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INTRODUCTION

Due to the modern day progressive deployment of LTE (Long Term Evolution) the mobile users will soon have accessibility to large bandwidths, with significant improvements in quality of experience (QoE) when receiving multimedia streams [START_REF] Liang Zhang | Performance Evaluation of End-to-End Communication Quality of LTE[END_REF]. Another promising feature of LTE concerns with the increment of uplink bandwidth. This new capability will foster innovative usages, some of which are built around a basic enabler defined by the direct (or live) transmission towards websites or distant spectators, of live video caught through smartphones. These new generation devices are natively equipped with various chips and sensors providing high processing power and a large variety of information in real time. This information describing different parts of the actual state/environment of the associated device is usually known as the current context and may constitute a precious knowledge when articulated to a communication session [START_REF] Toutain | Interpersonal context-aware communication services[END_REF]. The context may include users' personal and environmental characteristics such as its location, acceleration, camera orientation, temperature, etc [START_REF] Corradi | Adaptive context data distribution with guaranteed quality for mobile environments[END_REF].

In this paper, we consider the above enabler transmitting together with live video, some contextual data generated from the filming device. This data will be displayed to the spectator through various dedicated GUI (Graphical User Interface) embedded in a context player linked up to the video player. The spectator may therefore advantageously exploit during the live event, the contextual information of the cameraman to complete her knowledge of specific parts of the event and eventually interact with the sender. As a matter of fact the interest in adding to a video stream, data characterizing the context of the sender, rests on helping the spectator to improve her remote involvement in a live event. The brought information may indeed be precious to the spectator because it first cannot be deduced from the pictures currently displayed and secondly being closely related to the live event, it can be fruitfully exploited by the spectator to complete her understanding of what she is watching at present.

To be pertinent and useful, it is clear that the context information must be temporally in phase with the associated video simultaneously received. Such a soundness constraint of this new feature can in fact be expressed as a synchronization requirement between the video and context data. This property together with other criteria like video continuity, low initialization delay and low play-out delay (i.e., "live" display of the video), is one of the key issues contributing to ensure the end-user QoE.

We focus in this work on the analysis of the synchronization criterion between video and contextual data, called hereafter "video-context synchronization". It refers to the fact that the relationship between context and video at presentation time, on the receiver play-out device, must match the relationship between context and video at capture time, on the sender device. The simplest way to solve the problem consists in delivering video and context bundled together. Such solution however precludes for example any differentiated treatment between the two media, during transport. It prevents moreover a receiver to get only the video if so desired. These drawbacks disappear when data is transmitted through the network in separate RTP (Real-time Transport protocol) streams [START_REF] Schulzrinne | RFC 3550, RTP: A Transport Protocol for Real-Time Applications[END_REF], but in this case each one might experience different network delays. This increases the probability for receiving and playing one flow ahead of the other which degrades the end-user QoE.

Synchronization is one the fundamental issue of computer science raised from its first beginning with the scheduling of concurrent processes of operating systems. The progressive advent of network based computations extended this problematic to the ability to recreate on the receiving side of a communication, the temporal organization of the events occurring at the time of their sending. Even if this problem received in the past a lot of attention [5 -8], it still constitutes an active area of research confirming by the way, that the "last word" has not yet been said. Beside the lip sync [START_REF] Kouvelas | Lip Synchronisation for use over the Internet : Analysis and Implementation[END_REF] which constituted during a good while the cornerstone use case, new situations regularly appear which instantiate under a new and original point of view the network synchronization problem leading to unexpected developments [10 -15]. Video-Context synchronization is such a new issue feeding in an interesting way this problematic. It is worth mentioning here that, at our knowledge, it has never been identified before.

The rest of the paper is organized as follows. Section 2 describes use cases highlighting the importance of synchronizing the video with contextual data. Section 3 presents the problem statement and the part of state of the art close to our problematic. Our main solution is explained in Section 4. Finally, we conclude our work with some future perspectives in Section 5.

USE CASES

In this section, we present two use cases pointing the benefits of the video-context synchronization in a real-time multimedia service.

Use case 1: We consider one person filming an event with her smartphone and sending in real time to a distant spectator both the video and some contextual data. Figure 1 illustrates an example when this person is driving and the receiver can see her location and velocity vector in a map next to the video player. At instant t, the displayed context data should match to the sender environment when she caught the video image currently displayed. For instance, when the cameraman is crossing by the museum, the spectator should see the museum appearing in the video when the location of the cameraman is shown on the map near the museum.

