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a b s t r a c t

Microbial anodes were formed from compost leachate on carbon cloth electrodes. The biofilms formed at

the surface of electrodes kept at open circuit contained microorganisms that switched their metabolism

towards electrode respiration in response to a few minutes of polarisation. When polarisation at ÿ0.2

V/SCE (+0.04 V/SHE) was applied to a pre-established biofilm formed at open circuit (delayed polarisa-

tion), the bacteria developed an extracellular electron transport network that showed multiple redox sys-

tems, reaching 9.4 A/m2 after only 3–9 days of polarisation. In contrast, when polarisation was applied

from the beginning, bacteria developed a well-tuned extracellular electron transfer network concomi-

tantly with their growth, but 36 days of polarisation were required to get current of the same order

(6–8 A/m2). The difference in performance was attributed to the thinner, more heterogeneous structure

of the biofilms obtained by delayed polarisation compared to the thick uniform structure obtained by full

polarisation.

1. Introduction

Electro-active (EA) biofilms have been widely exploited to

design microbial fuel cells (MFCs) (Lefebvre et al., 2011; Logan,

2010) microbial electrolysis cells (Geelhoed et al., 2010; Logan

et al., 2008) and other related technologies. Numerous studies have

identified EA bacteria (Logan, 2009) and deciphered the different

electron transfer pathways that can be used inside microbial

biofilms (Rabaey et al., 2007; Reguera et al., 2005; Schaetzle

et al., 2008). In contrast, the mechanisms of formation, structuring

and ageing of the EA biofilms have rarely been investigated. Wang

et al. (2009) have observed that the start-up time of an MFC was

significantly decreased when a constant potential was applied to

the anode, in comparison with the same MFC implemented with-

out applied potential. They postulated that the applied potential

increased the positive charge on the anode surface and thus

favoured the primary adhesion of negatively charged bacteria.

The adhesion of EA species on anodes might consequently depend

on the surface charge of the electrode as it has sometimes been

suggested (Busalmen et al., 2008; Cheng and Logan, 2007). In con-

trast, Aelterman et al. (2008) did not observe significant difference

in start-up time with applied potentials in the range from ÿ0.4 to

0 V vs. Ag/AgCl. Actually Wang et al. (2009) have inoculated their

MFCs with domestic wastewater, while Aelterman et al. (2008)

have taken their inoculum from an operating MFC, which means

that the microbial community was already adapted to generating

electricity. Comparing the two studies suggests that the time nec-

essary for wild microbial communities to adapt to electrochemical

conditions depends on the applied potential, while the time neces-

sary for already-adapted bacteria to form EA biofilms does not.

When using wild communities as inoculum, the adaptation phase

necessary for the cells to develop their EA capacity may conse-

quently be an essential parameter in controlling the formation of

EA biofilms, rather than electrostatic interactions between bacteria

and electrode surface. The occurrence of an initial phase during

which the cells must optimize attachment or the electron transfer

chain to the surface has also been observed with pure cultures of

Geobacter sulfurreducens (Marsili et al., 2010). Nevertheless, little

is known so far about the way a clean electrode surface catches

microbial species from a natural environment and how they shift

from the conventional respiration mechanism to an anode

respiring mechanism.

The purpose of this work was to give some insights into EA

biofilm construction with the practical target of improving the per-

formance of microbial anodes. Garden compost was used as the

source of the inoculum. Soils are a very rich source of microorgan-

isms (Liu et al., 2006; Torsvik et al., 1996) and garden compost has

proved its excellent capacity to form EA biofilms. Microbial anodes

can be formed by simply embedding polarised electrodes in a soil

(Parot et al., 2008), but it is then difficult to use the resulting

anodes out of their initial medium. A new procedure has been pro-

posed recently, which consists of producing a leachate by percolat-

ing the garden compost with an ionic solution and then using the
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leachate obtained as the inoculum. This procedure has given prom-

ising results for the treatment of dairy wastes (Cercado-Quezada

et al., 2011, 2010a). The same procedure has led to current density

so high as 66 A/m2 for acetate oxidation when the biofilms were

formed around ultra-microelectrodes (Pocaznoi et al., 2012). Obvi-

ously this result has been reached with particular laboratory elec-

trodes, but it demonstrates the promising potential of the

inoculum source.

