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Tire/road contact is the principal source of car noise at speeds greater than 50 km/h. In this context, we have
developed a new approach for modelling the tire vibrations and the contact with the rigid road surfaces during
rolling. For the tire, a periodic model is used to compute Green’s functions. The response of the tire can thus be
modelled over a large frequency range. Then a fast convolution and contact model is developed and examples of
computations of contact forces are given for real road textures. Spectra of forces for different tire velocities are
also computed.

1 Introduction

The computation of tire road noise needs first a model
for the tire vibration and then a method for computing con-
tact forces between a tire and a road. For the tire vibrations,
the simplest approach is the circular ring model as in [1].
However for complex geometrical or material properties of
the tire a finite element model is much more appropriate. To
avoid the heavy three-dimensional computations of [2], sev-
eral efficient models have been proposed such as the wave
finite element approach in [3] or the recursive method pre-
sented in [4, 5].

Here the dynamic response of the tire is calculated by
convolution of the contact forces with the Green’s functions
of the tire. For orthotropic plates such Green’s functions
were analytically found in [6], but here they are found from
the recursive model [4]. However the computation of the
convolution can be time consuming. In this work we have
used a new method. First it consists in the modal expan-
sion of the pre-calculated Green’s functions. The modal pa-
rameters are then used to construct a new convolution which
allows quicker calculations than the traditional convolution.
The modal convolution is adapted to dynamic contact prob-
lems by using a kinematic contact condition. The outline of
the paper is thus the following. In section 2, the tire model is
first presented. Then in section 3, the contact model, includ-
ing the fast convolution and the kinematic contact condition
is described. Finally, section 4 gives numerical results of dis-
placements and contact forces for two road textures.

2 Tire model

2.1 Tire section

The first step is to have a model for the vibrations of the
tire. Here a periodic model has been developed. It consists
in modelling a short cell of the tire as in Figure 1 and using
calculations on this cell for computing Green’s functions as
described below. Stiffness and mass matrices of a cell are
obtained from commercial finite element software. In a first
step they are obtained in a cartesian coordinate system and
then they are transformed in a cylindrical coordinate system
in which the whole structure is periodic.

The tire is also inflated with an internal pressure P. So its
vibrations are considered as a small perturbation of the pre-
stressed static state shown in Figure 1. This prestress gener-
ates an additional stiffness matrix denoted KP. So, the full
dynamic stiffness matrix is given by:

D(ω) =
[
K +KP + jωC − ω2M

]
(1)

The tire studied here is of type Michelin 165/65/R13 77T.
Its geometric properties are given in Table 1. The mechanical
properties of the different parts of the tire are given in Table
2.

Figure 1: Section of the tire and displacements for an
inflation pressure of 2 bars.

Internal diameter 13” (330.2 mm)
Width of the tread 165 mm
Height of the sidewall 65 mm

Table 1: Properties of tire Michelin 165/65/R13 77T.

Part Material Property Value

Tread
pattern

ρ 1000 kg/m3

Rubber E 7 MPa
ν 0,49

Bead
ρ 7850 kg/m3

Steel E 162, 6 GPa
ν 0,33

Sidewall
Rubber ρ 1000 kg/m3

+nylon belt E 109 MPa
ν 0, 48

Tread

ρ 2014 kg/m3

Er 663 MPa
Rubber Ex 624 MPa
+steel belt νry 0,4

Gry 330 MPa

Table 2: Mechanical properties of the tire.

2.2 Equivalent matrix

The aim of the periodic model is to built the global dy-
namic stiffness matrix of the structure from the dynamic stiff-
ness matrix of a single period. It is obtained by recursively
eliminating the internal degrees of freedom between adjacent
cells. Consider the dynamic stiffness matrices D1 and D2 of
two neighbouring cells:

D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
D1

LL D1
LR

D1
RL D1

RR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ; D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
D2

LL D2
LR

D2
RL D2

RR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

The equivalent matrix of the two cells structure is obtained
by eliminating the internal degrees of freedom by:



Deq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
D1

LL − D1
LRD∗D1

RL −D1
LRD∗D2

LR

−D2
RLD

∗D1
RL D2

RR − D2
RLD

∗D2
LR

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

with:
D∗ =

[
D1

RR + D2
LL

]−1

This operation is repeated n times with n such that:

N =
n∑

i=1

2pi ; p1 > p2... > pn (4)

with pi the position of the ith figure in the binary representa-
tion of the number N of cells in the tire.

2.3 Green’s functions

Consider the domain Ω of the tire. It can be separated
into two subdomains Ωl et Ωc. The number of cells in the
domain Ωc where the contact occurs, is denoted by Nc. The
other free part Ωl of the tire has Nl cells, see Figures 2 and 3.
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Figure 2: Contact zone with the road.

