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Dynamic analysis of a tire using a nonlinear Timoshenko ring model

It is well known that tires play an important role in the generation of rolling noise. For low frequencies, the circular ring model can describe in a simple way the tire dynamic behaviour. This model is based on the Euler Bernoulli beam theory and takes into account the prestress generated by the internal air pressure but is otherwise linear. However, nonlinear effects resulting from high internal pressure and vehicle load can be important. In particular, vehicle load generates contact forces and a non-circular geometry in stationary rolling conditions.This paper presents a nonlinear flexible ring model based on the Timoshenko beam theory. It is used to simulate the nonlinear static deformation of a tire resulting from the application of vehicle load and inflation pressure. It is also applied to study the effect of these two parameters on the dynamic behaviour of the tire around its nonlinear static state by computing normal modes and transfer functions. In both static and dynamic cases, the results are in good agreement with Abaqus simulations considered as reference.

Introduction

In the automotive industry, interior rolling noise represents one of the main NVH issues. Briefly, it is a broadband noise resulting from the contact of tires with a rough surface. The tire/road contact excitations are transmitted into the cabin taking two transmission paths:

• Solid transmission path through tires, wheels, suspensions and the car body. It results in the so called structure-borne noise and represents the dominant contribution up to 400Hz.

• Aerial transmission path through panels. This generates the airborne noise and is the major source in the medium and high frequency bands.

Analytical models, which can describe in a simple way the tire behaviour in the low frequency band, exist in the literature. We find simple 2D ring models, introduced a long time ago [START_REF] Böhm | Mechanik des guertelreifens[END_REF], and somewhat more complex 3D plate models [START_REF] Muggleton | Vibrational response prediction of a pneumatic using an orthotropic two-plate wave model[END_REF] and 3D shell models [START_REF] Kim | Effects of rotation on the dynamics of a circular cylindrical shell with applications to tire vibration[END_REF] [START_REF] Kindt | Three-dimensional ring model for the prediction of the tire structural dynamic behaviour[END_REF]. As we know, 2D ring models, including Böhm model, are based on the Euler Bernoulli beam theory and take into account the prestress generated by the internal air pressure but are otherwise linear. This work is a development of an analytical 2D ring model allowing the investigation of the nonlinear effects on the dynamic behaviour of tires under internal pressure and vehicle load.

This paper begins with a detailed presentation of the proposed model. The assumptions used in its construction are exposed and the analytical formulations of the equilibrium equations are established. The specific developments relating to the nonlinear model are highlighted relatively to the existing literature [START_REF] Duhamel | Application of the vibration analysis of linear systems with timeperiodic coefficients to the dynamics of rolling tire[END_REF]. Then, the full nonlinear numerical resolution using Matlab is presented. It is followed by the validation of the model based on comparisons with Abaqus simulations considered as reference: deformed shapes in the static case, eigenmodes and transfer functions in the dynamic case. This is achieved for both Euler Bernoulli and Timoshenko beams in order to analyse the difference between the two formulations.

Description of the model

The proposed tire model is a 2D ring model. The treadband is modelled with a circular beam. The sidewalls are represented by radial and tangential springs. The following assumptions are considered:

• The ring radius is large compared with the dimensions of the cross section.

• The ring consists of Cosserat-Timoshenko beams. The shear effect is taken into account and there is no warping of the cross section.

• The surface of the cross section does not change after being deformed.

• The material of the beam is linear elastic and isotropic.

Moreover, finite transformations defined by large displacements and small deformations are assumed. In this way, the proposed model will be able to take into account the nonlinear deformations arising from inflation pressure and road contact forces generated by vehicle load.

