
Abstract

Classically, waveguides are structures with uniform sections or are periodic along

an axis. Vibrations of these waveguides can be described by wave modes and propa-

gation constants relating the displacements and forces in two sections of the waveg-

uide. Here, waveguides of non uniform sections are considered. More precisely, we

consider waveguides which have sections with size increasing proportionally to the

distance from an origin. This is for instance the case for a domain exterior to a convex

body. Using a finite element model of a small section of the guide, the wave finite

element method (WFE) can be used to find propagation constants and wave modes

relating the displacements and forces at the two extremities of the finite element sec-

tion. Then, it is shown that the wave modes and propagation constants in a section are

simply related to the same quantities in other sections but for different frequencies.

From this set of waves, general solutions in the waveguide can be computed. This

approach allows an efficient solution by limiting the discretization to a very small part

of the waveguide using only classical dynamic stiffness matrices, obtained by any fi-

nite element software. This approach can then be used for computing wave radiation

in domains exterior to a convex body. The solution is projected onto these waves,

allowing a clear separation between incoming and outgoing waves. Keeping only the

outgoing part of the solution, wave radiation can be computed. It is shown that the

approach is more efficient for high frequencies and can be complementary of the usual

methods involving traditional finite or boundary elements.

Keywords: wave propagation, radiation, infinite domain, waveguide.
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1 Introduction

In this communication, we propose to study waveguides with sections of increasing

sizes as in Figure 1. Classically waveguide structures are uniform or periodic along

an axis, which is not the case here, so this paper describes how to adapt these classical

methods to the present case.

One can find analytical or finite element models of uniform waveguides and peo-

ple are generally interested by the computation of wave propagations and dispersion

curves or by the determination of frequency response functions. For example, [1, 2]

used a wave approach to study the vibrations of structural networks composed of sim-

ple uniform beams by analytical methods. The first numerical approaches were pro-

posed by [3, 4] to approximate the cross-sectional deformations by finite elements.

The authors of [5, 6] applied similar ideas to the calculation of wave propagations in

rails using a finite element model of the cross-section of a rail. For general waveguides

with a complex cross-section, the displacements in the cross-section can be described

by the finite element method while the variation along the axis of symmetry is ex-

pressed as a wave function. Following these ideas, [7, 8, 9, 10, 11] developed the

spectral finite element approach. This leads to efficient computations of dispersion

relations and transfer functions but needs special matrices not given by usual FEM

software.

More general waveguides can be studied by considering periodic structures. Nu-

merous works provided interesting theoretical insights in the behavior of these struc-

tures, see for instance the work of [12] and the review paper by [13]. Mead also

presented a general theory for wave propagation in periodic systems in [14, 15, 16].

He showed that the solution can be decomposed into an equal number of positive

and negative-going waves. The approach is mainly based on Floquet’s principle or

the transfer matrix and the objective is to compute propagation constants relating the

forces and displacements on the two sides of a single period and the waves associated

to these constants. For complex structures FE models are used for the computation

of the propagation constants and waves. The final objective is to compute dispersion

relations to use them in energetic methods or to find transfer functions in the waveg-

uide, see [17, 18, 19, 20]. In [21] the general dynamic stiffness matrix for a periodic

structure was found from the propagation constants and waves.

Here, a waveguide method, based on ideas related to wave finite elements as de-

scribed in [17, 21, 22], is used to compute waveguides with homothetic cross-sections.

Propagation constants and wave modes are introduced. It is shown how the solution in

a domain of the waveguide can be computed for various frequencies using simple re-

lations between domains of homothetic sizes and their propagating modes. The paper

is divided into three sections and is outlined as follows. In section two, the principles

of the method are described in general ways. In section three, examples are described

to get a clear insight in the proposed approach before concluding remarks.
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Figure 1: Two examples of waveguides : a simple waveguide and an exterior domain

divided into zones of proportional sizes.

2 Computation of waveguides

2.1 Behavior of a cell

We consider waveguide structures as shown in Figure 1. A cell, defined as the domain

Ω01 between the surfaces S0 and S1, is described by a finite element model. It is

supposed that the outer surface S1 has a size proportional to the inner surface S0,

which means that points on these surfaces are related by x1 = αx0 where α is a

constant scale parameter. A cell can be meshed with an arbitrary number of elements

using the full possibilities of usual finite element software. The discrete dynamic

behavior of the cell obtained from a finite element model at a circular frequency ω is

given by

(K − ω2M)U = F (1)
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where K and M are the stiffness and mass matrices respectively, F is the excitation

vector and U the vector of the degrees of freedom. The stiffness and mass matrices

could be obtained from any commercial finite element software. The sizes of these

matrices depend on the number of elements used to mesh the layer and can be arbi-

trarily increased for a better precision of the results. Introducing the dynamic stiffness

matrix of the layer DL = K−ω2M, decomposing into inner (i), outer (e) and interior

