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Abstract

In this article we consider a closed Riemannian manifold (M, g) and A
a subset of M. The purpose of this article is the comparison between the
eigenvalues (Ax(M));~ of a Schrédinger operator P := —A¢ 4+ V on the
manifold (M, g) and the eigenvalues (A (M — A));~ of P on the manifold
(M — A, g) with Dirichlet boundary conditions.

1 Introduction

The behaviour of the spectrum of a Riemannian manifold (M, g) under topo-
logical perturbation has been the subject of many research. The most famous
exemple is the crushed ice problem [Kac], see also [Ann]. This problem consists
to understand the behaviour of Laplacian eigenvalues with Dirichlet boundary
on a domain with small holes. This subject was first studied by M. Kac [Kac] in
1974. Then, J. Rauch and M. Taylor [RT] studied the case of Euclidian Laplacian
in a compact set M of R” : they showed that the spectrum of A is invariant by
a topological excision of a M by a compact subset A with a Newtonian capac-
ity zero. Later, S. Osawa, I. Chavel and E. Feldman [Ca-Fe1l], [Ca-Fe2] treated
the Riemmannian manifold case. They used complex probalistic techniques
based on Brownian motion. In 1995, in a nice article [Cou] G . Courtois stud-
ied the case of Laplace Beltrami operator on closed Riemannian manifold. He
used very simple techniques of analysis. In [Be-Co] J. Bertrand and B. Colbois
explained also the case of Laplace Beltrami operator on compact Riemannian
manifold. In this article we focus on the the Schrodinger operator —A¢ + V
case on a closed Riemannian manifold.

Assumption. The manifold is closed (ie compact without boundary); the function V
is bounded on M and miny,; V > 0.

In this work we show that under “little” topological excision of a part A
from the manifold, the spectrum of —Ag +V on M — A is close of the spectrum
on M. More precisely, the “good” parameter for measuring the littleness of A
is a type of electrostatic capacity defined by :

cap(A) := inf{Q(u), ue H'(M), /MudVg —0,u—e € H(M— A)}



where e1 denotes the first eigenfunction of the operator —Ag + V on the mani-
fold M, and Q is the following quadradic form :

Qlg) = [ 1aoP ave+ [ Vgl avg

and H} (M — A) is the Sobolev space defined by :

H§(M — A) := {g € H}(M), g = 0 on a open neighborhood of A }

the closure is for the norm ||. | ;1 (), H 1(M) is the usual Sobolev space on M.

Indeed, more cap(A) is small, more the spectrum —A¢ +V on M — A is
close of the spectrum on M in the following sense :

Theorem. Let (M, g) a closed Riemannian manifold. For all integer k > 1, there
exists a constant Cy depending on the manifold (M, g) and on the potential V such
that for all subset A of M we have :

0 <A (M—A) = A(M) < Cyr/cap(A).

The organization of this paper is the following : in the part 2 we start by
recall some classicals results in spectral theory, we define our Sobolev space
H}(M — A) and the notion of Schrodinger capacity. In particular, we explain
the link between the functionnal Hilbert space Hj(M — A) and Schrodinger
capacity cap(A). The last part of this paper is a detailed proof of the main
theorem.

2 Spectral problem background

2.1 Schrodinger operator on a Riemannian manifold

We recall here some generality on spectral geometry, for a more detailed survey

see for example [Lab]. In Riemannian geometry, the Laplace Beltrami operator
n

is the generalisation of Laplacian A = 238722 on R". For a C? real valued func-
=1
tion f on a Riemannian manifold and for a local chart ¢ : U C M — R of the

manifold M, the Laplace Beltrami operator is given by the local expression :

1 -9 xd(fop!)
Aef = V8 j,;laxf (\/gg] X )

where ¢ = det(g;;) and g/ = (gj) L.

The spectrum of this operator is a nice geometric invariant, see Berger,
Gauduchon and Mazet [BGM] and [Be-Be]. The spectrum of Laplace Beltrami
operator has many applications in geometry topology, physics ,etc ...

For every Riemannian manifold (M, g) with dimension n > 1 we have the
“natural” Hilbert space L?(M) = L?(M,dV), V, is the Riemannian volume
form associated to the metric g. For V a function from M to R, we define the
Schrodinger operator on the manifold (M, g) by the linear unbounded opera-
tor on the set of smooth compact supports real valued functions C°(M,R) C
L2(M) by : —Ag + V.



