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Abstract design. This complexity could be abstracted at run time by
providing an operating system that abstracts the lower level of
Actual dynamic applications, executed on real-tim¢he system [2]. This operating system has to be able to
systems, have the tendency to be built on dynamicalfgspond rapidly to events. In this paper, we are intereésted
reconfigurable hardware devices. These applications eequihe scheduling of applications that could be executed on
high performance and flexibility towards user andlynamically reconfigurable architectures and in particiar
environment needs. To perform these applicatiopredictive scheduling. The reason why prediction is becoming
requirements, efficient mechanisms to manage hardwa®g important objective is the recent focus on large systeahs
device must exist. In this paper we target OLLAF as @an be dynamic and where uncertainty in terms of exetutio
dynamically reconfigurable architecture which is designed téme or resource usage can be very important.
support complex and flexible applications. In order to deal The remaining of the paper is organized as follows. In
with all of the dynamic aspects of such systems, we desarib Section Il we introduce a brief review about the context and
predictive scheduling allowing an early estimation of ouproblematic revealed. Several works dealing with scheduling
application dynamicity. A vision system of a mobile robot an@pproaches for flexible and dynamic systems are detailed in

an application of 3D synthesis images were served to validad€ction 1ll. The new proposed approach of predictable
the presented scheduling approach. scheduling technique is described in Section IV. In Section V
we present an example of our method applied to a vision

Keywords. Dynamically Reconfigurable Architecture, System of a mobile robot. Finally, conclusion and futuoeks
OLLAF, uncertainty variation, predictive scheduling. are given in Section VI.

|. Introduction [1. Problem Definition

Embedded systems are presented around us in Our goal is an efficient management of dynamically
automobiles, robots, planes, satellites, industrial contrifconfigurable architectures; more precisely, as casky,stve
systems, etc. They offer enormous opportunities for novErget the OLLAF architecture. OLLAF, as presented in [2], is
functionalities but, at the same time, system complexity &0 original FGDRA specifically designed to enhance the
increasing and the actual methods and tools are immature efffciency of OS services necessary to manage such
have not yet been adapted to. In addition, the tod@chitecture. From the global view (figure 1), OLLAF has a
applications have a dynamic behavior which is managed ori§configurable logic core organized in columns. Each colum
in software as actual hardware targets are still static. F8n be reconfigured separately and offer the sarheofse
overcome these problems, designers tend to use dynamic&g'vices. A task uses an integer number of columnsamte
reconfigurable architectures (DRA) that are well suited to deBloved from one column to another without any changden t
with the dynamism of applicatons and allow bettefonfiguration data [2]. Each column provides a hardware
compromise between cost, flexibility and performance [1Eonfiguration manager (HCM) and a local cache memory

Such architectures increase the complexity of the apipiiea  (LCM). Configurations have to be placed in advance & th
local cache memory. In the first prototype, those meraorie
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can store 3 configurations and 3 contexts. The associatgtutdown in order to minimize the power usage. There is a
service running on the micro-processor will thus needke taneed to predict such failure so that the system could redct an
into account and prefetch task configuration on the columfealure does not disrupt the application process.

where it might most probably be placed. The reconfigurable

logic core uses a double me.mory_plan..W|th this to_poldgg/, t 111, Related Work

context of a task can be shifted in while the previous imsk

still running and shifted out while the next one is already To

running. The effective task switching overhead is theertak application, an operating system needs to know the behavior

dowp 0 on_e clock cycle. In [2], authors showed .someszasof this application, in particular the part where the dynasnicit
studies which demonstrate that the OLLAF architecture caln pe efficiently exploited on a DRA

perform a greater efficiency than the one performedguain

realize an efficient predictive schedule of an

The different items of a scheduling problem are the tasks,

traditional commercial FPGA. Our intervention is then Qhe constraints. the resources and the objective fundtisks
make a dynamic and predictable scheduling to better manage -.ution must be programmed to optimize a specific

dyr_lamlc real tlme_ap_pllca'uon executed on such arCh'te_Ctur(?ojective with the consideration of several criteria. Many
Being able to predict in most cases the future task thatuvmlllrreSOIution strategies have been proposed in literature [6].