The present study used compost leachate as inoculum and ace-

tate as substrate. Comparing biofilms formed at open circuit and

biofilms formed under constant polarisation showed very different

structures and allowed the phases of biofilm formation and of

development of the extracellular electron transfer network to be

distinguished. These observations were exploited to define an opti-

mal procedure for the formation of microbial anodes.

2. Methods

2.1. Soil biofilm

One litre of Garden compost (Cultura, Lombricompost) was

mixed with a 60 mM KCl solution and left for 24 h under stirring

at room temperature. The mix was then centrifuged and the result-

ing leachate, supplemented with 10 mM acetate, was used for the

formation of EA biofilms.

2.2. Electrochemical instrumentation and set-up

Electrochemical experiments were carried out in closed vessels

that contained 150 mL leachate. Carbon cloth (supplied by

PaxiTech SAS, France) of 2 cm2 projected surface area was used

for the working electrodes and a platinum grid for the auxiliary

electrode. All potentials were controlled via a conventional 3-

electrode set-up vs. a saturated calomel reference electrode (SCE,

Radiometer, +0.241 V vs. SHE) by means of a VMP potentiostat

(Bio-logic SA). Polarisations were performed at ÿ0.2 V vs. SCE be-

cause this potential was around the most negative value that could

provide the maximum current density (Cercado-Quezada et al.,

2010b). Cyclic voltammetries were performed at 1 mV sÿ1. Electro-

chemical experiments were carried out at room temperature,

around 22 °C.

2.3. Microscopy and image analysis

For scanning electron microscopy, the microbial structures

were stabilised on the electrode surfaces by fixation in phosphate

buffer (400 mM, pH 7.0) with 4% glutaraldehyde. The electrodes

were then rinsed in phosphate buffer with saccharose (0.4 M),

treated with 2% osmium tetroxide in phosphate buffer and saccha-

rose for 1 h, dehydrated in an ascending series of acetone solutions

(50%, 70%, 100%), then in acetone and hexamethyldisilazane

(50:50) and, finally, in 100% hexamethyldisilazane. Anodes were

examined with an LEO 435 VP scanning electron microscope.

3. Results and discussion

3.1. Biofilm formed at open circuit

Five 2 cm2 carbon cloth electrodes were left at room tempera-

ture in separate bioelectrochemical reactors containing 150 mL of

the same compost leachate supplemented with 10 mM acetate,

for 0 (control), 8, 12, 15 and 19 days. No polarisation was applied

and the open circuit potential (OCP) was recorded as a function

of time (Fig. 1A). The OCP exhibited similar evolution for each elec-

trode, with initial values around +0.05 V vs. SCE and a fast decrease

during a 4-day period, followed by a stabilisation at close to ÿ0.5 V

vs. SCE at day 5.

The OCP values are the result of the delicate balance between

electron exchanges that are spontaneously established between

the electrodes and the species from the bulk environment. For in-

stance, cathodic currents (electrons lost by the material) may be

due to the natural slow reduction of dissolved oxygen on the elec-

trode surface, and anodic currents (electrons gained by the mate-

rial) may result from the slow oxidation of the electrode surface

itself. With graphite and carbon electrodes, the presence of func-

tional groups like phenol, carbonyl, carboxyl and quinine on the

surface (Cabaniss et al., 1985; Nagaoka and Yoshino, 1986) makes

the anodic process complex. Moreover, in a solution such as com-

post leachate, which contains a large diversity of dissolved organic

compounds, anodic currents can also be due to the slow spontane-

ous oxidation of some of them. For instance, OCP recording is com-

monly exploited to measure the redox potential of solutions. In this

case, a platinum electrode is used because no significant oxides

form on its surface.

From a general point of view, OCP decrease is due to vanishing of

the reduction current and/or to an increasing of the anodic current.