2.2 Spectral problem

The spectral problem is the following : find all pairs (A, u) with A € R and
u € L?(M) such that :
—Agu+ Vu = Au

(with u € L?(M) in the non-compact case).

In the case of manifold with boundary, we need boundary conditions on
the functions u, for example the Dirichlet conditions : u = 0 on the boundary

of M, or Neumann conditions : g—z = 0 on the boundary of M. In the case of
closed manifolds (compact without boundary) we don’t have conditions.

For our context (the closed case) the natural space to look here is the Sobolev
space H!(M, g) define by

H'(M,g) := Co(M)

where the closure is for the norm ||.|| g1 = ||| g1 := v/ ||u]|72 + [|du||7;

An other point of view to define the space H!(M, g) is the following :

H'(M,g) i= {u € L2(M); du € 12(M) }

where the derivation is the sense of distribution.
The space H!(M, g) is a Hilbert space for the inner product :

(, )i == (1, 0) 12 + (du,dv) ;.

Recall here a classical theorem of spectral theory (see for example [Re-Sil]) :

Theorem. For the above problems, the operator —Ag + V is self-adjoint, the spectrum
of the operator —Ag +V consists of a sequence of increasing eigenvalues with finite
multiplicity :

Moreover, the associate eigenfunctions (ex);~q is a orthonormal basis of the space
L2(M).

Definition. We define the quadradic form Q with domain D(Q) := H'(M) by

Qlp):= [ 1dgl ave+ [ VioP dvs.

Recall also (see for example [Co-Hil) the minimax variational characteriza-
tion for eigenvalues : for all k > 1

A(M) = mi R
k(M) pooin, max (¢)
dim(E)=k ¢#0

where R(¢) is the Rayleigh quotient of the function ¢ :



Q(e)
R(p) = o9,
S 9*dVy
In our context, a consequence of the minimax principle is :
Proposition 2.1. The first eigenvalue A1(M) and ey the first eigenfunction of the

operator —Ag + V on the manifold (M, g) satisfy A1 (M) > miny V > 0and e; >
Oore; < 0in M.

Proof. 1t’s clear that
/M der|? 4V, + /Mv 12 dVy = minV [ler B2
and on the other hand

/M dey? dVe +/Mv e dv, = — /M Agerer dvg+/Mv e 2 dV,

= /M (—Ag +V)erey dVy = A (M) H31H%2(M)

so A1(M) > miny V. Next, suppose the function e; changes sign into M, since
e; € HY(M), the function f := |e;| belongs to H!(M) and |df| = |de;]| (see for
example [GT]), hence R(f) = R (e1). So, the function f is a first eigenfunction
of —Ag¢ + V on the manifold M which satisfies f > 0 on M, f vanish into M and
(—Ag +V) f =A1(M)f > 0on M. Using the maximum principle [Pr-We], the
function f can not achieved it minimum in an interior point of the manifold M,
hence f does not vanish on M, so we obtain a contradiction. O

3 Proof of the main theorem

3.1 Somes usefull spaces

We define on the space H' (M) the x-norm by :

|2 = /M duf? 4V, +/Mv 2 dv,
so, without difficulty we have :

Proposition. The application ||.||, is a norm on the space H'(M); moreover this
norm is equivalent to the Sobolev norm ||.{| g1 (pyy. In particular HY(M), ||.|I, is a
Banach space.

Now, for a compact subset A of the manifold M the usual Sobolev space
H}(M — A) is defined by the closure of test functions space on M — A for the
norm [|.| g1 (py) :

H}(M — A) :=D(M — A).
What happens when the set A is not compact ? For example if A is a dense
and countable subset of points of the manifold M, the space of test functions
D(M — A) isreduced to {0}. Therefore we cannot define the space H} (M — A).
In this case, we propose a definition of H} (M — A) for any subset A of M.



Definition. We define the Sobolev spaces H}(M — A) and H} (M — A) by :
HY(M — A) := {g € H'(M), g = 0 on a open neighborhood of A };
H{(M — A) := H{(M — A)
where the closure is for the norm ||.{[ 1 () -

We have the :

Proposition. If the set A is compact, the previous definition of the space Hy (M — A)
coincides with the usal ones.