in a particular column will permit FO take even bette'UsuaIIy these methods assume that execution times can be

advantage of the_ context and  configuration managementyeled with deterministic values. They use predictive

scheme proposed in OLLAF. schedule that gives an explicit idea of what should be done.
Unfortunately, in real environments, the probability of a pre-

8 Application Communication Media E computed schedule to be executed exactly as planned is low
—t——t—rt —t { [7]. This is because of, not only variations, but also beea
a lot of data that are only previsions or estimations. It ia the
necessary to deal with uncertainty or flexibility in theqass
HW Sup data. Hence, a significant reformulation of the problem and
Recontﬁgurablem. HW+RTK the solving methods are needed in order to facilitate the
Logjc Core CER incorporation of this uncertainty and imprecision in
- - scheduling [8]. In general, there are two main appresch
He M HeM N HC G HEM g dealing with uncertainty in a scheduling environment
LCM LCM LCM LCM . . . . .
u v Vi . v according to phases in which uncertainties are taken into
t 1 Contmle'm i } account [3]. Proactive scheduling approach aims to baild

robust baseline schedule that is protected as much a®lpossi
Figure 1. Global view of OLLAF architecture against disruptions during schedule execution. It takes into

_ ) i _ account uncertainties only in design phase (off-line). Heihce,
Uncertainty in schedqlmg m_ay arise from many SOUrC&nstructs predictive schedule based on statistical and
[3]. In our research, We_ will c0n3|d_er three cases: estimated values for all parameters, thus implicitly assuming
. Tz_ask;_ ex_ecut|on time gncertalnty: ) . that this schedule will be executed exactly as planned.
Variability in the execution time requirement of real t'm_eHowever, this could become infeasible during the execution

tasks is common n .actugl r.eal time syster_n.s. For real t'_rﬂﬁe to the dynamic environment, where unexpected events
tasks, meeting deadlines is important. Traditional SChedu'"&%ntinually occur [3]. Instead of anticipating future

algor|thms schedule real time ta}sks gssummg that e"’_‘Ch_ t;aTc‘l‘éertainties, reactive scheduling takes decisions in real-time
requires the worst case execution time (WCET). This is Bhen  some unexpected events occur. A  reference

pessimistic approach since tasks are rarely executed Wa ﬂbeeterministic scheduling, determined off-line, is sometimes

WCET [4]. ) ) S _ used and re-optimized. In general, reactive methods lmeay
- Dynamical creation of multlple_lnstgnces of a task: more appropriate for high degrees of uncertainty, bemw
As hardware resources are limited in embedded SYStMiormation about the uncertainty is not available. A

redundant copies are considered only for software tasgks [combination of the advantages of both precedent apeash
with its hlr?rarch;)ial memories, OLLAF architecture hag ey proactive-reactive scheduling. This hybrid method
overcome this prfo.l em.. implies a combination of a proactive strategy for generating

- Resources failure: protected baseline schedule with a reactive strategy to resolve

The goal in architectural reconflguratlon is to modify th?he schedule infeasibilities caused by the disturbances that
hardware topology by reallocating resources. In SoMe. . during  schedule  execution. Hence,  this

situations, some resour_ces becqme una.va-|lable either due t§)cheduIing/rescheduling method permits to take into account
fault or due to reallocation to a higher priority task, or dua to



