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The zero-density shear viscosity of different types of short Lennard-Jones chains, up to the hexa-
decamer, has been evaluated using a non-equilibrium molecular dynamics scheme. Simulations have
been performed on chains of variable rigidities going from the fully flexible to the fully rigid chains.
Very interestingly, it is found that there exists a universal relation (a power law) between the zero-
density viscosity of the Lennard-Jones chains and their radius of gyration whatever the rigidity of
the chain and for all tested temperatures (ranging from 2.5 to 6 in reduced units). Furthermore, for
the studied range of temperature, it is shown that the zero-density viscosity of both fully flexible
chains and fully rigid chains models can be obtained with an accuracy of a few percents know-
ing only the dimer viscosity and the length of the chain. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4767528]

I. INTRODUCTION

Despite continuous progress, there is still no general ap-
proach for an exact estimation of shear viscosity applicable
for all fluid states.1–8 This is largely due to a lack of a compre-
hensive theory for evaluating the transport properties in dense
fluids in terms of a realistic molecular model, i.e., molecu-
lar structure and interaction potentials. This problem is even
more pronounced when dealing with poly-atomic fluids, even
if there are recent improvements on that topic.7–13 When deal-
ing with low density situations, kinetic theories and all related
approaches1, 3, 14 have proven to be accurate to predict vis-
cosity of simple molecular models. Hence, they can be used
with a reasonable success to describe the viscosity of simple
real fluids,2 but, when polyatomic molecules are involved, the
problem is by far more complex. In recent years, major theo-
retical advances have been made in particular in order to re-
late the viscosity to a single generalized cross section (see, for
example, Court et al.15) together with progress on how to per-
form accurate calculations.16 However, parameters that quan-
tify the efficiency with which internal and translational ener-
gies are exchanged during collisions are rarely known in most
cases and so such approaches are not always simple to apply.
It should be noticed that one way to circumvent this difficulty
is to employ molecular dynamics (MD) simulations17 or the
classical trajectory method,18 which allows a direct computa-
tion of the transport properties with a precision that can be of
the order of the experimental one.16, 19, 20

One of the most popular poly-atomic molecular models
to describe fluid molecules is the Lennard-Jones chain (LJC)
model, which is composed of freely jointed spheres interact-
ing through a Lennard-Jones potential. This fluid model, de-
spite its simplicity, has shown to be valuable to describe ther-
modynamic properties of some polyatomic fluids, e.g., normal
alkanes21 as well as interfacial properties22 or even transport

properties in some cases.8–10, 12, 23, 24 So, as this fluid model
is rather simple, one is tempted to develop a scheme based
on this molecular model, or a similar one, aiming at pre-
dicting the viscosity of polyatomic fluids as in Refs. 9, 10,
and 12. However, such a scheme needs an accurate estimate
of the zero-density viscosity of these fluid models (i.e., the
“translational/kinetic” viscosity, which is the shear viscosity
of an infinitely dilute fluid) as a starting point, in particular
those based on an Enskog-like approach. As long as such
quantity is not accessible yet theoretically, one way to pro-
ceed is to use adequate molecular dynamics simulations that
allow to obtain directly the zero-density viscosity for a given
molecular model.10, 25, 26

Thus, to improve the modeling of the zero-density shear
viscosity of LJC fluids and to extend the work initiated in
Ref. 10 about the shear viscosity of fully flexible LJC, nu-
merous non-equilibrium molecular dynamics (NEMD) sim-
ulations on short Lennard-Jones chain in low density states
have been performed. In addition, as the internal degrees of
freedom are important when dealing with transport proper-
ties, we have not only studied the fully flexible LJC fluid but
as well LJC fluids of variable rigidities up to the fully rigid
LJC fluid. Furthermore, it will be shown how the zero-density
viscosity of this family of fluid models can be simply related
to their radius of gyration. Finally, relations are proposed to
accurately describe the zero-density viscosity of the fully flex-
ible and the fully rigid LJC fluid models (up to the hexade-
camer) knowing only the dimer viscosity and the length of
the chain.