Figure 1: Illustration of the ring model

The kinematic of the model

Each material point in the initial configuration is defined by two coordinates (z, θ) in the polar system (u R , u θ ). The variable z is in the range [-e 2 , e 2 ] and θ is in the range [0, 2π]. It is assumed that all quantities depend only on the variable θ. Thus, the position of any material point, P 0 , in the initial configuration of the ring cross section can be written as follows:

OP 0 = OS 0 + S 0 P 0 = (R + z)u R ( 1 
)
where O is the centre of the ring and S 0 is located on the neutral axis of the section. To switch to the current configuration, the point S 0 moves to S by two translations u(θ) and w(θ) and the point P 0 rotates by an angle α(θ) to become the point P . Therefore, the transformation of the material vector in the current frame is defined by:

OP = OS + SP = (R + u + z cos α)u R + (w + z sin α)u θ (2)
Each point of the ring is then entirely defined by the degrees of freedom triplet: (u, w, α).

Using the equations ( 1) and (2), the displacement vector of material points can be written:

u = OP -OP 0 = (u + z(cos α -1))u R + (w + z sin α)u θ (3)
Figure 2: Kinematic of the proposed model

The gradient of transformation tensor is:

F = dOP dOP 0 = ( cos α 1 R+z (u ′ -w -z(α ′ + 1) sin α) sin α 1 R+z (R + u + w ′ + z(α ′ + 1) cos α) ) (4)
where, the prime stands for the partial derivation regarding θ. We deduce the tensor of the deformation: 

             e RR = 0 e Rθ = e θR = (ζ 2 -ζ+1)((u ′ -w) cos α+(R+u(θ)+w ′ (θ)) sin α) 2R e θθ = 1 2   (ζ 2 +ζ+1) 2 (Rζ(α ′ +1) cos α+R+u+w ′ ) 2 R 2 + (ζ 2 -ζ+1) 2 (Rζ(α ′ +1) sin α+w-u ′ ) 2 R 2 -1   (5) 
with ζ = z R . In fact, it is assumed that the material behaviour of the ring is linear. Therefore, the stress field which is calculated by a product between the doubly contracted tensor of the deformation and the stiffness tensor can be written in engineering notation:

( σ θθ σ Rθ ) = ( E 0 0 G ) ( e θθ 2e Rθ ) (7)
where E and G are respectively the Young and shear modulus of the constitutive material of the ring. Activated forces on the cross-section are the normal force N , the shear force V and the moment M in the current frame (t, n) which is calculated as follows:

                                 N = ∫ A σ θθ dA = ∫ A E.e θθ dA = ( -EI R 2 ( (α ′ + 1) cos α -R+u+w ′ R ) R+u+w ′ R + EI R 2 ( (α ′ + 1) sin α + u ′ -w R ) u ′ -w R + 1 2 EA R 2 ( (w -u ′ ) 2 + (R + u + w ′ ) 2 -R 2 ) + 1 2 EI R 2 ( (α ′ + 1) sin α + u ′ -w R ) 2 + 1 2 EI R 2 ( (α ′ + 1) cos α -R+u+w ′ R ) 2 ) V = ∫ A σ Rθ dA = ∫ A G.2e Rθ dA = ( GA R + GI R 3 ) ((u ′ -w) cos α + (R + u + w ′ ) sin α) M = ∫ A z.σ θθ dA = ∫ A E.ze θθ dA = EI R ( R+u+w ′ R ( (α ′ + 1) cos α -R+u+w ′ R ) -u ′ -w R ( (α ′ + 1) sin α + u ′ -w R ) ) ( 8 
)
where A is the cross section area and I the cross section moment of inertia.

Static equilibrium equations

We use the 2D equilibrium equations of beam established by F. Davi [START_REF] Davi | The theory of Kirchhoff rods as an exact consequence of three-dimensional elasticity[END_REF], J. C. Simo [START_REF] Simo | A finite strain beam formulation. The three dimensional dynamic problem, Part I[END_REF] [8] in the current configuration:

{ ∂f ∂s + q = 0 ∂M ∂s + ∂OS ∂s ∧ f + g = 0 (9)
where s is the curvilinear abscissa in the reference configuration which can be expressed as a function of θ by ds = Rdθ, and x ∧ y denotes the cross product of the vectors x and y.

f = ( V N
) and M are respectively the activated forces and moment on the cross section.

q = ∂A q s dl + ∫ A q v
.dA is the sum of surface forces q s and volume forces q v applied on the beam. It includes in our problem the inflating pressure p represented by a uniformly distributed load on the whole ring, the radial and tangential spring forces F spr rad and F spr tan , the contact forces f R assumed to be always in the radial direction. The sum of the moments applied along the beam, g, is equal to zero in our problem.