For instance, in redox potential measurements with a platinum

electrode, it is generally postulated that OCP decrease is mainly

due to vanishing of the cathodic current because of oxygen deple-

tion. Here OCP decrease can be due to both the oxygen depletion

in the closed electrochemical reactor and the increase of the anodic

current resulting from the catalysis of acetate oxidation. Actually, it

should be borne in mind that OCP values are controlled by the very

low exchange currents due to spontaneous reactions only.

In this framework, the adhesion of only a few EA bacteria is

sufficient to catalyse low acetate oxidation and to cause OCP de-

creases observed here. To check this assumption, two experiments

were performed with, in each reactor, one electrode dipping in the

leachate and another hanging in the gas free space. In both exper-

iments, the OCP of the immersed electrodes followed the same

evolution as previously recorded, with an initial OCP around

+0.1 V vs. SCE which decreased to ÿ0.65 V vs. SCE after 20 days

of immersion. At day 20, the hung clean electrodes were plunged

into the solutions. The OCPs of the clean electrodes were in the

range of ÿ0.1 to ÿ0.2 V vs. SCE in both experiments, i.e. around

0.2 mV less than the initial OCP value. The difference between

the initial OCP value (+0.1 V vs. SCE) and OCP measured at day

20 with the clean electrode can only be attributed to changes in

the solution composition, and most probably to the consumption

of oxygen by the aerobic microorganisms during the first few days

of the experiment. The final stable OCP values being around

ÿ0.65 V vs. SCE, it can be concluded that oxygen depletion was

responsible for around one third of the whole OCP decrease, while

the catalysis of the oxidation reaction supported around two

thirds. These experiments confirmed that a major part of OCP de-

crease was due to the primary settlement of EA microbial cells that

started to catalyse acetate oxidation.

Going back to the five-electrode experiment, each electrode was

polarised at ÿ0.2 V vs. SCE for 3 h at the end of its open circuit

phase (Fig. 1B). The control electrode that was polarised immedi-

ately upon immersion in the compost leachate did not produce

any current during the 3 h of polarisation. In contrast, every other

electrode gave an oxidation current density of about 50 mA/m2

after only 30 min of polarisation. This time was too short for the

current increase to be attributed to the growth of EA microbial spe-

cies. It indicated an activation phase of the EA cells that were

already present on the anode surface and switched their metabo-

lism towards an electrode-respiring mechanism in response to

the polarisation.

In conclusion, the microbial communities that adhered to the

surface of non-polarised electrodes contained some microbial



species with EA ability, which contributed to OCP decrease. These

EA species activated their capability to use the electrode as final

electron acceptor after a few tens of minutes of polarisation.

3.2. Biofilm formation at open circuit followed by short-term (3-day)

polarisation

Six new reactors (150 mL compost leachate, 10 mM acetate)

were started with six 2-cm2 carbon cloth electrodes kept at open

circuit for different times: 1, 5, 9, 12, 15 and 19 days. At the end

of the open circuit time, a new 10 mM acetate addition was made

and each electrode was polarised for 3 days at ÿ0.2 V vs. SCE. The

final biofilm ages were respectively 4, 8, 12, 15, 18 and 22 days. The

current densities measured at the end of the 3 days of polarisation

increased from 0.2 to 2.7 A/m2 with the biofilm ages (Fig. 2A). This

experiment was reproduced with a leachate formed from a differ-

ent brand of compost. After 3 days of polarisation the biofilms with

final ages 4, 7, 10 and 12 days gave 0.1, 0.4, 0.9 and 2.2 A/m2,

respectively. This second compost led more quickly to efficient

biofilms, but the general behaviour was the same: the biofilms

obtained after 3 days of polarisation always showed more effi-

cient EA capabilities when the preliminary open-circuit time was

longer.

Cyclic voltammetry (CV) was performed at the end of the 3-day

polarisation (Fig. 2B). The current densities measured at ÿ0.2 V vs.

SCE on the CV curves were identical to the values recorded at the

end of the polarisation, this showed that the CV scan rate was

low enough to represent the stationary behaviour of the microbial

electrodes.