(I) degrees of freedom, assuming that there are no external excitations on the interior

nodes, and condensing the interior degrees of freedom lead to

[

DL
ii DL

ie

DL
ei DL

ee

] [

Ui

Ue

]

=

[

Fi

Fe

]

(2)

The assumption that there are no excitations on the interior degrees of freedom is

satisfied for free waves inside the structure for which the excitations on a layer are only

produced from the adjacent layers. By symmetry of the stiffness and mass matrices,

the dynamic stiffness matrix is also symmetric, which leads to tDL
ii = DL

ii,
tDL

ee = DL
ee

and tDL
ie = DL

ei, where the superscript t means the transpose.

Instead of working with the current variables defined on surfaces S0 and S1, we

will work with reference variables defined by

Ui = ui

Ue = α−due

Fi = fi

Fe = αdfe (3)

where d = (sd − 1)/2 and sd is the space dimension. Relations (3) should be iden-

tical in terms of force densities and displacements. However, the nodal values of the

excitation in the finite element model are obtained through an integration over surface

elements and so already include an α2d contribution. The α2d term is the increase in

size of surface S1 compared to surface S0. This leads finally to the αd term in the

relation involving discrete nodal values of the displacement. Thus, the behavior of a

cell is now given by

[

fi
fe

]

=

[

DL
ii α−dDL

ie

α−dDL
ei α−2dDL

ee

] [

ui

ue

]

=

[

Dii Die

Dei Dee

] [

ui

ue

]

(4)

This matrix is also symmetric.

2.2 Computation of waves

For free wave propagation inside the waveguide, we look for solutions such that the

relations on the boundaries can be written as

{

ue = λui

fe = −λfi
(5)
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Relations (4) and (5) yield
(

Dei + λ(Dii + Dee) + λ2Die

)

ui = 0 (6)

In this relation, the matrices Dii and Dee are symmetrical while Dei is the transpose of

Die. As the transpose of the system in relation (6) leads to the system with 1/λ instead

of λ, one can see that if λ is an eigenvalue, so 1/λ is also an eigenvalue. We denote by

(λi, Φ
+
i ) and (1/λi, Φ

−

i ) the two sets of eigenvalues and eigenfunctions. The first set is

associated with eigenvalues such that |λi| < 1 or in case |λi| = 1 with positive-going

waves, meaning that energy propagates towards increasing values of the distance. The

second set is associated with eigenvalues such that |λi| > 1 or in case |λi| = 1 with

negative-going waves, meaning that energy propagates towards the origin.

We define the right and left eigenvectors by

Φj =

[

u(λj)
(Dii + λjDie)u(λj)

]

Ψl =

[

(Dee + λlDei)u( 1
λl

)

u( 1
λl

)

]

(7)

It can be checked that orthogonality conditions are given by

Slj = Ψl.Φj = dlδlj (8)

and after normalization of the eigenvectors Φj , one can take dl = 1.

2.3 Solutions in homothetic zones

Consider now the situation of Figure 1, where the waveguide is made of an infinite

number of layers of homothetic sizes such that the positions in zones Ωii+1 and Ωi+1i+2

are related by xi+1 = αxi, where α is a constant parameter. Using the results of the

precedent section, eigenvalues and eigenvectors are computed in the domain Ωii+1

between surfaces Si and Si+1.

As neighboring cells have proportional sizes, it can be checked that the eigenvalue

problem in the domain Ωi+1i+2 is the same eigenvalue problem as for zone Ωii+1 but

for the frequency αω. More precisely, one has an eigenvector in the domain Ωi+1i+2

from an eigenvector in the domain Ωii+1 by

Φi+1
j (αx, ω) = Φi

j(x, αω)

λi+1
j (ω) = λi

j(αω) (9)

where Φi
j(x, ω) denotes the eigenvectors (the value of the solution on the inner surface

Si) and λi
j(ω) the eigenvalues of zone Ωii+1 at the circular frequency ω. Finally, the

eigenvectors and eigenvalues in any domain can be computed from those of the first

domain by

Φi
j(α

ix, ω) = Φ0
j(x, αiω)