uncertainties all over the execution process and ensatts b ones. Obviously, scheduler can take into account all dynamic
performance [9] [10]. For rescheduling, the literaturevisted features of the application presented in the model. Permane
two main strategies: schedule repair and completasks will be sorted respecting their precedence constraints
rescheduling. The first strategy is most used as it tadss | (topological order). Its configuration data will be prefetched
time and preserves the system stability [11]. as much as possible, on the columns making a maximum use
In our case, we are dealing with hardware tasks scimeduliof the whole of the architecture. This is to ensure minimgizi
for real time applications. We are concerned with soft-reghe number of configuration data transfers and tasks
time systems, such as telecommunication and multimediajocation, and thus the time of saving and restoringgssc
where the goal is typically to meet some Quality of Serviderom the model, the prediction service can identify tasks
(QoS) requirements. When developing the real time systemgjose execution time is variable as well as hazardous task
it is often required to predict tasks properties of theith possible multiple instances. At the design time, the
application, especially the timing property [12]. Usuallyexecution times will be defined as WCET values and dymam
scheduling algorithms are based on the worst-case executieatures will not be taken in the first period.
time (WCET) of a task. They assume that the WCET is know At run-time, there are three dynamic online features:

a priori. Unfortunately, in general, the worst-case inputds - Firstly, the graph precedence which is already
known and depends on some factors such as input ddta a presented by the graph but it can be modified as some
available resources [13]. In general, scheduling algosth nodes (i.e. tasks) may not be executed in some
focus on offine WCET estimation to use it at runtime. period.

However, those investigations on WCET estimation are not -  Secondly, the new changed parameters of some tasks.
optimal because, in most cases, real time tasks are not This includes execution time and instance number.
executing via their worst case execution times. Theretbee, - Finally, the resource availability which may change
improvements of efficient execution time analysis are still from one period to another depending on the tasks
limited and the resources utilization is extremely high].[14 requirements and the fact that a resources failure may
Instead of scheduling based on the worst case executien ti occur or not.

as an upper boundary time elapsed for a task to exesate After a task(s execution and for uncertain parameters, the
prefer to get advantage of that characteristic and attribute, fmediction technique will compute predicted values to be taken
each task, a dynamic online estimated value of execution ti for the next execution. Tasks are executed at the earliest
The predictive algorithm will permit to schedule the differenpossible time. For many tasks activated at the same time,
hardware tasks (Il and allocate its needed cells of thepriority will be assigned according to Least Laxity First (LLF)
hardware DRA based on online estimated values. policy. The LLF permits a dynamic priority assumption
depending on the laxity which depends on the executioa tim
(L= (D-R)-C); whereD is the deadlineR is the ready time and

C is the execution time. If there is equality between some
to realize a predictivéaSkS' task which has maximum execution time will have

scheduling we must exhibit the dynamic characteristics of gﬁiority to be launched before the others.

application. We consider three cases of dynamicity in The scheduler will proceed talfmg |_nto account those
applications: features. It has to prefetch configurations data of new

(a) The number of tasks is not fixed. It may changenfro activated tasks in the columns that are available for executin
iteration to another and to find the possible way to integrate them in the curren
(b) The tasks execution time may change t0o schedule without effect on performance. This schedule mus

(c) The number of needed resources for tasks exedstior] &Y on rapid aIggnthms based on a Slmple- sche_dulmg
variable. In addition, the number of available resourceg méechnlque SO tha_t.'t can perform o_nlme executllon with no
decrease after a failure occurs overhead. In addition, on the reconfigurable device, resou

For these cases, the goal is to develop a robust scheduﬁﬁ'&"e may occur which will affect the resource availahility

method that is little sensible to data uncertainties aer‘“S’ for S‘?me tasks, execution may occ_ur Or notrnitépg
variations between theory and practice on the available resources compared with needed ones. A

Our first work in [15] was to define a new model tovariable, which is initialized as the total number of resources

represent dynamic applications features we considered. THl |nd!cate the amqunt of remaining resources. From the
model will be the input of the scheduler. At design tirthe, ready list, LLF algorithm determines the tasks that can be

scheduler is able to distinct between two parts of theexecuted on the reconfigurable device. Tasks withhtpker

application: permanent branches (containing tasks that will pgorities will be placed first until the area of device isyul

executed during the whole application runtime) and hazardoﬂgcgp'ed' If there are not enough hardware .resources
available, the Last Recently Used (LRU) strategy is used to