Proof. Let f € H{(M — A), then by definition : for all ¢ > 0 there exists g €
H{(M — A) such that || f — 8llg1(my < & So, we will show that we can write
¢ as a limit of sequence from the space D(M — A) and conclude. Since g €

HA(M — A) there exists an open set U D A such that gu = 0. Consider two
open sets Uy and U of the manifold M such that :

ACcU), M—UCU, U1NnU, =0,
and consider also a function ¢ € D(M) such that :

q)\ul = O’ (Plllz =1

Of course, the function ¢ belongs to the space D(M — A). Next, since § €

HY(M — A) C HY(M) and as the set of smooth functions C*(M) is dense in

H!(M) : there exists a sequence (g,),, in C*(M) such that 1_1)1_13 gn = g for the
n [ee)

norm ||.[| 1) - Therefore we claim that : nEIEoo(Pgn = g for the norm |[.{| g1 (pp)-

Indeed, start by, for all integer 7 :
lpgn — 8l3n(any < lgn — 8130 aa_uy + 1980 — 8130 )

< lign — 8l3n (my + l9gn — &ll3n (1) -

Next, we observe that, for all integer 7 :
lpgn — &Il ) = l9gulln )
= /u |9l dVg+/u |dpgn + pdgal* dVy
< /u|<Pgn\2 dVg+/u|dfpgn\2 ﬂlVg+/u|<pdgn|2 dVg+2/u |dpgnpdgn| dVy
< @2 18n 1720y + 4@l T (any 18011720
+ 11911 g2 + 2114l gl | Igudgal 4V

< l@l% 18ul T2y + lldel2, lignl T2

+ HG’)Hgo |‘d8n”%2(u) +2|de| Hq)HL""(M) HgnHLZ(u) HdgnHLZ(u)/

5



by Cauchy-Schwarz inequality.
Finally we get for all integer 7 :

logn — 813wy < Igallinw) (211015 + ldgl% +2 [dell. 9l -
As a consequence, we have for all integer 7 :
lpgn — &llF ay < lgn = 8lEn

+lgnllza ) (2 0ll% + 4ol +2 ldgl., llgll.,) -

Now, it suffices to note that HgnH%Jl(u) = llgn _gH%Jl(u) < lign _gH%—II(M)
(since ¢ = 0 on the open set U) and we have finally :

lpgn — gl (ay <
I = 8113 oy (1+2ll9l% + 1dgl1% + 2 1ol 1 @ll ) -

The sequence (¢gx), belong to D(M — A)N,and since gr}: gn = g for the
n [e9)

norm ||.|| Hi(m) the previous inequality implies nEToo(Pg” = g for the norm

-l gy -
So we have shown that every function f € H}(M — A) is a limit (for the
norm ||.[| ;1 (py)) of a sequence of D(M — A). O

Let us also denote the spaces H}(M) and S4 (M) by :

Hio = {r e w), [ fave—ol;
and
SA(M) = {u e H{ (M), u—e € Hg(M—A)}.

In the definition of the space H}(M) the condition | v fdVe = 0is analog to

a boundary condition. We observe that the space H} (M) is a Hilbert space for
the norm :

Jull,i= [ Jduf av+ [ Vi avg

and S4 (M) is just an affine closed subset of H(M).

3.2 Schrédinger capacity
Next, we introduce the Schrodinger capacity of the set A ;

Definition. Let us consider the Schrédinger capacity cap(A) of the set A de-
fined by

cap(A) := inf{/ |dul? dvg+/ V|ul* dVg, u € SA(M)}.
M M



Let us remark that : there exists an unique function u4 € S4(M) such that

cap(A) = /M I dVg+/MV\uA|2 dV,.

Indeed : here the capacity cap(A) is just the distance between the function 0
and the closed space S4(M). This distance is equal to ||u,4||, where 14 is the
orthogonal projection of 0 on S4 (M) :

cap(A) = dy (0,54(M)) := inf {{|ul[, , u € SA(M)} = [luall, -

In the following lemma we give the relationships between the capacity cap(A),
the functions 14, e; and the Sobolev spaces Hj (M — A), H'(M).

Lemma. For all subset A of the manifold M, the following properties are equivalent :
(i) cap(A) = 0;
(Zl) Up = 0,‘
(iii) e; € HY (M — A);
(iv) H}(M — A) = HY(M).

