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Abstract

Actual dynamic applications, executed on real-time
systems, have the tendency to be built on dynamically
reconfigurable hardware devices. These applications require
high performance and flexibility towards user and
environment needs. To perform these application
requirements, efficient mechanisms to manage hardware
device must exist. In this paper we target OLLAF as a
dynamically reconfigurable architecture which is designed to
support complex and flexible applications. In order to deal
with all of the dynamic aspects of such systems, we describe a
predictive scheduling allowing an early estimation of our
application dynamicity. A vision system of a mobile robot and
an application of 3D synthesis images were served to validate
the presented scheduling approach.

Keywords: Dynamically Reconfigurable Architecture,
OLLAF, uncertainty variation, predictive scheduling.

I. Introduction

Embedded systems are presented around us in
automobiles, robots, planes, satellites, industrial control
systems, etc. They offer enormous opportunities for novel
functionalities but, at the same time, system complexity is
increasing and the actual methods and tools are immature, or
have not yet been adapted to. In addition, the today
applications have a dynamic behavior which is managed only
in software as actual hardware targets are still static. To
overcome these problems, designers tend to use dynamically
reconfigurable architectures (DRA) that are well suited to deal
with the dynamism of applications and allow better
compromise between cost, flexibility and performance [1].
Such architectures increase the complexity of the applications

design. This complexity could be abstracted at run time by
providing an operating system that abstracts the lower level of
the system [2]. This operating system has to be able to
respond rapidly to events. In this paper, we are interested in
the scheduling of applications that could be executed on
dynamically reconfigurable architectures and in particular in
predictive scheduling. The reason why prediction is becoming
an important objective is the recent focus on large systems that
can be dynamic and where uncertainty in terms of execution
time or resource usage can be very important.

The remaining of the paper is organized as follows. In
Section II we introduce a brief review about the context and
problematic revealed. Several works dealing with scheduling
approaches for flexible and dynamic systems are detailed in
Section III. The new proposed approach of predictable
scheduling technique is described in Section IV. In Section V
we present an example of our method applied to a vision
system of a mobile robot. Finally, conclusion and future works
are given in Section VI.

II. Problem Definition

Our goal is an efficient management of dynamically
reconfigurable architectures; more precisely, as case study, we
target the OLLAF architecture. OLLAF, as presented in [2], is
an original FGDRA specifically designed to enhance the
efficiency of OS services necessary to manage such
architecture. From the global view (figure 1), OLLAF has a
reconfigurable logic core organized in columns. Each column
can be reconfigured separately and offer the same set of
services. A task uses an integer number of columns and can be
moved from one column to another without any change on the
configuration data [2]. Each column provides a hardware
configuration manager (HCM) and a local cache memory
(LCM). Configurations have to be placed in advance in the
local cache memory. In the first prototype, those memories
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can store 3 configurations and 3 contexts. The associated
service running on the micro-processor will thus need to take
into account and prefetch task configuration on the columns
where it might most probably be placed. The reconfigurable
logic core uses a double memory plan. With this topology, the
context of a task can be shifted in while the previous task is
still running and shifted out while the next one is already
running. The effective task switching overhead is then taken
down to one clock cycle. In [2], authors showed some cases
studies which demonstrate that the OLLAF architecture can
perform a greater efficiency than the one performed using a
traditional commercial FPGA. Our intervention is then to
make a dynamic and predictable scheduling to better manage a
dynamic real time application executed on such architecture.
Being able to predict in most cases the future task that will run
in a particular column will permit to take even better
advantage of the context and configuration management
scheme proposed in OLLAF.

Figure 1. Global view of OLLAF architecture

Uncertainty in scheduling may arise from many sources
[3]. In our research, we will consider three cases:
- Tasks execution time uncertainty:

Variability in the execution time requirement of real time
tasks is common in actual real time systems. For real time
tasks, meeting deadlines is important. Traditional scheduling
algorithms schedule real time tasks assuming that each task
requires the worst case execution time (WCET). This is a
pessimistic approach since tasks are rarely executed via their
WCET [4].
- Dynamical creation of multiple instances of a task:

As hardware resources are limited in embedded systems,
redundant copies are considered only for software tasks [5].
With its hierarchical memories, OLLAF architecture has
overcome this problem.
- Resources failure:

The goal in architectural reconfiguration is to modify the
hardware topology by reallocating resources. In some
situations, some resources become unavailable either due to a
fault or due to reallocation to a higher priority task, or due to a

shutdown in order to minimize the power usage. There is a
need to predict such failure so that the system could react and
failure does not disrupt the application process.