To move from the current configuration to the reference configuration, we introduce the Γ (θ) transition matrix:

( t n ) = ( cos α sin α -sin α cos α ) ( u R u θ ) = Γ (θ) ( u R u θ ) (10)
The equilibrium equations are written in the reference configuration as follows:

           1 R d dθ ( Γ (θ) ( V N )) + p + f R + F spr rad +F spr tan = 0 1 R dM dθ + 1 R ∂OS ′ ∂θ ∧ Γ (θ) ( V N ) = 0 (11)

Linear case

In the linear case, all the second order terms are neglected. Consequently, the activated forces and moment in the cross section become:

N = EA u + w ′ R + EI R 2 ( u + w ′ R -α ′ ) , V = ( GA + GI R 2 ) ( u ′ -w R + α ) , M = EI R ( α ′ -u+w ′ R ) (12 
) Besides, the exterior forces applied in the model are written in a simple manner as follows:

p = pu R , F spr rad = k R uu R , F spr tan = k θ wu θ , f R = f R u R ( 13 
)
where k R and k θ are respectively the stiffness of the radial and tangential springs. We apply the relations ( 12) and ( 13) to the general equation ( 11) and we consider that the deformed and undeformed configurations are confounded (the transition matrix becomes the identity). Finally, the equilibrium equations of Timoshenko's beam are thus written:

         ( GA R + GI R 3 ) ( u ′′ -w ′ R + α ′ ) -EA R ( u+w ′ R ) -EI R 3 ( u+w ′ R -α ′ ) + p + f R -k R u = 0 EA R ( u ′ +w ′′ R ) + EI R 3 ( u ′ +w ′′ R -α ′′ ) + ( GA R + GI R 3 ) ( u ′ -w R + α ) -k θ w = 0 EI R 2 ( α ′′ -u ′ +w ′′ R ) -GA ( u ′ -w R + α ) = 0 (14) 
The case of Euler Bernoulli's beam is obtained from the more general case of Timoshenko beam. In this case the shear deformation vanishes so the shear modulus tends to infinity. The relation between the rotation angle α of the cross section and the displacements u and w is established as follows:

{ G → ∞ e Rθ → 0 ⇔ { G → ∞ (u ′ -w) cos α + (R + u + w ′ ) sin α → 0 ⇒ α ∼ = tan α = w -u ′ R + u + w ′ ∼ = w -u ′ R (15)
We use this relation for writing the equilibrium equations of Euler Bernoulli's beam:

{ -EA R 2 (w ′ + u) -EI R 4 (u + u ′′ ) -EI R 4 (u ′′′′ + u ′′ ) + p -f R -k R u = 0 EA R 2 (w ′′ + u ′ ) -k θ w = 0 (16)

Case with geometric nonlinearities

In the case of geometric nonlinearities, the air pressure, the radial and tangential springs follow the displacement of the ring. This is expressed as follows:

p = pOz ∧ ∂OS ′ ∂s = pOz ∧ ∂OS ′ R∂θ , F spr rad = k R uOz ∧ ∂OS ′ ∂s = k R uOz ∧ ∂OS ′ R∂θ F spr tan = k θ w ∂OS ′ ∂s = k θ w ∂OS ′ R∂θ , f R = f R u R ( 17 
)
leading to the equilibrium equations:

                   1 R (V ′ cos α -N ′ sin α -(α ′ + 1) (V sin α + N cos α)) + p ( R+u+w ′ R ) +f R -k R u ( R+u+w ′ R ) -k θ w ( u ′ -w R ) = 0 1 R (V ′ sin α + N ′ cos α + (α ′ + 1) (V cos α -N sin α)) -p ( u ′ -w R ) + k R u ( u ′ -w R ) -k θ w ( R+u+w ′ R ) = 0 1 R M ′ + 1 R ((u ′ -w) (V sin α + N cos α) -(R + u + w ′ ) (V cos α -N sin α)) = 0 (18) 
where (M, N, V ) are defined by the formulas (8).