The manuscript is structured as follows. In Sec. II, we
briefly describe the fluid model studied in this work and we
provide numerical details as well as some basics on the vis-
cosity modeling in dilute state. In Sec. III, we first indicate
how is computed the zero-density viscosity using NEMD
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simulations. Then, we provide some results for fully flexible
and fully rigid chains. These results are analyzed and mod-
eled in terms of chain length for both type of chains. Then,
it is shown how the zero-density of Lennard-Jones chains of
variable rigidities (ranging from the fully flexible to the fully
rigid) can be universally related to the radius of gyration. Fi-
nally, the conclusions of this study are drawn in Sec. IV.

II. MODELS AND THEORY

A. The LJC fluid model

As mentioned previously, we consider in this study
Lennard-Jones chain fluid models. Each molecule is de-
scribed as a chain (homo-nuclear) of Nc tangent spheres with
bond lengths constrained. Inter-molecular and non-bonded
intra-molecular interactions of non-adjacent spheres are de-
scribed by the truncated Lennard-Jones 12-6 potential,17

ULJ =
⎧⎨
⎩ 4ε

[(σ

r

)12
−

(σ

r

)6
]

, if r < rc

0, if r ≥ rc

, (1)

where ε is the potential strength, σ the sphere “diameter”, r is
the centre to centre distance between the two spheres consid-
ered, and rc is the cutoff radius (equal to 2.5σ in this study).

Concerning bonded interactions, first, to maintain the
bond length between adjacent spheres equal to σ , we have
employed the classical RATTLE algorithm.27 Second, to in-
clude a “rigidity” parameter of the chain, we have introduced
a simple harmonic bending potential described by28

UBend = k (θ − θ0)2 , (2)

where θ0 is the equilibrium angle (=180◦) between three ad-
jacent spheres and k is a stiffness constant. It should be no-
ticed that when k = 0 the molecule is fully flexible (i.e., it
corresponds to the usual LJC model) and when k → ∞ the
molecule becomes fully rigid and behaves as a rod.

In the following, to simplify the analysis of the results,
we use the classical LJ dimensionless units, namely,

T ∗=kBT

ε
, ρ∗=NT σ 3

V
, P ∗=Pσ 3

ε
, η∗=η

σ 2

√
mε

, k∗=k

ε
,

(3)
where kB is the Boltzmann constant, T is the temperature, NT

is the total number of spheres in the simulation box (i.e., Nc

× Nmol, where Nmol is the number of molecules), V is the vol-
ume of the simulation box, P is the pressure, m is the mass of
the monomer, and η is the shear viscosity of the chain. It is
important to note that, using this set of reduced variables, the
LJC fluid models used in this study are completely defined by
their length, Nc, and their rigidity, k.

B. Simulation context

A in-house code already validated on various fluid
types10, 29, 30 is used to perform the molecular dynamics sim-
ulations. The equations of motion are integrated by using
the velocity Verlet algorithm17 together with the RATTLE
approach.27 Classical periodic boundaries with Verlet neigh-
bor’s lists are employed and a Berendsen thermostat31 is ap-

plied to maintain the desired temperature. Error bars have
been computed using the sub-block method.17 Several chain
lengths have been studied (1 ≤ Nc ≤ 16) with a specific
amount of molecules Nmol. For Nc = 1 (respectively, 2, 3, 4,
6, 8, 10, 12, 16), we use Nmol = 1500 (respectively, 750, 500,
375, 250, 200, 200, 200, 200).

To estimate the shear viscosity of the simulated fluids, the
boundary driven nonequilibrium scheme of Müller-Plathe32

has been applied with a subdivision of the simulation box in
24 slabs. To generate the shear, an exchange frequency equal
to 500 has been chosen to avoid any shear thinning,10, 33 a
point that has been numerically checked. The slabs where the
exchanges are performed, as well as their first neighbors, have
been discarded to measure the shear rate. Simulations have
been performed with an equilibration phase of more than 106

time steps, a transient state of more than 106 nonequilibrium
time steps and a steady state of more than 1.5 × 107 nonequi-
librium time steps. The viscosity is computed and averaged
during the steady state of the nonequilibrium phase. Using
these parameters, the error bars have been found to be lower
than 5% in most cases. In the following, only results corre-
sponding to stable states have been provided.