III. Related Work

To realize an efficient predictive schedule of an
application, an operating system needs to know the behavior
of this application, in particular the part where the dynamicity
can be efficiently exploited on a DRA.

The different items of a scheduling problem are the tasks,
the constraints, the resources and the objective function. Tasks
execution must be programmed to optimize a specific
objective with the consideration of several criteria. Many
resolution strategies have been proposed in literature [6].
Usually these methods assume that execution times can be
modeled with deterministic values. They use predictive
schedule that gives an explicit idea of what should be done.
Unfortunately, in real environments, the probability of a pre-
computed schedule to be executed exactly as planned is low
[7]. This is because of, not only variations, but also because of
a lot of data that are only previsions or estimations. It is then
necessary to deal with uncertainty or flexibility in the process
data. Hence, a significant reformulation of the problem and
the solving methods are needed in order to facilitate the
incorporation of this uncertainty and imprecision in
scheduling [8]. In general, there are two main approaches
dealing with uncertainty in a scheduling environment
according to phases in which uncertainties are taken into
account [3]. Proactive scheduling approach aims to build a
robust baseline schedule that is protected as much as possible
against disruptions during schedule execution. It takes into
account uncertainties only in design phase (off-line). Hence, it
constructs predictive schedule based on statistical and
estimated values for all parameters, thus implicitly assuming
that this schedule will be executed exactly as planned.
However, this could become infeasible during the execution
due to the dynamic environment, where unexpected events
continually occur [3]. Instead of anticipating future
uncertainties, reactive scheduling takes decisions in real-time
when some unexpected events occur. A reference
deterministic scheduling, determined off-line, is sometimes
used and re-optimized. In general, reactive methods may be
more appropriate for high degrees of uncertainty, or when
information about the uncertainty is not available. A
combination of the advantages of both precedent approaches is
called proactive-reactive scheduling. This hybrid method
implies a combination of a proactive strategy for generating a
protected baseline schedule with a reactive strategy to resolve
the schedule infeasibilities caused by the disturbances that
occur during schedule execution. Hence, this
scheduling/rescheduling method permits to take into account



uncertainties all over the execution process and ensures better
performance [9] [10]. For rescheduling, the literature provided
two main strategies: schedule repair and complete
rescheduling. The first strategy is most used as it takes less
time and preserves the system stability [11].

In our case, we are dealing with hardware tasks scheduling
for real time applications. We are concerned with soft real-
time systems, such as telecommunication and multimedia,
where the goal is typically to meet some Quality of Service
(QoS) requirements. When developing the real time systems,
it is often required to predict tasks properties of the
application, especially the timing property [12]. Usually,
scheduling algorithms are based on the worst-case execution
time (WCET) of a task. They assume that the WCET is known
a priori. Unfortunately, in general, the worst-case input is not
known and depends on some factors such as input data and
available resources [13]. In general, scheduling algorithms
focus on offline WCET estimation to use it at runtime.
However, those investigations on WCET estimation are not
optimal because, in most cases, real time tasks are not
executing via their worst case execution times. Therefore, the
improvements of efficient execution time analysis are still
limited and the resources utilization is extremely high [14].
Instead of scheduling based on the worst case execution time
as an upper boundary time elapsed for a task to execute, we
prefer to get advantage of that characteristic and attribute, for
each task, a dynamic online estimated value of execution time.
The predictive algorithm will permit to schedule the different
hardware tasks (Ti) and allocate its needed cells of the
hardware DRA based on online estimated values.

IV. Proposed Approach

As we mentioned in section III, to realize a predictive
scheduling we must exhibit the dynamic characteristics of an
application. We consider three cases of dynamicity in
applications:

(a) The number of tasks is not fixed. It may change from
iteration to another.

(b) The tasks execution time may change too.
(c) The number of needed resources for tasks execution is

variable. In addition, the number of available resources may
decrease after a failure occurs.

For these cases, the goal is to develop a robust scheduling
method that is little sensible to data uncertainties and
variations between theory and practice.