CV curves detected a variety of different electrochemical char-

acteristics. Some electrodes exhibited a conventional sigmoid

shape (4- and 18-day-old biofilms), while others showed one or

several peaks (12- and 22-day biofilms). Peaks observed with

the 12-day-old biofilm revealed the presence of different electron

transfer pathways in comparison to the other biofilms. The variety

of different CV shapes revealed differences of the biofilms in

terms of EA capabilities. Compost is a microbiologically-rich med-

ium and the spontaneous formation of biofilms without any par-

ticular selection pressure during the open circuit phase logically

led to different biofilms in terms of EA capabilities. Moreover,

after 3 days of polarisation, biofilms were at the crossroads of

their development, tipping over from an open-circuit way of

development to polarisation-supported growth. Actually, EA and

non-EA species that had spontaneously colonised the electrode

surface during the open-circuit phase were still present in the bio-

film, while the 3-day polarisation started to exert a selection pres-

sure. CVs recorded at this crucial period consequently detected

diverse EA capabilities. Nevertheless, whatever the differences in

the intrinsic characteristics of each biofilm, it was observed that

a longer preliminary open-circuit phase favoured the emergence

of EA properties. The older biofilms (18 and 22 days old) pro-

duced significant current density (1 and 2.8 A/m2, respec-

tively) after only 3 days of polarisation. The 22-day-old biofilm

exhibited a characteristic shape that has been reported in a recent

Fig. 1. Biofilms formed at open circuit. (A) Evolution of open circuit potential (OCP) of carbon cloth electrodes immersed in compost leachate for 8, 12, 15, and 19 days. (B)

Current densities obtained during 3 h polarisation at ÿ0.2 V vs. SCE on the 8-, 12-, 15- and 19-day old biofilms.

Fig. 2. Biofilms formed at open circuit followed by 3 days of polarisation at ÿ0.2 V vs. SCE. (A) Current densities obtained during 3 days of polarisation on biofilms formed at

open circuit. The final ages 4, 12, 15, 18 and 22 days given on the figure include the 3 days of polarisation. For clarity, the current provided by the 8-day old biofilm located

between 4- and 12-day old biofilms have not been plotted. (B) Cyclic voltammograms (1 mV sÿ1) recorded at the end of the 3-day polarisation.



theoretical study (Strycharz et al., 2011). This study described the

electron transfer (ET) pathway from acetate to the electrode in 5

steps:

(i) mass transport of acetate and products,

(ii) reduction of the microbial cells by acetate,

(iii) reduction of (an) electron transport mediator(s) by the

reduced microbial cells,

(iv) electron transport by mediator diffusion (for diffusing medi-

ators) or by a series of sequential redox reactions between adjacent

molecules of mediators (for bound mediators),

(v) oxidation of the mediator(s) at the electrode

surface.

Theoretical CV curves were derived assuming for each that one

of the five different steps was rate-limiting. Some numerical CV

curves showed the same shape as that observed here with the

22-day biofilm, with an oxidation peak superimposed on the con-

ventional sigmoid curve. Such curves were obtained only when the

ET rate was assumed to be limited by step (iii) i.e. by ET from the

microbial cell to the mediator. The numerical model never led to a

similar peaked curve when the other steps were assumed to be

rate-limiting. This hypothesis makes sense here. The biofilms that

were formed without polarisation during the first 19 days did not

develop an extracellular ET network. After 3 days of polarisation,

the cells that had potential EA capability had shifted their metab-

olism to the anode-respiring pathway, they had probably started to

multiply, but they had not yet produced an efficient extracellular

ET network. They needed more time to develop an efficient ET net-

work through the initial biofilm that had formed during the

19 days at open circuit. The ET rate can consequently be limited

by step iii, i.e. by electron transfer from the microbial cells to the

still poorly developed ET network. The younger biofilms did not

show this limiting step because the initial open-circuit biofilm

was less developed. Comparing the CV curves obtained here with

the theoretical model led to the conclusion that applying the polar-

isation on a pre-established biofilm formed at open circuit induced

two successive development phases: the EA cells present in the

biofilm firstly turned their metabolism to the anode-respiring

pathway and then they developed the extracellular ET network

in a second phase.