The dynamic stiffness matrix of domain Ωl, denoted Deq,
is computed by the method presented in section 2.2. Then
the full dynamic stiffness matrix of the tire is computed by
a standard finite element assembling between Deq and the
matrices of the Nc cells of Ωc, see Figure 3 and Eq. (5). The
matrix of Green’s functions is obtained by solving a linear
system with Eq. (5) and different load cases associated to
different points in the contact zone. The number of load cases
is limited to the number of dofs in a section of the tire.
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Figure 3: Dofs of the global matrix.

3 Contact model

3.1 Fast convolution

The computation of the response of the tire by a standard
convolution requires a large number of coefficients. Here we
try to reduce the computing time by simplifying the Green’s
function which can be approximated by a linear combination
of modes (not necessarily the true modes) as:

G(ω) =
k=Nm∑
k=1

Ak

−ω2 + 2 jξkωωk + ω
2
k

(6)

Knowing G(ω) by a finite element model or by measure-
ments, we must identify the residues Ak, the dampings ξk and
the resonance frequencies ωk. There are several methods to
solve this problem. In this study the LSCE (Least Squares
Complex Exponential) is used.

The Green’s function of the tire is first computed with the
periodic model, then the modal parameters are identified by
the precedent method. For each coefficient of the Green’s
matrix an optimal number of coefficient Nm is chosen to get
the best approximation. The error is low, generally below
5%. In Figure 4, a Green’s function and its approximation are
presented for the coefficient with the maximal error (6.5%).
One can see that the approximation is very good.
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Figure 4: Comparison between a Green’s function – and its
approximation -+- in the least favourable case.



By taking the inverse Fourrier transform, the Green’s func-
tion in the time domain can be found by:

g(t) =
k=Nm∑
k=1

Ak

ωd
k

e−ξkωkt sin(ωd
k t)H(t) (7)

with:

ωk
d = ωk

√
1 − ξ2k

The displacement u(t) is obtained from the contact force
q(t) by the convolution:

u(t) =
∫ t

0
g(τ)q(t − τ)dτ =

∫ t

0
g(t − τ)q(τ)dτ (8)

Inserting the expression (7) for g(t) in Eq. (8) yields:

u(t) =
∫ t

0

k=Nm∑
k=1

Ak

ωd
k

e−ξkωk (t−τ)sin
(
ωd

k (t − τ)
)

q(τ)dτ (9)

Separating the t and τ variables and rearranging, the dis-
placement can be written as:

u(t) =
k=Nm∑
k=1

Ak

ωd
k

e−ξkωkt
[
sin

(
ωd

k t
)
αk(t) − cos

(
ωd

k t
)
βk(t)

]
(10)

where αk(t) and βk(t) are computed by:

αk(t) =
∫ t

0
eξkωkτcos(ωd

k τ)q(τ)dτ

βk(t) =
∫ t

0
eξkωkτsin(ωd

k τ)q(τ)dτ (11)

The parameters αk(t+Δt) and βk(t+Δt) can be computed
by the discrete versions of Eq. (11) as:

αk((n + 1)Δt) = αk(nΔt) + eξkωknΔtcos(ωd
k nΔt)q(nΔt)Δt

βk((n + 1)Δt) = βk(nΔt) + eξkωknΔt sin(ωd
k nΔt)q(nΔt)Δt

(12)

3.2 Kinematic contact conditions

When there is no contact, the contact force equals zero
and the displacement can be computed by the fast convolu-
tion. When there is contact, conditions must be written to
find the contact force. We propose here to write two condi-
tions, one for the displacement and the other for the velocity.

Eq. (8) can be separated into a term depending on the
past history of forces uh(t) and another term depending only
on the present time step:

u(t) =
∫ t−Δt

0
g(t − τ)q(τ)dτ︸����������������������︷︷����������������������︸

uh(t)

+

∫ Δt

0
g(τ)q(t − τ)dτ (13)

In the same way taking the derivative of Eq. (13) leads to an
equation in term of the velocity:

v(t) =
∫ t−Δt

0
g′(t − τ)q(τ)dτ︸�����������������������︷︷�����������������������︸

vh(t)

+

∫ Δt

0
g′(τ)q(t − τ)dτ (14)

Denoting Y = [u(t) v(t)]T and Yh = [uh(t) vh(t)]T leads
to:

Y = Yh + Ψ(q) (15)

where Ψ is an integral operator giving the influence of
the contact force at present time on the displacement and the
velocity. So the contact conditions are:

Y = Yr = [ur(t)
dur(t)

dt
]T (16)

where ur(t) and dur(t)
dt are the position of the road and its ve-

locity as seen in the tire reference system. Using the modal
decompositions for the displacement and the velocity yields:

u(t) =
k=N∑
k=1

Ak

ωd
k

e−ξkωkt
[
sin

(
ωd

k t
)
αk(t) − cos

(
ωd

k t
)
βk(t)