Our first work in [15] was to define a new model to
represent dynamic applications features we considered. This
model will be the input of the scheduler. At design time, the
scheduler is able to distinct between two parts of the
application: permanent branches (containing tasks that will be
executed during the whole application runtime) and hazardous

ones. Obviously, scheduler can take into account all dynamic
features of the application presented in the model. Permanent
tasks will be sorted respecting their precedence constraints
(topological order). Its configuration data will be prefetched,
as much as possible, on the columns making a maximum use
of the whole of the architecture. This is to ensure minimizing
the number of configuration data transfers and tasks
relocation, and thus the time of saving and restoring process.
From the model, the prediction service can identify tasks
whose execution time is variable as well as hazardous tasks
with possible multiple instances. At the design time, the
execution times will be defined as WCET values and dynamic
features will not be taken in the first period.

At run-time, there are three dynamic online features:
- Firstly, the graph precedence which is already

presented by the graph but it can be modified as some
nodes (i.e. tasks) may not be executed in some
period.

- Secondly, the new changed parameters of some tasks.
This includes execution time and instance number.

- Finally, the resource availability which may change
from one period to another depending on the tasks
requirements and the fact that a resources failure may
occur or not.

After a task�s execution and for uncertain parameters, the

prediction technique will compute predicted values to be taken
for the next execution. Tasks are executed at the earliest
possible time. For many tasks activated at the same time,
priority will be assigned according to Least Laxity First (LLF)
policy. The LLF permits a dynamic priority assumption
depending on the laxity which depends on the execution time
(L= (D-R)-C); whereD is the deadline,R is the ready time and
C is the execution time. If there is equality between some
tasks, task which has maximum execution time will have
priority to be launched before the others.

The scheduler will proceed taking into account those
features. It has to prefetch configurations data of new
activated tasks in the columns that are available for executing
and to find the possible way to integrate them in the current
schedule without effect on performance. This schedule must
rely on rapid algorithms based on a simple scheduling
technique so that it can perform online execution with no
overhead. In addition, on the reconfigurable device, resource
failure may occur which will affect the resource availability.
Thus, for some tasks, execution may occur or not depending
on the available resources compared with needed ones. A
variable, which is initialized as the total number of resources,
will indicate the amount of remaining resources. From the
ready list, LLF algorithm determines the tasks that can be
executed on the reconfigurable device. Tasks with the higher
priorities will be placed first until the area of device is fully
occupied. If there are not enough hardware resources
available, the Last Recently Used (LRU) strategy is used to



select which tasks� configuration data will be removed.

Therefore, for a ready task, scheduler will compare its needed
resources with the variable reflecting the available ones. If
availability is satisfied, the configuration will be fetched on
target resources. Otherwise, last recently executed tasks will
free their columns until the needed resources will be satisfied.
In the case that all executed resources have released their
resources and the available resources still cannot fit the
needed ones, the tasks in question will be delayed and
scheduler goes to the next one. During run-time, and for
dynamic parameters, historic values are stored and prediction
is made for the next task�s period. The choice will depend on
the applications requirements and the accuracy of estimating
methods. Prediction tested methods will be presented in next
section.

V. Experimental Results

To validate our approach, we should make use of
dynamic applications presenting uncertainty information. In
[16] and [17] two image processing applications are
represented. First one is a visual system embedded in a mobile
robot, while the other is 3D synthesis images. In the first
application, robot moves around and learns its environment to
identify keypoints in the landscape. The keypoints correspond
to the image filtered by difference of Gaussians. This
application is dynamic in the sense that the number of
keypoints is not known a priori and depends on the visual
scene and on the robot movement if it is slow or fast or if it is
stopped. For the application of 3D synthesis images, an object
can be generated using various polygons number and different
shade algorithm (Gouraud, flat, Phong) so with different
visual qualities. For instance, in the application of 3D
synthesis images, an object can be generated using various
polygons number and different shade algorithm (Gouraud,
flat, Phong) so with different visual qualities. Figure 2 shows
time execution model based on off-line measures for the 3D
application using flat shading method.

Figure 2. Texe/triangle_nb variation for flat shading

In this section we will more focus on the vision system of
a mobile robot as we dispose more experimental data of it. An
experiment has been done with a pure software version of this
application executed on a single microprocessor. As a
consequent, we can divide application tasks in three groups:

- Intensive data-flow computation tasks that execute in a
constant time,

- Tasks whose execution number is correlated with the
number of interest points,

- Tasks with unpredictable execution time (depending on
the images features).