At the end of the 3-day polarisation, the biofilms (final ages 4,

8, 12, 15 and 18 days) were imaged by scanning electron micros-

copy (SEM). For each microbial electrode, the surface of the weft

of the woven carbon cloth was always visible at low magnification

(Fig. E1A to E1E). The surfaces exhibited poor colonisation by scat-

tered bacterial colonies. The lower magnification showed visible

coating only with the 18-day old biofilm (Fig. E1E), which was

consistent with the currents obtained during 3-day polarisation.

Significant currents started to be obtained with the 18-day biofilm

(final age), while no significant current was provided by the youn-

ger biofilms (Fig. 2A). Higher magnification showed that the

microbial colonies were locally more important on biofilms aged

of more than 8 days. Cells with flagella were observed in 12-

and 15-day old biofilms (Fig. E1C-D). Planktonic cells use flagella

to move in solution, to approach solid surfaces and to fix onto

them but the flagella disappear rapidly when the cells are embed-

ded into a biofilm. The presence of flagella observed here revealed

an early stage of biofilm formation (Monroe, 2007). As discussed

above, these biofilms were at the crossroads of their development.

The 3 days of polarisation had not yet erased the differences in

colonisation that resulted from the different open circuit dura-

tions, and the EA bacteria that were able to multiply during the

3 days of polarisation were not yet predominant enough to mask

the biofilm development by the uptake of planktonic cells with

flagella.

3.3. ‘‘Delayed polarisation’’ vs. conventional ‘‘full polarisation’’

The 22-day-old biofilm, which supplied 2.7 A/m2 after the

3 days’ polarisation, continued to be polarised for a total of 20 days.

When the current dropped off because of acetate depletion, 10 mM

acetate was added and the current rapidly increased again. A cur-

rent density of 9.4 A/m2 was reached at day 28, i.e. after only

9 days of polarisation (Fig. 3A, biofilm 1). The 3rd acetate addition

confirmed an identical maximum current density. A replicate with

a first period of 20 days at open circuit gave a maximum current

density of 9.4 A/m2 from the first current peak, i.e. after only 3 days

of polarisation (Fig. 3A, biofilm 2). These biofilms were said to be

obtained by ‘‘delayed polarisation’’. This new strategy was at-

tempted here with the objective of producing high performance

microbial anodes. It consisted of keeping the working electrode

at open circuit for several days (here 19–20 days) before applying

polarisation at ÿ0.2 V vs. SCE.

In parallel, microbial anodes were developed following the con-

ventional ‘‘full polarisation’’ procedure, which consists of polaris-

ing the electrode at ÿ0.2 V vs. SCE as soon as it is immersed in

the compost leachate. The current, which was initially nil, started

to increase after several days due to the formation of the EA bio-

film. The successive additions of 10 mM acetate improved the cur-

rent (Fig. 3B, biofilm 3). A maximum current density of 6.0 A/m2

was observed at the 4th acetate addition, i.e. after 36 days of polar-

isation. This experiment was duplicated (Fig. 3B, biofilm 4) and

gave 8 A/m2 after 35 days of polarisation and four acetate

additions.

A preliminary conclusion is that delayed polarisation allowed

maximum current density up to 9.4 A/m2 to be reached after only

3 days of polarisation, while conventional full polarisation required

35 days of continuous polarisation to obtain 6–8 A/m2. Waiting

several days at open circuit before applying the potential had a po-

sitive effect on the performance of the microbial anode. The in-

crease in current density was not high, but the decrease in the

required polarisation duration was drastic.