Proof. 1t is clear from the formula (3.1) that (i) < (ii) < (iii). Next, suppose
the property (iii) holds : so there exists a sequence (v,), € H{(M — A)N

such that Ln}: vn = e for the norm ||| 1y - So, for all smooth function
n (e}
¢ € C*(M) we have 2111 (¢on)/e1 = @ for the norm |[.[| 1), indeed for all
n o0
integer n :
2 2 2
Pn _ :/ $on _ dV+/‘d<(PU”)—d V.
e 90‘ HY(M) M| € v 7 Im e ¢ §

First, we have for all integer 7 :

J

2
Py _/ 1 2
I — dy, = — Uy — e ay,
o 90‘ s oF |9 (00 —ex) " dVy

<

2
2 2
e1|o Hq)Hoo an - elHLZ(M)

so, since lim v, = e; for the norm |[.[| ;1) we have
n— 00

PUn
€1

lim
n—-+oo JM

2
o| dVe=0.

On the other hand, for all integer 7 :

’ 2
g Pon\ B d (eun) er — puyde; B
/M‘d (—e1 ) dg dvg_/M‘ ; dg| v,

1
1 2|
— /M > ‘d (@) vner + @d (vy) e1 — vad (e1) — d (@) 51‘ dVg
1

2
<

2
Hd(P0n61 — dee? + pdvye; — @ugde

1
e L*(M)



2 2
2
< el <Hd§021n61 — dge] 2 + [|pdvne; — (Pv”del|L2(M))
2
< 2 L (19l llerllos ow = exllz )+

2
91l llex (0 — dex) + exdes — vuden |2 |
2
149l lletllo 1o = exl 24y, +

[e9)

<

€1

1Ml llerllco 1don — derll 2 5y + N9l llderllco [ler — UnHLz(MJ ;

so, since lim v, = e; for the norm |[.[| 1) we have
n—+o00

lim / ’d("’”“)—dqo
n—+oo JM 61
Pon

Therefore, for all function ¢ € C*(M) we have lim =
n——+oo €1

2
dVg — O.

= ¢ for the norm

-l vy

Next, by density of C*(M) in H'(M) : for all function f € H!(M) we have
. fon : fon Tiaf . A\N -

n£111w 0 f . Since the sequence ( = )n € Hy(M — A)™ we get finally that

f belongs to space H} (M — A). Finally, it is easy to see that (iv) = (iii). O

An obvious consequence of this lemma is the following result :

Proposition. The spectrum of —Ag + V on the manifold (M, g) and on the manifold
(M — A, g) are equal if and only if cap(A) = 0.

3.3 The Poincaré inequality

Now, let introduce the Poincaré inequality :

Theorem. If Ay(M) denotes the first eigenvalue of the operator —Ag + V on the
manifold (M, g), the following inequality

2
luallfzmy < A (M)
holds for all subset A of M.

Proof. The case cap(A) = 0 is an obvious consequence of the lemma in section
3.2. Suppose here that cap(A) > 0, then [lua|[;2(p) > 0. The first eigenvalue

A1(M) of the operator —A¢ + V on the manifold (M, g) is given by :

2 2
M(M) = min rnafo‘dq)| + Vgl dVy

ECH!(M) ¢€E 24y
dim(E)(:l) #0 fM |(P\ 8

- Juldel + Vel dvg

= m

 geHI(M) ry
o0 Julol” dVg
Since 14 belongs to the space H! (M) we get A; (M) < H:aﬁg‘” . O
AllL2(m)



3.4 The main theorem
Recall our main result :

Theorem. Let (M, g) a compact Riemannian manifold. For all integer k > 1, there
exists a constant Cy depending on the manifold of (M, g) and the potential V such that
for all subset A of M we have :

0 < Ap(M = A) — A(M) < Cey/cap(A).

Remark. We can easily adapt the proof for a compact Riemannian manifold
with boundary.