Contextual data is the appropriate mean to allow the spectator to anticipate the future position of the cameraman and then to interact with her to influence the way the rest of the event will be captured. For example, if the spectator wants the cameraman to slow down to have a better view of the museum, knowing her current position and speed enable the spectator to send in the right time a request before the cameraman actually passes by. Such service is very interesting for the end-user, but it is clear that its soundness is closely related to the synchronization between video and context. Use case 2: We consider a musical event filmed by six persons with their smartphones. They transmit in real-time the video and some contextual data to a website. In receiver side, the contextual data such as the location of the filming persons and the smartphones orientation are used to depict a map of the event which can be displayed as indicated in Figure 2. This enables to select the video to be watched based on the characteristics of the environment around the cameraman.

Again without video-context synchronization, the spectator quality of experience can be heavily impacted. Assume for example, that at instant t the person number 1 films the river but the map indicates that this person films the musician. Spectator selecting the video number 1 in order to watch the musician will be disappointed and have to navigate through all the available videos to find the desired one. 

PROBLEM STATEMENT

The audio-video synchronization

Synchronizing a video stream with an audio one can be seen as the paradigm of inter-stream synchronization [START_REF] Boronat | Multimedia group and inter-stream synchronization techniques : A comparative study[END_REF]; it will thus help us to introduce the main concepts we will need in the rest of the paper. A general architecture of these existing systems is presented in Figure 3 [16] [START_REF] Firestone | Voice and Video Conferencing Fundamentals[END_REF]. During the data acquisition step, analog signals are captured and converted into digital format before to be passed to the compression. Then, the data is composed into RTP packets by the packetization step and is sent out to the network via network interface. At the receiver side, the data is first saved in a buffer (e.g., the video buffer) and later decompressed (via data decompression module) in order to be displayed on spectator's screen.

In general, synchronization between audio and video is ensured if the audio and video packets which have been generated at the same instant in sender side, are simultaneously displayed on the receiver device. The possible temporal gap in the alignment of the two streams at the receiver defines the skew between the two media. This notion allows to assess the desynchronization phenomenon appearing when the skew is not null (one stream plays ahead of the other), as shown in Figure 4. Its origin is generally due to the presence of routers and intermediate servers within the end-toend path. [START_REF] Steinmetz | Human Perception of Jitter and Media Synchronization[END_REF] provides a detailed study of the end user capability to detect harmful impacts of desynchronization on QoE. First, video ahead of audio appears as less of a problem than the reverse and secondly an absolute skew smaller (resp. greater) than 160 ms (resp. 320 ms) is harmless (resp. harmful) for QoE. The author identifies a double temporal area [-160,-80] and [80,160] called transient, in which the impact of the skew heavily depends on the experimental conditions. Mobile environment specificities (size of the image, distance of the user from the screen, video frame rate) don't bring such results into question [START_REF] Curcio | Human Perception of Lip Synchronization in Mobile Environment[END_REF]. This set of temporal skew thresholds (in sync, transient, out of sync) [START_REF] Steinmetz | Human Perception of Jitter and Media Synchronization[END_REF] constitutes a fundamental parameter of inter-stream synchronization. It is however clear that the particular thresholds values are closely related to the nature of the various media involved in the RTP streams.

In real implementations, the transient area has to be spreaded out between the two other ones to allow simple algorithmic solutions [START_REF] Boronat Segui | An RTP/RTCP based approach for multimedia group and inter-stream synchronization[END_REF] [START_REF] Zhang | Using Timestamp to Realize Audio-Video Synchronization in Real-time Streaming Media Transmission[END_REF]. During reception, when the in sync threshold is satisfied, data is directly sent to decompression (see Figure 3) since it is considered as synchronous. Otherwise, the receiver applies the following process [START_REF] Zhang | Using Timestamp to Realize Audio-Video Synchronization in Real-time Streaming Media Transmission[END_REF]. If the video content has been captured before the audio content, for the spectator point of view, the video appears to be delayed. The video playing module (cf. Figure 3) skips out some video packets until re-synchronization of audio-video occurs. On the other side, if the audio is delayed, the newly received video packets are stored in a buffer and the video playing module continues to play the old packets repeatedly, until they are synchronized. This asymmetric treatment between audio and video is due to the fact that lip sync attributes highest priority to audio. This is usually expressed by saying that the audio stream is the master one.

Lip sync necessitates restoring at the receiver side a temporal snapshot of the sender situation, to be able to detect when the various thresholds are satisfied. The trick consists in marking during the RTP packetization (cf. figure 3), each packet with a timestamp representing the capturing moment of the associated content. Due to the use of different clocks when generating the timestamps of audio and video, a common reference clock called the wallclock, which can be instantiated for example by NTP (Network Time Protocol) [START_REF] Mills | RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification[END_REF], is required to correlate the timestamps to a common base time. The relationships between the sender local clocks and NTP are sent to the receiver in RTCP reports [START_REF] Schulzrinne | RFC 3550, RTP: A Transport Protocol for Real-Time Applications[END_REF].