λi
j(ω) = λ0

j(α
iω) (10)
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The solution of a problem in the exterior domain around Ω can be decomposed on

these eigenvectors. Defining the state vector on the surface Si by si = t(ui, fi), the

decomposition of the solution in term of waves with amplitudes ai is given by

si = Φi.ai =

j=M
∑

j=1

ai
jΦ

i
j (11)

where Φi is the matrix made of the Φi
j and ai the vector of the ai

j . So, between two

consecutive layers, one gets

si+1 = Φi.Λi.ai

= Φi.Λi.Ψi.si

= Ti.si (12)

where the different matrices are defined by

Φi = [Φi
1, ...,Φ

i
M ]

Ψi = [Ψi
1, ...,Ψ

i
M ]

Λi = diag[λi
1, ..., λ

i
M ]

Ti = Φi.Λi.Ψi (13)

and M = 2N if we retain N positive-going and N negative-going waves. From the

properties seen previously, one has

Φi(ω) = Φi−1(αω) = Φ0(αiω)

Ψi(ω) = Ψi−1(αω) = Ψ0(αiω)

Λi(ω) = Λi−1(αω) = Λ0(αiω)

Ti(ω) = Ti−1(αω) = T0(αiω) (14)

So, for the complete exterior domain until surface Sn, one has

sn = Tn−1...T0s0 = T0(αn−1ω)T0(αn−2ω)...T0(ω)s0 = Ttots0 (15)

2.4 Application to radiation problems

For the computation of wave radiations in the exterior domain of Figure 1, the bound-

ary condition must be such that the amplitudes of the negative going waves are null,

meaning that

Ψn
j (ω)Ttots0 = 0 (16)

for all j associated to incoming waves. The state vector on surface S0 is written as

s0 =

[

u0

f0

]

(17)
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Figure 2: Annular domain.

and the matrix as

Ψ−(ω)Ttot =
[

F0 Q0

]

(18)

where Ψ−(ω) is a matrix made from the left vectors Ψn
j associated to negative-going

waves. Finally, the boundary condition can be written as the impedance condition

F0u0 + Q0f0 = 0 (19)

This gives the relation on the surface of Ω approximating the radiation condition.

Note from relation (15) that it is possible to compute the total matrix for different

frequencies by the following recurrence relation

Ttot(ω) = Ttot(αω)T0(ω) (20)

So beginning by the highest frequency, the different total matrices can be computed by

determining only T0(ω) at each frequency and by computing the product of relation

(20).

3 Examples

3.1 Equations in an annular domain

Consider the annular domain of figure 2 with the internal radius ri and the external

radius re. This domain is exterior to the surface of a circular body Ω. As an example,
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we are looking for the acoustic pressure p, solution of the eigenvalue problem

∆p + k2p = 0
√

repe = λ
√

ripi√
re

ik

∂pe

∂r
= λ

√
ri

ik

∂pi

∂r
(21)

where pi, pe are the internal and external values of the pressure p, the last line is the

relation between the inner and outer velocities, vi and ve. and λ is the eigenvalue. The

state vector is defined as

s(r) =





√
rp(r, θ)√

r

ik

∂p

∂r
(r, θ)



 (22)

and so is made of a first component proportional to the pressure and a second compo-

nent proportional to the velocity.

The solution of the partial differential equation in the annular domain is given by

p (r, θ) =
∞

∑

n=−∞

(

anH
1
n (kr) + bnH

2
n (kr)

)

einθ (23)

where an, bn are complex coefficients and H1
n and H2

n are Hankel functions of order n
of first and second types respectively.

The eigenvalue problem (21) can be written as

[ √
reH

1
n (kre)

√
reH

2
n (kre)√

re
∂
∂r

H1
n (kre)

√
re

∂
∂r

H2
n (kre)

] [

an

bn

]

= λ

[ √
riH

1
n (kri)

√
riH

2
n (kri)√

ri
∂
∂r

H1
n (kri)

√
ri

∂
∂r

H2
n (kri)

] [

an

bn

]

(24)

leading to

∣

∣

∣

∣

√
reH

1
n (kre) − λ

√
riH

1
n (kri)

√
reH

2
n (kre) − λ

√
riH

2
n (kri)√

re
∂
∂r

H1
n (kre) − λ

√
ri

∂
∂r

H1
n (kri)

√
re

∂
∂r

H2
n (kre) − λ

√
ri

∂
∂r

H2
n (kri)

∣

∣

∣

∣

= 0

(25)

The determinant is a quadratic function of λ. For the λ2 term, using the following

relation H ′

n(z) = −Hn+1(z) + n
z
Hn between Hankel functions, one gets

kri(H
1
n(kri)H

2′

n (kri) − H1′

n (kri)H
2
n(kri))

= −kri(H
1
n(kri)H

2
n+1(kri) − H1

n+1(kri)H
2
n(kri))

= −4i

π
(26)

