment of a

standing wave in the resonator is then expressed as:

H(θ) =
2 |a+|

ZC

√

Seff

cos(mθ) (32)
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To solve the problem analytically, we will use the ap-

proximation of the average field. This approximation amounts

replacing the local value of the field by its average value. Thus

gums the space variations of the magnetic field

H2(θ) →
〈(

2 |a+|
ZC

√

Seff

cos(mθ)

)2〉

=
2 |a+|2
Z2

CSeff
(33)

3) Coefficient of saturation : In the preceding expressions

15,22, saturation appears in the denominator in the form of

T1T2 (γH)
2
. This term defines the amplitude of saturation

|asat| for which the preceding term is equal to the unit. When

the amplitude of the wave circulating in the resonator is equal

to |asat|, the difference of population ∆n is equal to half of the

population difference ∆N corresponding to thermodynamic

equilibrium:

|asat| =
ZC

√

Seff

γ
√

2T1T2

(34)

Finally the saturation coefficient X is defined as:

X2 = T1T2 (γH)
2

=
|a+|2

|asat|2
(35)

4) Fundamental equation: To complete this model we have

now to connect the injected power in the resonator to the power

circulating in this one:

bout =
√

2jk2a+ = S21ain (36)

From the expression of eq.7 and eq26 we can write:

2 |a+|
2

"

„

1

QWG
L

− χ”eff

«2

+

„

2
∆ν0

ν0

+ χ
′

eff

«2
#

=

„

k1

mπ

«2

|ain|
2

(37)

the substitution of χ′ and χ” expressions, and with ∆ =
2πT2 (ν − ν12):

2X2

[

(

1 +
ηQWG

L 2πT2ν12χ0

1 + ∆2 + X2

)2

+

(

2
∆ν0

ν0
QWG

L − ηQWG
L 2πT2ν12χ0∆

1 + ∆2 + X2

)2
]

=

(

k1Q
WG
L

mπ

)2 |ain|2

|asat|2
(38)

To connect this model to the experimental parameters, the

coefficient of saturation X2 is rewritten as:

X2 ≡ |a+|2

|asat|2
≡ 1

2k2
2

|bout|2

|asat|2
≡ QWG

0

4mπβ2

Z0

ZC

Pout

Psat
(39)

where Z0 = 50Ω is the microwave characteristic impedance.

It is noted that X2 is proportional to the emmited power.

To simplify the last equation we define the following

parameters:

Y 2 who is proportional to the injected power:

Y 2 ≡ 2β1

(1 + β1 + β2)
2

QWG
0

mπ

Z0

ZC

|Pin|
|Psat|

(40)

C called Cooperativity which is a parameter indicating the

degree of non-linearity of the system:

C ≡ ηQWG
L πT2ν12χ0 ≡ ηQWG

L QEPRχ0 (41)

where QEPR is the quality factor of the paramagnetic

resonance line shape: QEPR = πT2ν12.

Finally ξ is the ratio between the instantaneous frequency

deviation ν0−ν and the half-width of the mode for the charged

resonator.

ξ = 2
∆ν0

ν0
QWG

L (42)

Finally the resonator behavior equation is summarized with:

2X2

[

(

1 +
2C

1 + ∆2 + X2

)2

+

(

ξ − 2C∆

1 + ∆2 + X2

)2
]

= Y 2

(43)

In a simple case: the mode and the signal are both centered

on paramagnetic resonance: ∆ = ϕ = 0, the equation is thus

reduced to:

2X2

(

1 +
2C

1 + X2

)2

= Y 2 (44)

For a linear resonator, the ratio between the injected and

emmited power is still constant whatever the level of the

injected signal is. The presence of the paramagnetic ions

induces the appearance of extremum in the representation of

Pout according to Pin. This means that the condition to obtain

it, is:
d
(

Y 2
)

d (X2)
= 0 (45)

After a simple calculation, the equality is realized if:

(

X2 + 1 − C
)2

= C(C − 4) (46)

The bistability thus will appear if C > 4. Then it is possible

to calculate the values of X2 and Y 2 corresponding to the

extrema.

The relation can be reexpress according to the powers:

Pin = ΛPout

















1 +
2C

1 + ∆2 +
QWG

0

4mπβ2

Z0

ZC

Pout

Psat









2

+









ξ − 2C∆

1 + ∆2 +
QWG

0

4mπβ2

Z0

ZC

Pout

Psat









2







(47)

with Λ =
(1 + β1 + β2)

2

4β1β2
=

(

1

S21

)2

This equation shows the role which the couplings can have.

The factor Λ is identified as the reverse of the square of the

transmission coefficient.
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D. Magnetic susceptibility measurement

In a pure sapphire resonator (i.e. in impurity free region),

the frequency of the WG mode depends only on the geometry

and on permittivity of the material. The Fe3+ paramagnetic

impurities induce a magnetic susceptibility in the resonator

which yields to shift the resonant frequencies of the different

WGH modes around the ESR resonance at 12.04 GHz.

If a strong signal at 12.04 GHz is applied to the resonator,

the power absorbed by the magnetic resonance is no longer

proportional to the incident power, but rather saturates. This

led to a frequency shift of the surrounding WG modes back

to the one they should have had in the abscence of impurities.