C. Zero-density viscosity modeling

Away from the critical point, the shear viscosity is usually
decomposed as3, 29

η = η0 + ηr, (4)

where η0 is the zero-density contribution to the viscosity and
ηr is the residual viscosity. The zero-density viscosity repre-
sents the contribution to the viscosity that is independent of
density (but not of temperature) and corresponds to the vis-
cosity of a fluid in a very dilute state, i.e., when ρ → 0. For
a Lennard-Jones (monomer) fluid, the zero-density viscosity
can be accurately evaluated15 by using the Chapman-Enskog
solution to the Boltzmann equation, namely,

η∗
0,LJ = 5

16�v

√
T ∗

π
, (5)

where �v is the collision integral that can be estimated using
the accurate correlation provided by Neufeld et al.34

Unfortunately for chain-like molecules, the problem is
more complex despite progress made in order to relate viscos-
ity to a single generalized cross section that is proportional to
the more traditional collision integral.15 Among the general
trends, one can expect a decrease of the zero-density viscos-
ity when the chain length increases because of the conversion
of translation into rotation in a chain like molecule. This as-
sumption is supported by experimental results on chain-like
fluids such as normal alkanes, for which a decrease of the low
density viscosity when the chain length increases is noted for
a given temperature.35 From the modeling point of view, some
relations, based on different assumptions10, 12 have been pro-
posed recently to describe the zero-density viscosity of a fully
flexible chain-like fluid, η0,chain, starting from the knowledge
of the value of the monomer, η0,mono:
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(1) the proposal of Galliero and Boned,10 developed for the
fully flexible LJC fluid,

η∗
0,chain = η∗

0,mono

N
1/2
c

, (6)

(2) and the model of Zhang and Yu,12 constructed to deal
with freely jointed hard-spheres in dense states and ex-
trapolated to the zero-density limit,

η∗
0,chain = Fη(Nc, ρ

∗ → 0)	γη∗
0,mono

N
1/6
c exp(−0.4/T ∗1.5)

, (7)

with γ = 1, 	 = 1.218, and Fη a function defined in
Ref. 12.

III. RESULTS

A. MD computation of the zero-density viscosity

Molecular dynamics is not well suited to deal with very
low density systems, even though it has been used under such
conditions.26 So, the idea is to compute the shear viscosity at
a small but non-null density and to deduce the zero-density
viscosity from this computation. For that purpose, we have
used an approach similar to the one proposed in Ref. 10 with
some modifications. In that approach, we take advantage of
the fact that the linear momentum flux (the shear stress), Jxz,
is directly provided by the NEMD scheme10, 32 and can be
computed as well using its microscopic formulation which is
for an atomic fluid:

J ∗
xz = − 1

V ∗

( NT∑
i=1

v∗
i,xv

∗
i,z +

NT −1∑
i=1

NT∑
j>i

r∗
ij,xF

∗
ij,z

)
, (8)

where NT is the number of spheres, V* is the dimensionless
domain volume, v∗

i,x is the x component of the velocity of par-
ticle i, v∗

i,z is the z component of the velocity of particle i, r∗
ij,x

is the x component of the distance between particles i and j,
and F ∗

ij,z is the z component of the force of particle i acting on
particle j.

The first term of Eq. (8) represents the translational con-
tribution, while the second one represents the collisional con-
tribution. It is also possible to define straightforwardly and
to compute during MD simulations10, 25 a translational/kinetic
viscosity, ηt, and a collisional/configurational viscosity, ηc,
associated, respectively, with the two contributions of the
shear stresses appearing in Eq. (8). By definition, ηc tends to-
wards zero when the density decreases. Hence, we can deduce
that

lim
ρ→0

ηt = η0. (9)

Strictly speaking, ηt = η0 when ρ = 0; however, one may be
tempted to quantify the limits of this equality when the den-
sity is not equal to zero, as long as MD simulations cannot be
performed at ρ = 0. To study that point, we have computed
the translational viscosity of the LJ (Nc = 1) fluid at a su-
percritical temperature T* = 3 for different densities varying
from ρ* = 0.05 to ρ* = 0.8.

ρ*

0.0 0.2 0.4 0.6 0.8

η∗ t,L
JC

0.0

0.1

0.2

0.3

0.4
Nc = 1
Nc = 2
Nc = 4
Nc = 8
Eq. (5)

FIG. 1. Translational viscosity of the fully flexible LJC fluid versus density
for different chain lengths (Nc = 1, 2, 4, and 8) and for T* = 3. The dotted
line corresponds to the zero-density viscosity of the monomer.