V. Proposed Approach

As we mentioned in section I,



select which tasks[) configuration data will be removed. In this section we will more focus on the vision system of
Therefore, for a ready task, scheduler will compare itsle@ a mobile robot as we dispose more experimental data of it. An
resources with the variable reflecting the available otfes. experiment has been done with a pure software veoditris
availability is satisfied, the configuration will be fetched orapplication executed on a single microprocessor. As a
target resources. Otherwise, last recently executed tasks widhsequent, we can divide application tasks in three group
free their columns until the needed resources will tisfisal. - Intensive data-flow computation tasks that execute in a
In the case that all executed resources have releasied the constant time,

resources and the available resources still cannot fit the- Tasks whose execution number is correlated with the
needed ones, the tasks in question will be delayed and number of interest points,

scheduler goes to the next one. During run-time, and for- Tasks with unpredictable execution time (depending on
dynamic parameters, historic values are stored and predictio the images features).

is made for the next task(s period. The choice will depend on The figure 3 shows our proposed model for the robotic
the applications requirements and the accuracy of estimativigion application. We can notice the presence of permanent
methods. Prediction tested methods will be presented in ndxtinch (squared nodes) which represents permanenttiasks
section. will be executed in all cases or modes (exp: T1, T14,.T19)
Tasks with unpredictable execution time are indicated by the
asterisk (exp: T9, T11, T20). Another dynamic featureasks
which execution number depends on the number of kagoi
6:‘{ indicated by the use of resource factor n (exp: TH),

V. Experimental Results

To validate our approach, we should make use

dynamic applications presenting uncertainty information. IE?’O) o . )
[16] and [17] two image processing applications are For the prediction techniques of uncertain tasks features,

represented. First one is a visual system embedded initemol}’® have studied t.he ta-sk of keypoints sear(?h. The provided
robot, while the other is 3D synthesis images. In the ﬁrg?easured execution times on representative samples are

application, robot moves around and learns its environment Q&es_ent(_ad |_n the figure 4. As We_ can see, Fhe values
identify keypoints in the landscape. The keypoints Cormpodlstrlbutlon is random. The elapsed time of keypoints $earc

to the image filtered by difference of Gaussians. Thi@ an |mage_depends on the n.umb_er Of_ keypoints that thi
application is dynamic in the sense that the number ijpage contains. So the _execut|on time is f:orrelated _to the
keypoints is not known a priori and depends on the visu‘fﬂunded number of keypom_ts. _For the fact tk_us numbelso
scene and on the robot movement if it is slow or fast orisf it random variable as showr_1 In f|gure 5. The f|gure 5_Shtms
stopped. For the application of 3D synthesis images, antobjé‘t‘:’mber of founded keypoints |n. the corresponding image o
can be generated using various polygons number afededif a sequence of more than 5000 images.

shade algorithm (Gouraud, flat, Phong) so with differert

visual qualities. For instance, in the application of 3L * clﬂn{ _____

synthesis images, an object can be generated usigusa - @
polygons number and different shade algorithm (Gourau L Lejm ‘ \e [/
flat, Phong) so with different visual qualities. Figure 2 show:. SO . -'
time execution model based on off-line measures for3e = 0’

application using flat shading method.