This is explained by the fact that the magnetic susceptibility,

which is proportional to the difference in population of the

two lower levels, tends to zero.

The real part of the ac magnetic susceptibility is given by :

χ′ =
4π2T 2

2 χ0ν0∆ν

1 + 4π2T 2
2 ∆ν2

(48)

where T2 is the spin-spin decoherence time, χ0 the dc-

susceptibility, and ∆ν the detuning parameter of the analysed

WG mode with respect to the ESR-line (ν0) and assuming that

the energy is totally confined inside the sapphire (magnetic

filling factor η ∼ 1).

The measurement set-up is then represented in figure 11.

Cryostat top flange

Silver plated copper cavity

C

T=4.2K

~
1
.5

m

Sapphire

12.04 GHZ

PUMP
Synthesizer

Network Analyzer
Ref

Ref

H
y
d
o
rg

en
 M

as
er

on

off

Fig. 10. Set-up for electron paramagnetic resonance experiment.

A pump signal corresponding to the WGH17,0,0 mode is

sent to the resonator with the help of an external microwave

synthesizer. The power -of about 3dBm- is high enough to

saturate the transition. The detuned frequencies of each mode

around WGH17,0,0 are recorded via a network analyser. The

real part of the magnetic susceptibility can be then evaluated

and subsequently plotted as a function of the measured detuned

parameter, as shown in figure 11.

An adapted fit to this curve related on eq. (48) give the

dc susceptibility χ0 ≈ 10−9 ± 0.1 × 10−9 and the spin-spin

relaxation time T2 ≈ 2.2 × 10−9s±0.8 × 10−9s.

 4e−08

 8e−08

 2 0−2−4

 0

Real part of the magnetic Susceptibility

V−V   (GHz)
12

Experimental data

−8e−08

−4e−08

Fit

Fig. 11. χ
′
= −2

∆ν
ν

These values are of about one order of magnitude from

other measurements [2]. As a matter of fact, the width of the

ESR-line is known to be approximately equal to 27 MHz [3].

The equivalent Q-factor QESR is then ≈ 450, therefore :

QESR = πν0T2 (49)

Eq. (49) give T2 ≈ 10−8, which is consistent with other

measurements. A possible explanation of this discrepancy is

the inaccuracy of the data fit due to the lack of data points

near the sharp variation region of χ′.

A more physical one is also given there.

At thermal equilibrium, dc-susceptibility χ0 can be given

by :

χ0 =
(gβ)2µ0

4kBT
N (50)

with g the Landé factor ∼ 2, β Bohr’s magneton

= 9.27 × 10−24Am2, kB the Boltzmann constant, and N the

iron ions concentration. One can then evaluate the iron ions

concentration to be 5.3 × 1020ionsm−3. We have already

pointed out that such a small concentration (≈ 12 ppb) is

enough to obtain a maser operation. This result is also consis-

tent with our previous estimation based on the measured maser

power [4]. However this value is far less than the Fe3+ ions

concentrations obtained by spectroscopic methods in HEMEX

sapphire samples [7] of about 2 ppm. This inconsistency may

be explained by assuming the 12.04 GHz absorbtion line shape

is inhomogeneously broadened [8] which led to a spin-spin

relaxation time T ⋆
2 << T2. Most of the spins have different

precessional frequencies than in a homogeneous broadening

situation. Their resonant structure is also known as spin-

packet.

IV. SPIN LATTICE RELAXATION TIMES

It has been shown (in the early 60s) [5], [6] that the

determination of the spin-lattice relaxation time T1 is more

adapted using a time domain technique. The principle of this

experiment was inspired from [6]. and is schematized in figure

12.

We build an oscillator loop around the cryogenic sapphire

resonator. A cavity filter placed in this loop permits to get

oscillation on the WGH18,0,0 mode at 12.654 GHz. This
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10 MHz

10 MHz

Trig.

CSO WGH18,0,0

Agilent E4433B
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RF

Agilent E8254A

PUMP

4.21 GHz

12.04 GHz

L/A

Fig. 12. Principle of spin-lattice relaxation time measurement.

mode was chosen because its frequency shift observed in the

previous section is large: 120Hz. A microwave coupler is used

to inject (in the loop at the resonator input) the signal coming

from a synthesizer tuned to the ESR at 12.04 GHz. A power

of -6dBm is sufficient to saturate the ESR. The oscillator

output is sent to a specially designed system to analyze the fast

change in the oscillator frequency when the pump is switched.

The frequency of the analysed signal is firstly down-converted

to low frequencies (10 MHz) by mixing it with an external

microwave synthesizer. A 10 MHz VCO phase locked on this

signal. The low frequency error signal is then an image of the

VCO frequency and follows the frequency of the CSO. When

the pump is switched on, the frequency change is recorded

on an oscilloscope trigged to the microwave synthesizer pump

via a quadratic detector.