3.4. Catalytic (i.e. in the presence of acetate) and non-turnover (i.e. in

acetate depleted conditions) cyclic voltammetry of biofilms prepared

by delayed and full polarisation

During the experiments described in Fig. 3A and B the polarisa-

tion was interrupted from time to time to record cyclic voltamme-

try (CV) curves at different steps of biofilm development. Catalytic

CVs were plotted when the electrode provided maximum current

density, days 22 and 35 for the biofilm obtained by delayed polar-

isation (Fig. 4A) and days 12, 30 and 36 for the biofilm obtained by

full polarisation (Fig. 4B). Once again, the current densities mea-

sured at ÿ0.2 V vs. SCE on the CV curves were identical to the val-

ues recorded during polarisation, which means that CV gave a

correct representation of the stationary behaviour of the elec-

trodes. The anodes showed excellent electrochemical characteris-

tics, with low OCP around ÿ0.50 V vs. SCE and high current

densities. The higher current densities provided by the microbial

anodes formed by delayed polarisation were confirmed.

All CVs recorded on the full-polarisation biofilm exhibited a

conventional sigmoid shape, similar to those already reported in

the literature, for instance for Geobacter sulfurreducens biofilms

(Fricke et al., 2008) or for microbial anodes obtained from domestic

wastewater (Liu et al., 2010). These biofilms did not show the peak

system characteristic of the step iii) rate-limiting effect. CVs did

consequently not detect a rate-limitation by electron transfer from

the reduced cells to the ET mediator(s). Under constant polarisa-

tion the EA cells grew by using the electrode as final electron

acceptor and they consequently developed concomitantly with

their growth an extracellular ET network that perfectly matches



their needs. In contrast, when applying polarisation to a pre-

established biofilm formed by 19 days at open circuit, CVs showed

a superimposed oxidation peak that indicated a step (iii) rate lim-

itation. The superimposed oxidation peak was observed after

3 days of polarisation (Fig. 4A, day 22) and was less marked but

still present after 13 more days of polarisation (Fig. 4A, day 35).

The rate-limiting effect of electron transfer from the microbial cells

to the ET network slightly diminished during polarisation, but it

durably marked microbial anodes obtained by the delayed polari-

sation procedure.

Non-turnover CVs were recorded in acetate-depleted conditions

to gain information about the redox species contained in the bio-

films. Actually a small amount of acetate was still present in solu-

tion and weak catalytic currents were always visible on the CV

curves. Nevertheless, the small currents due to the catalytic oxida-

tion of acetate did no longer mask the currents due to the single

turnover oxidation and reduction of the redox species of the bio-

film. During the delayed polarisation procedure, the non-turnover

CVs recorded just at the end of the open circuit phase (Fig. 5A – day

19) showed the absence of any significant redox couple. In con-

trast, after 20 days of polarisation the biofilm exhibited multiple

redox systems (Fig. 5A – day 39): two clear reduction peaks and

three barely defined oxidation peaks were detected, which gave re-

dox systems with midpoint potentials close to ÿ0.24 and ÿ0.15 V

vs. SHE. Similar patterns have already been reported in the litera-

ture for non-turnover CVs, even pure cultures have revealed com-

plex behaviour with multiple redox systems (Fricke et al., 2008).

For instance, CV at 1 mV/s on Geobacter sulfurreducens biofilm

formed on graphite electrode has shown four redox systems with

potential midpoints at ÿ0.32, ÿ0.18, ÿ0.10 and +0.25 V vs. SHE

(Strycharz et al., 2011). It would not make sense to compare CVs

performed in different solutions, with different electrode materials

and different microbial cultures, but the potential range in which

the redox systems were observed here remains close to the value

reported for Geobacter sulfurreducens. Clearly, the non-turnover

CVs indicated that the biofilm gained rich redox content during

the polarisation time. The 20-day polarisation enriched the biofilm

in redox species remarkably. Nevertheless, the catalytic CVs per-

formed just before acetate depletion (Fig. 4A, day 35) showed a

remaining rate-limitation by electron transfer from the cells to

the ET network. It must be concluded that the ET network devel-

oped during delayed polarisation was composed of multiple redox

systems that did not perfectly match the requirements of the cells.