For the constant coefficient, the same computation also leads to −4i
π

For the linear coefficient, one gets

−k
√

rire

(

H
1
n(kri)H

2′

n (kre) + H
1
n(kre)H

2′

n (kri) − H
2
n(kri)H

1′

n (kre) − H
2
n(kre)H

1′

n (kri)
)

(27)
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The precedent relations lead to the simplified equation

λ2 +
πk

4i

√
rire(H

1
n(kri)H

2′

n (kre) + H1
n(kre)H

2′

n (kri)

−H2
n(kri)H

1′

n (kre) − H2
n(kre)H

1′

n (kri))λ + 1 = 0 (28)

It can be seen that the eigenvalues come in inverse pairs λn and 1/λn. Denoting by

Φ+
n and Φ−

n the eigenvectors respectively associated to λn and 1/λn, the solutions of

equation (28) lead to the decomposition

s(ri) =

[ √
rip(ri, θ)√

ri

ik

∂p

∂r
(ri, θ)

]

=
∞

∑

n=−∞

(

a+
n Φ+

n (ri) + a−

n Φ−

n (ri)
)

einθ (29)

with the eigenvectors given by

Φ
+
n (ri) =









{

−(
√

reH
2
n (kre) − λn

√
riH

2
n (kri))

√
riH

1
n (kri)

+(
√

reH
1
n (kre) − λn

√
riH

1
n (kri))

√
riH

2
n (kri)

}

1
ik

{

−(
√

reH
2
n (kre) − λn

√
riH

2
n (kri))

√
ri

∂
∂r

H
1
n (kri)

+(
√

reH
1
n (kre) − λn

√
riH

1
n (kri))

√
ri

∂
∂r

H
2
n (kri)

}









=

[

2i
√

rire(Jn(kri)Yn(kre) − Jn(kre)Yn(kri))
1
ik

(−√
rireH

2
n (kre)

∂
∂r

H
1
n (kri) +

√
rireH

1
n (kre)

∂
∂r

H
2
n (kri) + 4i

π
λn)

]

Φ
−

n (ri) =

















{

−(
√

reH
2
n (kre) − 1

λn

√
riH

2
n (kri))

√
riH

1
n (kri)

+(
√

reH
1
n (kre) − 1

λn

√
riH

1
n (kri))

√
riH

2
n (kri)

}

1
ik

{

−(
√

reH
2
n (kre) − 1

λn

√
riH

2
n (kri))

√
ri

∂
∂r

H
1
n (kri)

+(
√

reH
1
n (kre) − 1

λn

√
riH

1
n (kri))

√
ri

∂
∂r

H
2
n (kri)

}

















=

[

2i
√

rire(Jn(kri)Yn(kre) − Jn(kre)Yn(kri))
1
ik

(−√
rireH

2
n (kre)

∂
∂r

H
1
n (kri) +

√
rireH

1
n (kre)

∂
∂r

H
2
n (kri) + 4i

πλn
)

]

(30)

To clarify the precedent relations, consider the case for large values of kri for which

equation (28) simplifies to

λ2 − 2λ cos k(re − ri) + 1 ≈ 0 (31)

and the eigenvalues are approximately

λn ≈ eik(re−ri) (32)

1/λn ≈ e−ik(re−ri) (33)

as if the curvature of the boundary was neglected. The development of relations (30)

leads to the eigenvectors

Φ+
n (ri) ≈

[

4i

πk
sin(k(re − ri))

− 4
πik

sin(k(re − ri))

]

Φ−

n (ri) ≈
[

4i

πk
sin(k(re − ri))

4
πik

sin(k(re − ri)

]

(34)
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These eigenvectors can be normalized to get

Φ+
n (ri) ≈

[

1
1

]

Φ−

n (ri) ≈
[

1
−1

]

(35)

while

Ψ+
n (ri) ≈ 1

2

[

1 1
]

Ψ−

n (ri) ≈ 1

2

[

1 −1
]

(36)

One gets

Ψ0(αik)Φ0(αi−1k) = I (37)

and following relation (15), the total matrix for N layers is

Ttot =
[

Φ(N−1)+ Φ(N−1)−
]

[

eik(rN−1−r0) 0
0 e−ik(rN−1−r0)

] [

Ψ0+

Ψ0−

]

(38)

and relation (18) yields

ΨN−Ttot = ΨN−
[

Φ(N−1)+ Φ(N−1)−
]

[

eik(rN−1−r0) 0
0 e−ik(rN−1−r0)

] [

Ψ0+

Ψ0−

]

= e−ik(rN−1−r0)Ψ0− (39)

So the boundary condition is

Ψ0−s0 = 0 (40)

or
√

rp −
√

r

ik

∂p

∂r
= 0 (41)

We get the usual relation
∂p

∂n
− ikp = 0 (42)

3.2 Analytical results for the annular domain

Some numerical values are computed, first for the pseudo wavenumber defined by

K = log λ

i(re−ri)
. A cylinder of radius ri = 1m is considered with a sound velocity

c = 343m/s. The first layer around the cylinder has a thickness of 0.01m or 0.02m.