Proof. Let us denote by (ef),~; an orthonormal basis of the space L?(M) with
eigenfunctions of the operator —A, 4 V on the manifold (M, g). For all integer
k > 1, we consider the sets

Fy :=span{ey, ey, ..., e}

o (1) sen)

First, observe that Ex C H}(M — A). Forallj € {1,...,k} we introduce also
the functions ¢; := e; ( — 'z—f) € E.

and

o Step 1: we compute the L?-inner product (¢;, ¢j) > () for all pairs (i,j) €
{1,...,k}?*:

uap
(9ir i) 120m) = /‘”M(l_z) dVe
5= 9%, ap Py
= 0jj— MzMA g+ Mele]g g

Thus, for all pair (i,7) € {1,...,k}> we get :

<2/ ‘eiej av +/
—Uu
- M| e A g M

hence, by Cauchy-Schwarz inequality we obtain

‘<¢i' ‘Pf>L2(M) —0ij Ve,

0y
G2
€1

< 2 max
1<i,j<k

\/17 o
vol(M) alz )+ max, |

)
2

H”AHLZ )+ max

2
max, luallT2(m

‘ (Pir $7) 120y — i

(31'6]' (31'6]'
2 2
€] €]

2
luallzzm
()

hence by Poincaré inequality we have

‘<¢i/¢j>L2(M) —d;ij| < Bk,M( CaP(A)+CaP(A))



where By = By (e, €, ..., e, A1 (M), M) > 0, and since the eigenfunctions ey, ey, ..., ¢
and the eigenvalue A1 (M) depends only on (M, g) and V, for all integer k the
constant By depends only on (M, g) and V,ie: By = By (M, V).

Therefore, there exists ¢, €]0, 1] (depends on the constant By) such that for all

A C M we have:
195720y = 1| < Diy/cap(4)

where (and for the same reasons as in the study of By) for all integer k, the con-
stant Dy depends only on M and V, ie Dy = Dy (M, V).

cap(A) < g = dim(E;) = kand Vj € {1,..., k},

e Step 2: Let a function ¢ = f (1 - ”—A) € Ey, with f € F. Without loss gener-

€1

ality we can assume that [|f[| 2(ys) = 1, indeed : we have R(¢) = R (m

and in our context we intererest in the Rayleigh quotient of ¢ (see the end of
the final step of the proof).
Setv, := lé—;‘, we have :

] Vgl ave = [ laf —a (for)l? vy
- /M df2 dvg+/M dfoa+ fdval® dV, —2./I;Adfd (foa) dVs
_ /M dfP? dvg+/M \dfou? dvg+/M fdva? dV,
+2/MdfdvAvadVg—Z/M|df|20AdVg—2/MdfdvAdeg
_ /M dfP2 dvg+/M \dfou? dvg+/M fdval> dV,

—2/d2 dV—Z/dd 1—0,4) dV,.
M|f\0A g MfUAf( va) dVg

Recall we have dv = w, and :
1

v ZdV:/V 2dV—2/V 24, dV /V 2 4y
J viotave= [ vifFave=2 [ VifPoadve+ [ VioafP vy
hence

' 2 ' 2 2 ' 2 2

[ JdoPave+ [ VipPave= [ |afP ave+ [ VIFP dve+ [ idfoul avg

=A(f) :=B(f)

2 ' 2 2 ' 2
+/M|fdvA\ dVg—i—./MV|vAf\ Ve —2 /M|df\ vAdVg+/MV\f\ oadV,
—C(f) —D(f)

—z/M dfdoaf (1—0v4) dVs.

=E(f)

10



¢ Study of A(f) == [y, [df|> dVs + [,, V |f|* dVy > 0: since f € F we can
k k
write f = Y wje; where (1) ;- € RFand with }_ a7 = 1 (since £l 2y =

i=1 i=1
1), thus we get

A(f) = <i“jdejfzk:“idei> + <\/Viajej,ﬁizxiei>
=1 i=1 =1 i=1

[2(M)

= Zaia]- <<de]-, dei>L2(M) + /M Veje; dVg)
L]

[2(M)

= szia]- (— <€j, Agei>L2(M) + /M Veje; dVg)
L]

= sziaj (ej, (—Dg +V) ei>L2(M)
L]

k
= Zaiaj)ti(M) <€j, ei>L2(M) = 20612/\1‘(]\4) < Ap(M).
l,] 1=

Hence, for all integer k, and for all function f € Fy such that || f||,2 (m) = 1we

have
0 < A(f) < A(M).