For comparison, biofilm 3 developed under 40 days of full polar-

isation showed only two redox systems, the midpoint potential of

one being around ÿ0.13 V vs. SHE (Fig. 5B) and the currents were

very much lower than those recorded with the delayed-polarisa-

tion biofilm of the same final age (19 days open circuit +20 days

Fig. 3. Current densities under polarisation at ÿ0.2 V vs. SCE. (A) Delayed polarisation after 19 or 20 days let at open circuit, (B) Conventional full polarisation.

Fig. 4. Cyclic voltammograms (1 mV sÿ1) recorded at different days around maximal current production on: (A) biofilm formed by delayed polarisation (Fig. 3A, Biofilm 1), (B)

biofilm formed by full polarisation (Fig. 3B, Biofilm 3). Days of CV recording are indicated on the figures.



polarisation, Fig. 5A). The charge exchanged, which is proportional

to the concentration of the redox species involved in the redox

reaction, was drastically lower. The biofilm formed by 40 full days

of polarisation showed, at the same final age, less intense electron

transfer capabilities than the biofilm formed by delayed polarisa-

tion, but no limiting effect due to step (iii). This difference shows

that the ET network was less rich for the biofilms formed under full

polarisation but better suited to the EA cells that formed the

biofilm.

Biofilms formed by delayed polarisation provided high current

densities (up to 9.4 A/m2) using an abundant ET network that

was not optimally tuned to the microbial cells making up the bio-

film, while the biofilm formed by the conventional full polarisation

gave slightly lower current density (6–8 A/m2) by using a less rich

ET network well-suited to the microbial cells. Polarisation applied

to a pre-established biofilm favours the development of different

microbial species that develop different ET strategies. Neverthe-

less, the greater diversity does not ensure an optimal link between

microbial cells and mediators. Applying the potential from the

beginning of biofilm formation results in better tuned EA biofilms,

but which provide lower current density.

3.5. SEM imaging of biofilms prepared by delayed and full polarisation

At the end of the 19 days’ open circuit and 20 days’ polarisation,

the biofilm prepared under delayed polarisation showed a hetero-

geneous structure with clumps of bacteria but also many isolated

single cells (Fig. E2A in Electronic Annex). The carbon fibres that

made up the cloth electrode were still easily visible. Contrarily,

the biofilm prepared under 40 days’ full polarisation fully masked

the fibre structure of the electrode, which was no longer visible

(Fig. E2B in Electronic Annex). The biofilm was thick, uniform

and covered the whole electrode surface area. Higher magnifica-

tion confirmed its compactness.

SEM images showed that full polarisation drove the formation

of a more compact and uniform biofilm than delayed polarisation.

The biofilms obtained by delayed polarisation presented a globally

thinner structure with heterogeneous coating. It can be thought

that during the initial 19 days at open circuit non-EA bacteria set-

tled the electrode surface and subsequently these bacteria hin-

dered the access of EA bacteria to the electrode surface. The

presence of non-EA bacteria resulted in a less dense and compact

biofilm structure that gave higher current density. A mixed biofilm

composted of EA and non-EA bacteria would thus be more efficient

because of a more appropriate morphology.

3.6. Final scenarios

These differences in biofilm structures between delayed and full

polarisation complete the assumptions derived from the electro-

chemical analyses. Polarising from the beginning favoured the

growth of sessile EA cells that were able to use the electrode as

final electron acceptor. They grew fast, formed a compact biofilm

with an ET network that closely matched their need. The compact

structure that was evidenced by SEM suggested that mass transfer

of substrate and products inside the biofilm could become a rate-

limiting step for these electrodes. For instance, it is known that

slow extraction of protons produced by substrate oxidation can

limit the current provided by microbial anodes (Torres et al.,

2008). The theoretical model discussed above (Strycharz et al.,

2011) has demonstrated that, in case of mass transfer rate-limita-

tion, CV curves exhibit a purely sigmoid shape. The assumption of

mass transfer rate-limitation is consequently consistent with the

CV curves recorded here with the full-polarisation biofilms

(Fig. 4B).

In the absence of polarisation, the microbial development led to

heterogeneously scattered colonies, which were far from forming

complete coverage of the surface. Both potentially-EA cells and

non-EA cells grew in the absence of any significant electrochemical

reaction, except the very low currents that control the OCP value.