We volontary increased the resonator coupling in order to

get a loaded Q-factor of 30 · 106. Under these conditions,

the intrinsic relaxation time of the resonator is 1 ms which is

about ten times lower than the expected value of T1. Figure 13

PUMP OFF PUMP ON

Vosc (V)

0.004

0.005

0.0050−0.005−0.015

0.002

0.001

0.015
Time (s)

0.003

Fig. 13. Oscilloscope trak example.

shows an example of the observed signal during a 12.04 GHz

pump-on/off cycle. As the voltage is directly proportionnal to

the oscillator frequency, T1 is determined by the time constant

of this exponential function, that is T1 = 10 ms.

A. Theory vs experiment

By injecting all the preceeding measured parameters into

the resonator behavior state equation ??, one can now verify

that the model fits in a good agreement with our observations,

as represented on the figure 14

Simulation

Experimental data
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−30

−40

−50
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−15−20−25 −10

Injected power (dBm)

S21 (dB)
Transmission coefficient

Fig. 14. Theory and experimental observations confrontation.

V. CONCLUSION

In this paper we have presented the new pretendant to

the ultrastable secondary frequency standards, the whispering

gallery mode maser oscillator. In terms of frequency instability

we could compare the maser to a state-of-the-art cryogenic

sapphire resonator oscillator while implementing a necessary

microwave synthesis chain locked to the CSRO. The frequency

instability is short-term limited by the readout system at 10−14

until 30 seconds integration times, and mid-term degraded by

a random walk process. We have also presented the resonator

bistability behavior and review some theoretical aspects to

analyse this phenomena which ultimately conduct to a fun-

damental state equation. By applying several measurement

processes (magnetic susceptibility, relaxation times) to put

numbers into that equation, we have finally verified that

our models described nicely the resonator behavior. It is

worth to note that it constitutes the first step to an overall

WGMO theory which will include the fields and the completed

coupling system.

The Whispering gallery mode maser oscillator has got

great potentialitites. It is already 10 000 times more powerful

than a hydrogen maser, but we suspect that it could delivers

even more microwave power. All the oscillator is placed at

cryogenic temperature and within the resonator itself. As a

maser, it is mainly limited by the thermal noise thus may

have interesting properties about phase noise compared to the

’traditional’ CSRO :

Sφ(f) =
kBT

P
(51)

For P = 10 nW at liquid helium temperature, this led to

Sφ=−145dbrad2/Hz at 1 Hz. Concerning then the frequency

8



instability, the Allan deviation could be rewritten as :

σy(τ) =
1

Q

√

kBT

2Pτ
(52)

For a Q-factor as low as 5 × 108, the theoretical behavior of

Allan deviation is σy(τ) = 1.5 × 10−16τ−1/2.

ACKNOWLEDGMENT

Our works are funded by the Agence Nationale de la

Recherche, The french space agency CNES. Special thanks

to the FAST program funded by Egide for French-Australian

travels supports.

P.-Y. Bourgeois wishes kindly to say "un grand merci" to

the IEEE-IFCS/EFTF 2007 Joint meeting technical committee

for invited author and acknowledge Giorgio Santarelli for very

useful discussions.

REFERENCES

[1] P.-Y. Bourgeois, N. Bazin, Y. Kersalé, V. Giordano, M.E. Tobar and M.
Oxborrow, Maser Oscillation in a Whispering-Gallery-Mode Microwave

Resonator, App. Phys. Lett., vol. 87,224104-1-3, 2005.
[2] A.G. Mann, A.J. Giles, D.G. Blair and M.J. Buckingham, Ultra-stable

cryogenic sapphire dielectric microwave resonators: mode frequency-

temperature compensation by residual paramagnetic impurities, J. Phys.
D. Appl. Phys., vol 25, 1991.

[3] H.F. Symmons and G.S. Bogle, On the exactness of the Spin-Hamiltonian

description of Fe3+ in sapphire, Proc. Phys. Soc., vol 79, 1962.
[4] P.-Y. Bourgeois, M. Oxborrow, N. Bazin, Y. Kersalé, M. E. Tobar and V.

Giordano, Proc. 19th European Frequency and Time Forum, Besançon,
France, 2005.

[5] M. W. P. Strandberg, Spin-lattice relaxation, Phys. Rev., vol 110, n 1,
1958.

[6] C. F. Davis, Jr., M. W. P. Strandberg and R. L. Kyhl, Direct measurement

of electron spin-lattice relaxation times, Phys. Rev., vol 111, n 5, 1958.
[7] Trace element studies in HEM sapphire, LCS six-month progress report

LIGO-M0303366-00-M organization: Department of Physics, Southern
University and AM College, 2003

[8] A. M. Portis, Electronic structure of F-centers: saturation of the electron

spin resonance, Phys. Rev., vol 91, n 5, 1953.
[9] L. A. Lugiato, Progress in Optics, (Edited by E. Wolf, Elsevier, 1984).
[10] P.-Y. Bourgeois and V. Giordano, Simple Model for the Mode-Splitting

Effect in Whispering-Gallery-Mode Resonators, IEEE Trans. Mic. Theo.
Tech., vol 53,n 10 ,2005.

[11] A. E. Siegman, Microwave Solid-state Masers, McGraw Hill, 1964.

9