Such a solution solves the synchronization problem very simply. The main point rests on restoring at the receiver side a temporal snapshot of the sender situation. It is clear that this principle is independent of the nature of the data, the streams of which have to be synchronized.

Contextual data

Before applying the previous ideas to the video-context synchronization, we recall the nature of contextual data generated through smartphones, which is rather different from that of audio or video.

Let's take the case of an application deployed in an Android based smartphone, collecting context data generated by embedded sensors. To de-correlate the application needs from the sensors generation capabilities, Android 4.1 (Jelly Bean) defines five different policies allowing the application to monitor the information provided by the sensors, by fixing a specific filtering rate which can be different from the sampling rate of the sensors [START_REF]Android 4.1 Jelly Bean : Sensors Overview[END_REF]. The underlying idea is that each policy should be tailored to a specific kind of application trying to master by the way processor load and energy consumption. The interval between two sensor events selected by the application can be therefore user defined, or equal to 0, 20, 60 or 200 microseconds (the associated filtering rate is respectively user defined, infinite, or equal to 50, 16, 5kHz). It is however worth quoting the previous reference, to point here that the situation could be a little bit more complex : "The delay that you specify is only a suggested delay. The Android system and other applications can alter this delay. As a best practice, you should specify the largest delay that you can because the system typically uses a smaller delay than the one you specify " [START_REF]Android 4.1 Jelly Bean : Sensors Overview[END_REF]. In this sense, [START_REF] Ubejd | Indoor Positioning using Sensor-fusion in Android Devices[END_REF] provides an interesting experimental study mentioning much lower average rates (~10Hz or less) for contextual data such as acceleration (48Hz), magnetic field (60Hz), gyroscope (870Hz), etc. It is clear that this specific point should deserve much more attention through comprehensive experimental studies to try to identify clearly the possible interval values of the monitoring rates which could be associated to the various contextual data. An Android based sensor event is structured as a 4-tuple containing the raw sensor data, the type of the associated sensor, the accuracy of the data and the timestamp (in nanosecond) at which the event happened [START_REF]Android 4.1 Jelly Bean : Sensors Overview[END_REF]. Its can be easily seen that its size is roughly of the order of few dozens of bytes which is close of the typical size of an audio frame [START_REF] Schulzrinne | RFC 3551, RTP Profile for Audio and Video Conference with Minimal Control[END_REF].

We can finally draw several conclusions which can be seen as the requirements of our problematic. First, despite the fact that an Android-based application could specify a constant monitoring rate for contextual data, due to operating system constraints, it can indeed be variable and of an order of magnitude completely different from the one usually associated to video (90kHz [START_REF] Schulzrinne | RFC 3551, RTP Profile for Audio and Video Conference with Minimal Control[END_REF]) or audio (8kHz, 11.025 kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz [START_REF] Schulzrinne | RFC 3551, RTP Profile for Audio and Video Conference with Minimal Control[END_REF]).

Concerning the elementary amount of information, context is however very close to audio.

RTP capabilities

RTP can be used to transport other data than audio or video. We can quote in this sense several dedicated payloads which have been specified :

-real-time pointers [START_REF] Civanlar | RFC 2862 : RTP Payload Format for Real-Time Pointers[END_REF] -text conversation [START_REF] Hellstrom | RFC 4103 : RTP Payload for Text Conversation[END_REF] -DTMF digits, telephony tones and telephony signals [START_REF] Schulzrinne | RFC 4733 : RTP Payload for DTMF Digits, Telephony Tones, and Telephony Signals[END_REF] A common point with these ones, which decreases our interest, concerns the used sampling rate which is always constant and respectively equal to 90kHz, 1kHz, 8kHz.

We however have an interesting illustration of the RTP capabilities when it has to cope with variable rates produced data. [START_REF] Herlein | RFC 5574 : RTP Payload Format for the Speex Codec[END_REF] defines a payload dedicated to the Speex codex one characteristic of which concerns its variable bit-rate. Speex introduced ten years ago, constitutes an interesting attempt to define a free-patent codec dedicated to VoIP [30]. It has been deprecated since the recent and official advent (September 2012) of the Opus codec [START_REF] Valin | RFC 6716 : Definition of the Opus Audio Codec[END_REF] sharing for our concern, the same characteristic as Speex. We however didn't find for it the definition of a dedicated RTP payload. That is why we focus on the Speex case.

Speex is a 20 ms frame-based codec encoding inside each frame both the sampling rate and the bit-rate associated to the current frame. For the same bit stream, these parameters can therefore vary, inside specified ranges, from frame to frame leading to dynamic switching between variable bit-rates. The used encoding technique indifferently authorizes narrowband, wideband or ultra-wideband determining as sampling rate respectively 8kHZ, 16kHz and 32kHz.