Figures 3 and 4 present the real and imaginary parts of the wavenumber K versus the

order n of the Hankel functions. It can be observed that for low orders the wavenum-

ber is real and becomes with an imaginary part when a critical order is reached. The

thickness of the layer has a limited influence on the wavenumber. On the contrary,
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Figure 3: Wavenumbers for a thickness of 0.01m (a) and 0.02m (b) for the frequency

500Hz.
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Figure 4: Wavenumbers for a thickness of 0.01m (a) and 0.02m (b) for the frequency

1000Hz.
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Figure 5: Imaginary part of the wavenumber for different orders n.

the comparison with Figure 4 shows that the frequency is very important. A higher

frequency leads to more wavenumbers with purely real values. So it is analogous

to classical waveguides with a cut-off frequency for which a given mode becomes

propagative. Figure 5 presents the imaginary parts of the wavenumbers versus the

frequency for different orders n. As long as the imaginary part of the wavenumber is

null, the mode is propagating. It can be observed, for each mode, that the imaginary

part becomes null when the frequency is higher than a critical frequency depending

on the mode order. If we approximate the propagation in a layer by p ≈ ei(Kr+nθ), the

cut-off frequency is reached when the circumferential wavenumber n/ri equals the

wavenumber of the problem k, that is when n
ri

= k or in term of frequency f = nc
2πri

.

This gives respectively 0Hz, 109Hz, 218Hz and 328Hz for the orders n = 0, n = 2,

n = 4 and n = 6, which are good approximations of the cut-off frequencies seen in

the figure.

3.3 Surface impedance on a cylinder computed by WFE

Consider the case of an annular domain meshed with one layer of four nodes linear

acoustic elements. The cylinder is of radius 1m and the sound velocity is c = 343m/s.
First, wavenumbers defined as K = 1

ie
log(λ) with e the thickness of the layer are pre-

sented in figure 6. The mesh contains 256 elements and the thickness is e = 0.001m.

A very good agreement between numerical and analytical values is observed. Then

the results in figure 7 present the error between the analytical impedance given by

−iρcH0

H1

and the impedance found by the present method for the case of a uniform

loading (independent of the direction). Three possible thicknesses are considered for

the layer and the results are plotted for different numbers of elements in the mesh.

13



0 5 10 15 20 25 30

−20

−10

0

10

20

30

40

50

order n

w
a

v
e

n
u

m
b

e
r

 

 

ana Re(K)

ana Im(K)

num Re(K)

num Im(K)

Figure 6: Comparison of analytical and numerical wavenumbers.

It can be seen that interesting results can be obtained with only one layer and with

a limited number of degrees of freedom. The thickness e = 0.01m is too large and

lead to a loss of accuracy for high frequencies. So increasing the mesh density leads

to much better results except when the thickness of the layer and the frequency are so

large that the error is mainly controlled by a too large thickness.

In figure 8, the error is plotted in the low frequency band for two thicknesses and

different numbers of layers. It can be seen that increasing both the thickness and

the number of layers can considerably increase the accuracy of the solution, while

increasing only one parameter seems less efficient in this frequency range.

In figure 9 the same computation is done for three thicknesses of the first layer. The

matrix is computed by the recurrence relation (20) starting from the highest frequency,

here 2000Hz and going towards lower frequencies by fi+i = fi/α with f1 = 2000Hz.

A fixed number of 200 points in the frequency band was used. When α is small the

accuracy is better for higher frequencies but a large number of frequency points is

needed to get results for low frequencies. On the contrary for large thicknesses, the

frequency range is larger at the expense of a reduced accuracy.

4 Conclusion

It has been shown that simple computations of eigenvalues and eigenvectors defined

on a small rib around a radiating body for various frequencies could solve the problem

of wave radiation in the complete exterior domain for any frequency as long as a

sufficient number of layers or frequencies are involved in the computation. Tests on

circular cases have provided accurate results.
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Figure 7: One layer with e = 0.01m (a), with e = 0.001m (b) and e = 0.0001m (c).
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Figure 8: Errors for two thicknesses of the layer: e = 0.01m (a) and e = 0.005m (b).
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Figure 9: Error when using the recurrence relation.
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