Open-circuit biofilms resulted from the slow multiplication of

the sessile cells and they could also benefit from the integration

of planktonic cells. Applying the polarisation to such pre-estab-

lished biofilms made the potentially EA-bacteria shift rapidly to

anode-respiring metabolism and grew by using the electrode as

electron acceptor. The ET network contained multiple redox sys-

tems but was undersized with respect to the number of cells that

rapidly turned towards the anode-respiring metabolism. The ET

network then developed during polarisation but the multiple redox

systems did not optimally match the cell requirements, electron

transfer from the cells to the mediators was rate limiting. The

structure of the biofilm remained deeply marked by the structure

of the initially open-circuited biofilm, probably because the

development of the EA cells was hindered by the presence of

well-settled non-EA cells.

The delayed-polarisation biofilms provided slightly higher cur-

rent densities than biofilms formed under full polarisation. The

better performance may be due to their less compact structure,

which did not limit mass transfers inside them. It has already been

observed that small microbial scattered colonies on a cathode

surface provide higher currents than biofilms formed by larger

Fig. 5. Cyclic voltammograms (1 mV sÿ1) recorded in acetate depleted conditions on (A) biofilm formed by delayed polarisation (Fig. 3A, Biofilm 1), (B) biofilm formed by full

polarisation (Fig. 3B, Biofilm 3). Days of CV recording are indicated on the figures.



colonies (Pons et al., 2011). Moreover, the full polarisation biofilms

made a uniform layer that completely masked the fibres of the

cloth electrodes, while delayed polarisation led to microbial set-

tlement around the fibres. A recent study (Pocaznoi et al., 2012)

shown that biofilms formed around ultra-microelectrodes (diam-

eter less than 50 lm) give higher current density than biofilms

formed on conventional macro-sized electrodes. This positive

effect has been attributed to the densification of the electron

transfer network due to the particular properties of ultra-

microelectrodes (Bard and Faulkner, 2001). Such an ultra-

microelectrode effect could also explain the high current density

that has been recently reported with fibre electrodes (Chen et al.,

2011; He et al., 2011; Wei et al., 2011). Here the fibres of the

cloth electrode were around 8 lm in diameter. The biofilms

formed under delayed polarisation may have benefited from an

ultra-microelectrode effect when they formed around the fibres

and kept a micro-structure. In contrast, the thick uniform biofilm

prepared by full polarisation was not able of exploiting this posi-

tive effect. The two basic explanations (mass transfer limitation

and possible ultra-microelectrode effect) converge to identify

the biofilm structure as the cause of the higher currents provided

by the delayed-polarisation biofilms. The rare studies that have

addressed the relationship between the electrochemical perfor-

mance of a microbial anode and the spatial structure of the bio-

film have opened promising tracks. For instance, it has been

demonstrated that co-cultures of gram-positive and gram-

negative bacteria showed synergistic or mutualistic effect, which

corresponded to particular spatial organisation of the mixed

biofilms (Read et al., 2010). The co-cultures have resulted in

currents two times higher than the single cultures. Controlling

biofilm structure to improve the current of microbial anodes

should deserve more attention in the future.

This work confirmed the occurrence of an adaptation phase nec-

essary for the cells to develop their EA capacity in response to

polarisation as evoked in the introduction section. It also showed

the short-time required for the potentially-EA cells to shift to an-

ode-respiring metabolism and distinguished this process from

the development of the ET network, which can be longer when

polarisation is applied to already formed biofilms.

4. Conclusions

Waiting several days at open circuit before applying polarisa-

tion allowed the polarisation duration to be drastically reduced

to reach similar current densities. The delayed polarisation gave

current density of 9.4 A/m2 after only 3–9 days of polarisation,

while conventional full polarisation required 36 days of continuous

polarisation to obtain 6–8 A/m2. For the first time, this work has

shown that applying the polarisation to an established biofilm

formed at open circuit may be a promising way to improve the

performance of microbial anodes prepared in a natural

environment.
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