The system (18) consists of three nonlinear ordinary differential equations with the variables (u, w, α). The resolution of this set of equations cannot be achieved analytically. A numerical method for solving this system is presented in part 3.1.

Dynamic equilibrium equations

The dynamic equilibrium equations are established around the static equilibrium state. Small perturbations are added to the static displacements as follows:

u + u t (t, θ) , w + w t (t, θ) , α + α t (t, θ) (19) 
with ut R ≪ 1, wt R ≪ 1 and αt R ≪ 1. (u, w, α) and (M, N, V ) being determined in static step, the resolution of the dynamic system consists in finding (u t , w t , α t ).

Case of linear static displacement

The equations of the vibrations of Timoshenko's beam are obtained by introducing the equations (19) into the linear static equilibrium equations ( 14) and adding acceleration terms in each equation:

         ( GA R + GI R 3 ) ( ut ′′ -wt ′ R + α t ′ ) -EA R ( ut+wt ′ R ) -EI R 3 ( ut+wt ′ R -α ′ t ) + f t R -k R u t = ρAü t EA R ( ut ′ +wt ′′ R ) + EI R 3 ( ut ′ +wt ′′ R -α t ′′ ) + ( GA R + GI R 3 ) ( ut ′ -wt R + α t ) -k θ w t = ρA ẅt EI R 2 ( α t ′′ -ut ′ +wt ′′ R ) - ( GA + GI R 2 ) ( ut ′ -wt R + α t ) = ρI αt (20)
where f t R is the dynamic excitation force applied on the basis of the deformed tire. The equations of the vibrations of Euler Bernoulli's beam can also be written as:

{ -EA R 2 (w t ′ + u t ) -EI R 4 (u t + u t ′′ ) -EI R 4 (u t ′′′′ + u t ′′ ) + p t -f t R -k R u t = ρAü t EA R 2 (w t ′′ + u t ′ ) -k θ w t = ρA ẅt (21) 

Case of a static displacement with geometric nonlinearities

Considering the nonlinear displacement of the static state, the dynamics equations are:

                                         1 R (-α t V ′ sin α -α t N ′ cos α + V t ′ cos α -N t ′ sin α + α t ′ (-V sin α -N cos α) -(α ′ + 1) (V t sin α + N t cos α + α t V cos α -α t N sin α)) -k R u t ( R+u+w ′ R ) + f t R -k θ w t ( u ′ -w R ) + p ( ut+wt ′ R ) -k R u ( ut+wt ′ R ) -k θ w ( ut ′ -wt R ) = ρAü t     1 R (α t V ′ cos α -α t N ′ sin α + V t ′ sin α + N t ′ cos α + α t ′ (V cos α + N sin α) + (1 + α ′ ) (V t cos α -N t sin α) -α t V sin α -α t N cos α)) -p ( ut ′ -wt R ) + k R u ( ut ′ -wt R ) +k R u t ( u ′ -w R ) -k θ w ( ut+wt ′ R ) -k θ w t ( R+u+w ′ R ) = ρA ẅt    1 R M t ′ + 1 R ((u t ′ -w t ) (V sin α + N cos α) -(u t + w t ′ ) (V cos α -N sin α) + (u s ′ -w s ) (α t V cos α -α t N sin α) -(R + u + w ′ ) (-α t V sin α -α t N cos α) + (u ′ -w) (V t sin α + N t cos α) -(R + u + w ′ ) (V t cos α -N t sin α)) = ρI αt (22
) where:

M t = EI R         ( ut+wt ′ R ) ( (1 + α ′ ) cos α -R+u+w ′ R ) + ( ut ′ -wt R ) ( (1 + α ′ ) sin α + u ′ -w R ) + ( u ′ -w R ) + ( R+u+w ′ R ) ( α t ′ cos α -(1 + α ′ ) α t sin α -ut+wt ′ R ) + ( u ′ -w R ) ( α t ′ sin α + (1 + α ′ ) α t cos α + ut ′ -wt R )         V t = ( GA R + GA R 3 ) ( (u t ′ -w t ) cos α -(u ′ -w) α t sin α + (R + u + w ′ ) α t cos α + (u t + w t ′ ) sin α ) N t =              EA R 2 ((u ′ -w) (u t ′ -w t ) + (u + w ′ ) (u t + w t ′ )) + EA R (u t + w t ′ ) + EI R 2 ( α ′ t sin α + (1 + α ′ ) α t cos α + u ′ t-wt R ) u ′ -w R -EI R 2 ( α ′ t cos α -(1 + α ′ ) α t sin α -ut+w ′ t R ) R+u+w ′ R + EI R 2 ( (1 + α ′ ) sin α + u ′ -w R ) ( α ′ t sin α + (1 + α ′ ) α t cos α + u ′ t-wt R ) + EI R 2 ( (1 + α ′ ) cos α -R+u+w ′ R ) ( α ′ t cos α -(1 + α ′ ) α t sin α -ut+w ′ t R ) + EI R 2 ( (1 + α ′ ) sin α + u ′ -w R ) u ′ t-wt R -EI R 2 ( (1 + α ′ ) cos α -R+u+w ′ R ) ut+w ′ t R             
Since the equations ( 22) are linear with the unknown vector u t = (u t , w t , α t ), they can be rewritten in the following simple form:

Ku t + M üt = f t R ( 23 
)
where K and M are the mass and tangent stiffness matrices resulting from the static step and

f t R =    f t R 0 0   

Numerical implementation

The numerical resolution of (18), for example, consists of solving ordinary differential equations of second order with periodic conditions:

         u (θ) = f (θ, u, u ′ ) u(0) = u(2π) u ′ (0) = u ′ (2π) θ ∈ [0, 2π] (24) 
We use the finite difference method. A mesh with N points, θ i = ( 2π(i-1) N ) i=1...N , is considered. The discretization scheme is written as follows:

           u ′ (θ i ) ∼ = u(θ i+1 )-u(θ i-1 ) 2h = u i+1 -u i-1 2h u ′′ (θ i ) ∼ = u(θ i+1 )-2u(θ i )+u(θ i-1 ) h 2 = u i+1 -2u i +u i-1 h 2 u ′′ (θ i ) = f (θ i , u(θ i ), u ′ (θ i )) ↔ u i+1 -2u i +u i-1 h 2 = f (θ i , u i , u i+1 -u i-1 2h ) h = 2π N (25)
Thus, we obtain 3N equations with 3N variables. The resolution of the system is achieved using the Newton method.

Validation of the model

The validation of the model is achieved by comparisons with Abaqus simulations. We'll compare first the nonlinear static deformations resulting from the application of vehicle load and inflation pressure and also the eigenmodes and transfer functions in the dynamic case. The same discretization is used in both Matlab and Abaqus simulations. A rigid wheel is considered in all the application cases which imply that each radial and tangential spring, representing the tire sidewalls, is connected to the ring at one extremity and embedded at the other one. The cross section is assumed to be rectangular with two dimensions (b,e).The parameters used for the ring model are summarized in Table 1.

In the Abaqus model, the stiffness of radial and tangential springs, applied at each node, are calculated by the following formula:

k num R = Rdθk R = 2πR N k R k num θ = Rdθk θ = 2πR N k θ ( 26 
)
where N is number of nodes of the model. 