The figure 3 shows our proposed model for the robotic
vision application. We can notice the presence of permanent
branch (squared nodes) which represents permanent tasks that
will be executed in all cases or modes (exp: T1, T14, T19).
Tasks with unpredictable execution time are indicated by the
asterisk (exp: T9, T11, T20). Another dynamic feature of tasks
which execution number depends on the number of keypoints
is indicated by the use of resource factor n (exp: T9, T10,
T30).

For the prediction techniques of uncertain tasks features,
we have studied the task of keypoints search. The provided
measured execution times on representative samples are
presented in the figure 4. As we can see, the values
distribution is random. The elapsed time of keypoints search
in an image depends on the number of keypoints that this
image contains. So the execution time is correlated to the
founded number of keypoints. For the fact this number is also
random variable as shown in figure 5. The figure 5 shows the
number of founded keypoints in the corresponding image over
a sequence of more than 5000 images.

Figure 3. Our proposed model for the robotic vision application



Figure 4. Execution time measurement of search task

Figure 5. Number of detected keypoints in image sequence

We have compared several techniques to predict the
execution time of the search keypoints task. Comparison is
based on computing the error in estimation defined as:

where ti is a runtime instant and i={0,..n}.

Tested methods make statistical measurement based on a
specific amount of previous succeeded instances of the same
task that have been obtained by on-line monitoring. We do not
use the whole historic as this need more memory size and is
not useful in the prediction of such random values. The first
method (a) uses the mean value of the three last real execution
times. After making some successive estimations, the
predicted values become almost constant and do not follow
the graph evolution. The second method (b) uses the mean of
the three last values multiplied by different weights. Weights
are determined experimentally based on tested data to
minimize estimation error. As in nonparametric regression
techniques, the higher weights are assigned to the values
closed to the actual parameter and lower weights to those

more distant. The last two methods are more pessimistic and
make overestimation of previous values: one (c) takes the
maximum of the last three real values and the other (d) takes
the last value increased by 5%. We use estimation error rateas
a metric to compare those methods. Firstly, we notice that all
methods lead, for the twenty tested images, to an
overestimation of the execution time. The higher error rate is
for the techniques (a) and (c). For (d), and even with a 1%
increase of the last measure value, the error is still greater than
the one of (b). Hence, the least obtained error percentage is the
one related to the method using weighted average of last
values (b). It provides a good prediction for the task execution
time distribution. The mean error between estimated and
simulated results is about 0.4% for low and medium frequency
scales and about 2.45% for high frequency scale. Those results
show that the technique based on a weighted average of the
execution time values works with an accuracy of almost 98%.
Even for keypoints number estimation (figure 5); the mean
estimation error of the same technique is 0.406% for the
whole 5000 images.

Figure 6 shows the error rate functions of the prediction
of the keypoints number corresponding to figure 5. The
presented function corresponds to the prediction method
which uses the maximum value of last measures. The errors
were calculated of over 1000 successive images. The mean
error (indicated by a horizon line) is -6.5%. This technique
presents significant advantage with a relative acceptable mean
overestimation of 6.5% and less than 21% of the whole
predicted values were underestimated. The purpose is that
prediction be almost near real values and guarantee better
compromise between requested QoS and efficient resources
management. For this visual system application the latter
estimation can assist the prediction engine for better
scheduling analysis of real-time tasks and so better
exploitation of the DRA like OLLAF.

Figure 6. Prediction error function of the number of detected
keypoints



VI. Conclusion

In this work, we aim at performing predictive scheduling
of hardware tasks on OLLAF as a FGDRA. The proposed
approach takes into account the hardware tasks uncertain
characteristics, the available resources in the target device and
the quality of service of the application. We have presented
the scheduling method with the use of a prediction method
enabling better adaptation of the architecture to the
environment variations. To validate the proposed scheduling
method, we have used a case of an image-processing
application of a visual system embedded in a mobile robot.
Such application shows dynamically variable characteristics
that are unpredictable without an entire a priori knowledge on
the environment. We have demonstrated that with our
modeling we can realize an efficient predictive scheduling on
a robot vision application with a mean error of 6.5%. Future
works will consist in integrating our scheduling approach
among the services of an RTOS taking into account the new
possibilities offered by OLLAF. We plan also to employ
preemptive scheduling policies by using the mechanisms of
migration and reallocation of tasks configuration and context
data proposed by OLLAF.
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