SOLVING THE VIDEO-CONTEXT SYNCHRONIZATION

PROBLEM

In a first work [START_REF] Wehbe | Synchronization Mechanisms for Live Video-Context Transmission Service[END_REF], we proposed a solution restricted to one video stream associated with one context stream and assuming constant sampling rate for both the video and context. We considered that |C|= n|V|, where n € N and |C| and |V| are the durations of context and video packets, respectively. We proposed to mark the packets generated at the same time instant to allow receiver to identify them in order to detect the possible lack of synchronization. We suggested using the field M of their RTP header [START_REF] Schulzrinne | RFC 3550, RTP: A Transport Protocol for Real-Time Applications[END_REF]. The main property of this solution rests on the ability to avoid detecting a false desynchronization phenomenon since it compares only the timestamps of simultaneously generated packets. We showed by simulations the efficiency of this algorithm when it is compared to the audio-video approach.

In a second work [START_REF] Wehbe | Analysis of Synchronization Issues for Live Video-Context Transmission Service[END_REF], we tackled the general case relaxing all the restricted assumptions of the first work [START_REF] Wehbe | Synchronization Mechanisms for Live Video-Context Transmission Service[END_REF]. We consider a variable sampling rate during the generation of contextual data. We suggest the definition of an RTP payload following the same principles as the one defined for the Speex codec. The tricky point concerns the current sampling rate which differently from Speex, may vary in an unpredictable way. We suppose the existence of a low-level auxiliary Android primitive which computes in real-time the current sampling rate. On this basis, the Speex RTP payload principle can be thoroughly applied leading to an embedding of the current sampling rate inside the payload. In the Speex case however, the purpose of the embedded information consists in adjusting the right decoding technique on the receiver side. In our case, the interest of this information is closely related to synchronization purposes. It provides indeed an elegant way to map the timestamp of the associated RTP packet to the wallclock on the receiver side. In this way we can use a variation of the lip sync to carry out the desired synchronization between the video and the context streams, taxing the video stream as the master one. On this basis the extension to multiple contextual data streams is straightforward.

OPTIMIZING THE VIDEO-CONTEXT SYNCHRONIZATION

SOLUTION

A first optimization [START_REF] Wehbe | Synchronization Mechanisms for Live Video-Context Transmission Service[END_REF] takes into account the display of the contextual data. The receiver is equipped with context play-out device characterized by its accuracy of display, called hereafter accuracy. For example, the map displays new position when the real location varies of 20m at least; accuracy=20. After receiving and decompressing a context packet C i, the receiver obtains a value called V(C i ). It will be compared with the value of the context packet currently in display, noted

V(C i-1 ). If |V(C i ) -V(C i-1 )| > accuracy, V(C i ) is
displayed on the screen. Otherwise, there is no need to display V(C i ) since the spectator cannot see the difference in comparison with V(C i-1 ).

Another proposed optimization [START_REF] Wehbe | Synchronization Mechanisms for Live Video-Context Transmission Service[END_REF] leads the receiver to inform the sender about the current accuracy value configured for his context display device. RTCP packet such as the Application-specific message (APP) can be used to ensure the transmission since it enables to design application-specific extensions to the RTCP protocol [START_REF] Boronat | Multimedia group and inter-stream synchronization techniques : A comparative study[END_REF]. This message is sent initially and when the play-out device characteristics are changed, for example when the spectator zooms in the map. The sender adapts the emission rate of the contextual data with respect to the receiver requirements. After data acquisition phase, it compares the acquired data with the content of the last send packet. Based on the display accuracy of the receiver, the sender decides if the new data will be sent or discarded. Data are sent only if it will be displayed in receiver side.

We suggest exploiting these two properties to improve the method to synchronize video with context. These optimizations work well with the two solutions [START_REF] Wehbe | Synchronization Mechanisms for Live Video-Context Transmission Service[END_REF] [START_REF] Wehbe | Analysis of Synchronization Issues for Live Video-Context Transmission Service[END_REF].

CONCLUSION

Recently, the mobile devices have become an innovative way to produce new communication services involving and exploiting the user context information. We considered a service allowing the transmission of live video together with contextual data from a mobile device to a distant spectator. We focused on the video-context synchronization problem. We analyzed the audio-video synchronization solution and proposed optimization techniques taking into account the characteristics of the endpoint devices used to capture and exploit the contextual data, such as the accuracy of display. They reduce the probability to detect a false desynchronisation phenomenon and enable to properly use the end-points resources as new packets are sent only when necessary.

Despite the existence of well documented solutions concerning the audio-video problem, it is to be noted that even if the specificity of video-context synchronization deserves special attention, it has not been already treated. At our best knowledge these works are a first attempt in this direction.
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 3 Figure 3: End to end audio-video processing
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 4 Figure 4: Example of a desynchronization phenomenon
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