Ring parameter

Static case

First, only the air pressure p is applied on the tire. In this case, the tangential displacement is zero and the radial displacement is constant along the beam because of the symmetry of the model. Moreover, on the cross-section, there is only normal strain. So it remains perpendicular to its neutral axis. The analytic formula of the radial displacement of the beam is the same in both Timoshenko and Euler Bernoulli cases: The results obtained by these two analytical expressions are compared with nonlinear simulations performed in Matlab and Abaqus in Figure 3. When the inflating pressure is below 4.10 5 P a, we see that all curves are superposed. However, for more important values of pressure, a gap between the radial displacements computed in Abaqus and the other curves is observed. It can be explained by the assumption of no deformation in the cross section used in the construction of the proposed model. This is not the case with nonlinear Abaqus simulations. Consequently, the model is validated when the deformation of the beam remains small and the air pressure is below 6.10 5 P a.

• Linear case: u L = p ( EA R 2 + EI R 4 + k R ) -1 • Nonlinear case: 1 2 ( EA R 3 + EI R 5 + 2 k R R ) ( u N L ) 2 + ( EA R 2 + EI R 4 + k R -p R ) u N L -p = 0
Secondly, besides an inflation pressure of 2.5 10 5 P a, a punctual force of 2500 N is added at the bottom of the tire representing the contact with the road. This is represented by a nodal force in the Matlab and Abaqus simulations. We compare the deformation shapes in the case of geometrical nonlinearity in Figure 4 which shows a good agreement of the results. Figure 5 shows a comparison of linear and nonlinear deformed shapes of the tire.We can see that the difference is mostly located around the excited point. However, away from this point, the shapes are the same. 

Dynamic case

We compare the natural frequencies of the tire around its nonlinear deformed shape. Two different boundary conditions are considered: fixed center and free basis (Figure 6, n being the circumferential wave number) and both center and basis fixed (Figure 7). The results obtained by Matlab and Abaqus are very close. The errors are less than 1.2% what is very satisfactory. 

R y = ∫ 0 2π k R u t . ( u R , y ) dθ + ∫ 0 2π k θ w t . ( u θ , y ) dθ (27)
where (, ) denotes the ℜ 2 scalar product. The Matlab and Abaqus curves are superposed up to 300Hz and present small differences around 350Hz because the frequencies computed in Matlab and Abaqus are slightly different, for instance f 20 = 346Hz in Abaqus and 350Hz in Matlab (Figure 6). The difference remains very small. We obtain a good agreement between Matlab and Abaqus results.

Conclusion

This paper presents a 2D ring model for the analysis of tire dynamic behaviour under the load of a vehicle and an inflating pressure. The assumption of Timoshenko beam and finite displacements are considered to build the model. Thus, large rotations of the cross section and high order of translation displacements are taken into account but the cross section is assumed to remain undeformed. The analytical formulation is established successfully in linear/nonlinear static and dynamic states. We show that the simpler case of Euler Bernoulli's beam can be found from the more general equations of the model using Timoshenko's beam. In some special cases, we confirm their agreement with the equations found in the literature. Since the nonlinear problem cannot be solved analytically, a numerical resolution method is proposed. The comparison with Abaqus simulations considered as reference allows the validation of the model. In the static case, we check that the deformed shapes are similar. In the dynamic case, we verify that the eigenmodes and transfer functions computed around the static state are in good agreement. These comparisons are performed for both Euler Bernoulli and Timoshenko beams in order to highlight the difference between the two formulations. The proposed model can be extended for 3D analysis introducing all the lateral deformation and consequently the longitudinal moment effect at the tire centre. The rotation effects can also be applied to predict the dynamic behaviour in rolling conditions, for instance the frequency shifts with velocity.
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 3 Figure 3: Radial displacement of the ring as function of the inflation pressure
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 4 Figure 4: Undeformed vs. deformed shapes of the tire resulting from nonlinear static simulations
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 5 Figure 5: Comparison of linear and nonlinear deformed shapes of the tire
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 6 Figure 6: Tire eigenmodes with a fixed centre and a free base tire
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 7 Figure 7: Tire eigenmodes with both centre and base fixed
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 8 Figure 8: Vertical reaction force at the centre of the tire submitted to a unitary vertical load applied at its basis

Table 1 :

 1 Parameters of the proposed ring model

	Value