¢ Study of B(f) := [}, d(f)val* dVy : here vy = 4 and dvy = %’

1
sowe get B < ||df||2 [|va H%z( wm) and, with the Poincaré inequality :
: 1

€1

? cap(A)
o M (M)

€1

2
luallz2m) <

()

2
loallz2my <

hence, for all integer k, and for all function f € Fi such that || f|| 12(m) = Lwe

have
0 < B(f) < Excap(A)

where E;y = E (e, A1(M)) > 0, moreover since the eigenfunction e; and the
eigenvalue A (M) depends only on (M, g) and V, for all integer k the constant
Ej depends only on (M, g) and V, ie: Ex = Ex (M, V).

¢ Study of C(f) : here C(f) is equal to/ | fdva|? Vg —l—/ Voaf|? dVy. Let
M M

=C(f) =C(f)
us observe first C1 (f) :

C1(f) < IIfIIZ lldoall T2

and

2
duAel — uAdel

2

av
€1 g

ldoa 72y = /M

<

2
. /M |dugeq — uAdel\z dVe

1
€1

11



<

2
S l / \duAel\z dVg+2/ \duAdeleluA\ dVg"f‘/ \deluA\z dVg
€1 lleo \/M M M

2
2 2
(”duAHiZ(M) lex |12, + 2 [l der [l llexllo l1dall 2 uny a2 000y + I der]|2, ||”A||L2(M)) :

()

1

€1

<

Next we have also :

Caf) = [ Vieafl ave <IIfI% [V loal® v

) 2
< IfII5

1 2
— Viu dV,.
o OO/M [ual® dVg

Hence we get :

clf) < IfI%

e all 72y e 1%

’ o

1

€1
2 2

+2 [|den o llenllo Nl all 2oy N1 ll 2gaa) + lden |12 ltallF2an)

2

2 |1 / 2
AR |V inal vy
1 2
2 2 2 2 2
< A | [macun ea 2 + 2 e el sl e lun + e 2 s

+/ \duy|? dVg+/ Vual? dvg]
M M

2 || 1P 2 2

<R | [1ea B + IVl Tl

2 2
+2 [|der oo llerlloo l[duall 2 oa 1l 2 any + 1den s ”uA”LZ(M)} ;

Cflp((l\’;)) we get for all integer

so, since [|du {2 < cap(A) and [lualf2 () <
k, and for all function f € Fy such that || f]|» (M) =

0 < C(f) < Frcap(A)

where Fy = F; (f,e1,A1(M)) > 0. Here, for k fixed, the constant F, depends
also on f, and f depends on the functions fi, fp,- - -, fx (which are depends

k
only on M and V) and on the scalars a1, a5, - -, af; since Z zx% = 1, all the
i=1
(@j)1<j<) are bounded in RR, so finally, for all integer k the constant Fy can be
bounded by a constant (we denotes also by F, = Fi(M,V)) which depends
only on Mand V.
¢ Study of [D(f)|: we have

Dl = | [, IR oadvi+ [ VIFEoadvy

12



2 .
u
<l | L v |[FLE| [t avy
2 |1 ?
< max | |df]s el e /M|”A‘dvg
1% 2
< max <|ﬂlf|§o / l—{ )\/VOI(M)|”A|L2(M)
2 vIf? cap(A)
< .
< max <|df|oo e | VVoltM)y [

Hence, for all integer k, and for all function f € F such that || f|[ 2y =1+

ID(f)| < Gyy/cap(A)

where (and for the same reasons as in the study of F, see the constant Fy) for all
integer k, the constant Gy depends only on M and V, ie Gy = G (M, V).
¢ Study of |E(f)] : recall that E(f) = [,,dfdvaf (1 —va) dVy, hence

DI [ ldfdoal IF| dVs+ [ ldfdoa |foal V.

For the first term [, |dfdva| |f| dVg we have :

/M dfdoal |f] dVg < [|fllcs 19 fleo \/ VOLUM) [[dvall L2 (a1

we have see in the study of C(f) that

|doalZ2
<ol (ldualBag leal +2 derll o el lallzqany Nallzany + er 2 uealRagun
=g L2(M) 00 00 0 L2(M) L2(M) 0 L2(M)
so with K := || f|| ldf]l v/ VOl(M) % we get

| ldfdoal £ 4

2 2 2 2
< K\/HduAHLZ(M) 1l + 2 [1dexloo llerlloo lduallpzag 1eallizany + lldenllc uallzz