Texe=f(triangle_nb) (Flat shading)

80 T16 i *
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0 y T r : . ’ Figure 3. Our proposed model for the robotic vision apgilhmn
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Figure 2. Exdtriangle_nb variation for flat shading



SearchTask more distant. The last two methods are more pessimistic and
make overestimation of previous values: one (c) takes the
maximum of the last three real values and the other (éstak
the last value increased by 5%. We use estimation erroasate
a metric to compare those methods. Firstly, we notice that all
methods lead, for the twenty tested images, to an
overestimation of the execution time. The higher erate is
for the techniques (a) and (c). For (d), and even witt?o

0 increase of the last measure value, the error is still griwester

ey e s e s i mmu s owwow w ow theoneof(b). Hence, the least obtained error perceisidige

N° of tested images one related to the method using weighted average of last
values (b). It provides a good prediction for the task et@tu
time distribution. The mean error between estimated and

- simulated results is about 0.4% for low and mediumueagy

75 | scales and about 2.45% for high frequency scale. Tiesséts

70 | show that the technique based on a weighted averadee of t

e execution time values works with an accuracy of alri@gb.

Even for keypoints number estimation (figure 5); the mean

estimation error of the same technique is 0.406% for the

whole 5000 images.

Figure 6 shows the error rate functions of the prediction
of the keypoints number corresponding to figure 5. The
presented function corresponds to the prediction method
which uses the maximum value of last measures. Theserror
were calculated of over 1000 successive images. Th& mea
error (indicated by a horizon line) is -6.5%. This technique
Images presents significant advantage with a relative acceptable mean
overestimation of 6.5% and less than 21% of the whole
predicted values were underestimated. The purpose is that
prediction be almost near real values and guarantee better

We_ haYe cofmf]ared se;]/elzal tephmques g) pred!ct tl(1,‘8mpromise between requested QoS and efficient resources
execution time of the search keypoints task. Companson management. For this visual system application the latter

based on computing the error in estimation defined as: estimation can assist the prediction engine for better

scheduling analysis of real-time tasks and so better
x 100 exploitation of the DRA like OLLAF.

Execution time (ms)

Figure 4. Execution time measurement of search task

Number of founded keypoints

Figure 5. Number of detected keypoints in image setgien

P z Real execution time(t;) — Estimated execution time(t;)
L Real execution time(t;)
14

Error rate:Max of last values method

where tis a runtime instant and i={0,..n}.

Tested methods make statistical measurement based ¢
specific amount of previous succeeded instances of the s
task that have been obtained by on-line monitoring. Weotlo t
use the whole historic as this need more memory size anc -
not useful in the prediction of such random values. Tist f
method (a) uses the mean value of the three last realitan
times. After making some successive estimations, t/~
predicted values become almost constant and do not foll 40
the graph evolution. The second method (b) uses the nfear
the three last values multiplied by different weights. Weigh
are determined experimentally based on tested data to
minimize estimation error. As in nonparametric regression
techniques, the higher weights are assigned to the values
closed to the actual parameter and lower weights to those

-50,0

Figure 6. Prediction error function of the number of dietec
keypoints
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In this work, we aim at performing predictive scheduling® H-Avtug, M.A.lawley, K.McKay, ~S.Mohan, R.Uzsoy,
of hardware tasks on OLLAF as a FGDRA. The proposed "Executing production schedules in the face of uageties: A
h tak into account the hardware tasks uncertain review and some future directions”, European Journal of
approac . (’_i es in i ) ) Operational Research 161, 2005, p86-110.
characteristics, the available resources in the target dawice 10

) i R ] W.Herroelen and R.Leus, [Project scheduling under uncertainty:
the quality of service of the application. We have presented Survey and research potentialsT] European Journal of

the scheduling method with the use of a prediction method Operational Research, Vol. 165(2) (2005) 289--306.

enabling better adaptation of the architecture to the1] G.E.Vieira, J.W.Hermann, and E.Lin, "Rescheduling
environment variations. To validate the proposed scheduling manufacturing systems: a framework of strategiescigsliand
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application of a visual system embedded in a mobile robdt?l Jack Ganssle. Really Real-Time Systems. In Proceedinge
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that are unpredictable without an entire a priori knowledge (f 8 V\Ilci)lrr:elm R. et al, "The worst case execution time peobl
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