]
(17)

and

v(t) = −
k=N∑
k=1

Akξkωk

ωd
k

e−ξkωkt
[
sin

(
ωd

k t
)
αk(t) − cos

(
ωd

k t
)
βk(t)

]

+

k=N∑
k=1

Ake−ξkωk t
[
cos

(
ωd

k t
)
αk(t) + sin

(
ωd

k t
)
βk(t)

]
(18)

The uh(t) and vh(t) values are obtained from Eq. (17) and
(18) by computing α and β with q = 0 at the present time.
The real value of this force q(t) at present time is such that:

ΔY = Yr − Yh

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ Δt

0
g(τ)q(t − τ)dτ

∫ Δt

0
g′(τ)q(t − τ)dτ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The integrals can be computed by Gauss quadratures with
two points. The values of the forces at these two Gauss points
are obtained by:

q =
[

q1

q2

]
= Ψ−1(t1, t2)ΔY (19)

with Ψ defined by:

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
g(t1) g(t2)

g′(t1) g′(t2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ Δt
2

(20)

and

t1 = t +

(
1 − 1√

(3)

)
Δt
2

t2 = t +

(
1 +

1√
(3)

)
Δt
2

(21)

From the knowledge of the contact forces at times t1 and t2,
the parameters αk(t + Δt) and βk(t + Δt) can be computed
by Eq. (12). This method can be easily generalised for a
surface with several contact points. In this case the number
of contact points can change with time. The contact occurs
when uh(t) ≤ ur(t) for each point in the contact zone. Then
the generalization of Eq. (16) for the points where the con-
tact happens allows to determine the contact forces at these
points.



4 Road contact

4.1 Road texture

We assume that the roads are perfectly rigid and that the
contact area is constant with time. We consider two road tex-
tures obtained during the French-German project DEUFRAKO
P2RN. The measured area is L = 2m long and b = 0.35m
width with a sampling of dx = dy = 384 μm. Figure 5
presents the samples of two different roads of sizes 0.1 m
by 0.1 m, see [7] for other examples.

Figure 5: 3D texture of the two roads: (A) upper figure and
(B) lower figure.

We want to compute the displacements and forces in the
contact zones. The Green’s functions of the tire are com-
puted as in section 2 in the frequency range [0 4000 Hz].
The contact zone is changing as the tire is moving during the
rolling process. The contact points are moving in the fixed
coordinate system as:

x = x0 + V0t

y = y0

z = ur(x, y) (22)

where (x0, y0, z0) are the coordinates in the system moving
at constant velocity V0 with the tire. The maximal contact
area is constant with time while the real contact area and the
number of contact points can change.

4.2 Numerical results

All the simulations are made for a contact length Lc =

6 cm and a width lc = 8 cm. The number of points is Nx = 10
along X and Ny = 12 along Y . The tire is rolling over a
length of L = 2m. The tread is discretized with steps of
dX ≈ dY ≈ 5 mm with an interpolation of the tire height be-
tween two tread points. Figures 6 and 7 present the displace-
ments and forces for the two road surfaces of Figure 5. The
displacements have shapes similar to road textures. Losses
of contact and high forces are seen at the maximal heights of
asperities. Road (A) generates higher forces than road (B).

The force level, denoted Lf and computed in decibels rel-
atively to a reference value of F0

c = 10−4N, is obtained by:

Lf = 20 log10

( |Fc(ω)|
F0

c

)
(23)

Figures 8 and 9 present the third octave force spectra for
roads (A) and (B) and for different velocities. When the ve-
locity increases the spectra are shifted towards higher fre-
quencies and the maximal level is also increased. The force

Figure 6: Displacements and forces for road (A) and for
points such that x0 = 0 with V0 = 90 km/h.

level is quite significant for frequencies between 500 Hz and
5000 Hz. For road (A) the maximum level is obtained for
4000 Hz, while for road (B) it is for 2000 Hz. Globally the
force level is higher for road (A) than for road (B). More
examples can be found in [8].

5 Conclusion

The periodic tire model allows to compute tire vibrations
in a contact zone of size 6×8 cm2 with 120 points over a large
frequency range. The displacements and forces are obtained
for a road length of L = 2m and for two road surfaces. Re-
sults show that the force levels are highly dependant on the
texture levels and the tire velocities. Increasing the tire veloc-
ity clearly shifts the force levels towards higher frequencies
and increases the global level. Force levels are also signifi-
cant between 500 Hz and 5000 Hz.



Figure 7: Displacements and forces for road (B) and for
points such that x0 = 0 with V0 = 90 km/h.
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