A ca
<K\lcap( A) [lex||2, +2 || dex o, lle1 ]| 1/ cap(A +H H2 p ))

< Hyy/cap(A)
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where (same reasons as above), for all integer k, the constant Hy depends only
on M and V, ie Hy = Hy (M, V).
Next, for the second term : [, |dfdva||fva| dVg we have :

/M dfdval|foal dVg < |ldflle [1flleo 140l 1200) 104l 2 (0)

1
< 1tfllo 11l 2 200 H—H el 2gan

”cap Hkq/cap

= Hk mcap(A

< ldflloo 1flleo ||

where (same reasons as above), for all 1nteger k, the constant Hy depends only
on Mand V, ie H, = Hi (M, V).
So, for all integer k :

B < i (/eap(a) + cop(4)),
where H) := H;! (M, V).
Finally, with the study of A(f), B(f),C(f),|D(f)|and |E(f)], for all integer k,

for any function ¢ = f (1 - —) € Ey, with f € Fy such that [|f[|;2();) = 1 we
get:

[ 0P dvet [ vigR vs < () + 1 (eap(a) + cop() )

where, for all integer k, the constant I, depends only on M and V, ie: [} =
I (M, V).

e Step 3 : Now we claim that : for all A C M such that cap(A) < g and
for any function ¢ € E; we have :

19117200y > 1= Jiar\/cap(A)

where, for all integer k, the constant J; ,, depend only on M and V, ie: J; ,, =

Jiaa (M, V).
Indeed : let ¢ € Ei, we have seen below in step 1 that :

72y = 1| < Dey/cap(a)

k
therefore, since ¢ € Ej, we can write ¢ = (1 —v4)f with f = ) a;e; where
i=1
(@i)1<i<k € R. As in the step two we can assume that || f| 12(m) = 1, hence we

cap(A) < gx = dim(E;) = kand Vj € {1,..., k}

k
have Y a7 = 1. Next, compute HQDH%Z(M)
i=1

2 2

) k k
Pl72(m Z 1—v4)aie; iPi
= )

L2(M) L2(M)
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k
= ;“}2 H4)1H%2(M) + Z Dcil)(j <¢i’¢j>L2(M) .

i,ji#j
And since

k
X ot il = 25 o {1—2/ GoadVe+ [ ol dvg]

=1— sz% [2 /M e%vA dVy — /M e%vi‘ dVg:|

=1

=1- ;zx%./Me% <2Z)A —v%‘) dVg;

hence

k
190z = 1= Yoo [ e (20a=03) dVy+ T iny (9093)
i=1 M i i

we have seen in step 1 that, for cap(A) small enough :

} <¢i/ ¢j>L2(M) - 51‘,]‘

< by ((/eap(4) + cap())

hence, since all the (a;); -, are bounded in R, and for cap(A) small enough,
we can find a constant B ,, which depends only on M and V, ie B;, = B} (M, V)
such that, for cap(A) small enough :

< Byy/cap(A)

and finally, in the same spirit as in the estimations in section 2, there exists a
constant B}, which depends only on M and V, ie B! = B}/ (M, V) such that,
for cap(A) small enough :

Z Xil; <¢i/ ¢f>L2(M)

i,ji#j

< Byy/cap(A)

k .
Zizx% /Me‘l?' (Z‘UA - vi) dVg
=

so finally we obtain :
2
H‘PHLZ(M) >1-By"y/cap(A)
where the constant B depend only on M and V, ie : B} := B/ (M, V).

e Final step : As a consequence from step 2 and 3, for all function ¢ € Ej
we get :

Jud 0P @y + [y, V 19l dVg _ A(M) + Ty (cap(4) + v/cap(4) )
Ju*dve B 1—B/"\/cap(A)
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hence for cap(A) small enough (ie : cap(A) < &) we have

Sy ldpl> dVe + [,V I91* dVg
S 9?dVe

where Ly := Ly (M, V). Next, since forall k > 1

< Ap(M) + Liy/cap(A)

2 2
MM—A) = min maxi |0 Vet Ju Viel” Dy

ECH}(M—A) 9€E S 9?2 AV,
dim(E)=k 970

and since ¢ € H} (M — A), we get for all k > 1

Jurldpl> dVe + [,V |91* dVg
MM—-A) < fM 7 av; < Ak(M) + Cyy/cap(A).

And the statement of the theorem is established. O
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