As can be seen in Figure 1, the translational viscosity is a
very good approximation of the zero-density viscosity when
the density is sufficiently low. However, when the density in-
creases the translational viscosity decreases. This can be un-
derstood because when density increases the free volume ac-
cessible to displacement decreases (exchange of momentum
by translation), and this decrease is more pronounced than
the increase of the density (number of particles transported)
and so (see Eq. (8)) the translational viscosity should decrease
when density increases.

Interestingly, when ρ* ≤ 0.4, the deviation between ηt,LJ

and η0,LJ computed using Eq. (4) is smaller than 1.5% in all
cases. To verify the applicability of such a scheme to estimate
the zero-density of the LJC fluid (for Nc >1), one has first to
compute its translation viscosity. For molecular fluids, a for-
mulation using the coordinates and velocities of the barycen-
tre of molecules should be used. We note x̄j = 1

Nc

∑Nc

i=1 xj,i

(resp., z̄j ) the x component of the coordinates of a molecule
j, where xj,i , i ∈ [[1, Nc]] are the x components of the coordi-
nates of particles i belonging to a molecule j. In the same way,
the x component of the velocity of a molecule j is defined as
v̄∗

j,x = 1
Nc

∑Nc

i=1 v∗
j,x,i . As a result, the linear momentum flux

associated with the shear stress of LJC fluids (whatever the
rigidity of the chain) can be formulated as follows:

J ∗LJC
xz,t = −1

V ∗

Nmol∑
j=1

v̄∗
j,x v̄

∗
j,z

= −1

V ∗N2
c

Nmol∑
j=1

[(
Nc∑
i=1

v∗
j,x,i

)(
Nc∑
i=1

v∗
j,z,i

)]
. (10)

Using that formulation, similarly to what done for the LJ fluid
(Nc = 1), we have computed the translational viscosities of the
fully flexible LJC fluid model (k = 0) for several chain lengths
(Nc = 2, 4, and 8) and different densities, from ρ* = 0.05 to
ρ* = 0.8, at T* = 3.

The translational viscosity of the fully flexible LJC flu-
ids increases when density decreases as clearly exhibited in
Figure 1. Then, similarly to the LJ fluid, η∗

t,LJC reaches a
plateau for all chain lengths. It seems that this plateau tends
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Nc

2 4 8 16

η∗ 0,
LJ

C

0.05

0.1

0.2

0.4

T* = 3, Flex
T* = 4, Flex
T* = 6, Flex
T* = 3, Rigid
T* = 4, Rigid
T* = 6, Rigid
Eq. (6), T*=6
Eq. (7), T*=6

FIG. 2. Zero-density viscosity of the fully flexible and rigid LJC models for
different chain lengths and different temperatures. Error bars on MD results
are smaller than symbol size.

to start for smaller values of ρ* when Nc increases. However
when ρ* ≤ 0.2, the deviations between the values obtained
are of the order of the error bar. Thus, in the following, to
estimate the zero-density viscosity of the LJC fluids we have
assumed that

η∗
0,LJC = η∗

t,LJC(ρ∗ = 0.1). (11)

B. Modeling of the zero-density viscosity
of Lennard-Jones chains

The aim of this subsection is to correlate the zero-density
viscosity with the chain length for fully flexible and fully rigid
Lennard-Jones chains for the studied range of temperatures.
For that purpose, using the scheme described in Sec. III A,
the zero-density viscosity has been computed using differ-
ent chain lengths (2 ≤ Nc ≤ 16), various temperatures (2.5
≤ T* ≤ 6), and two spring constants k* = 0 (fully flexible
molecules) and k* = 1000 (rigid molecules), for a total of
45 different systems. By computing the end to end vector35

during the simulations, it has been verified that using k*
= 1000 corresponds to a practically fully rigid linear
molecule, the end to end distance being equal to Nc × σ with
deviations below 1.5%. The obtained zero-density viscosity
data can be found in Table I.

As shown on Figure 2, for both flexible and rigid chains,
the zero-density viscosity decreases monotonically when Nc

increases. In addition, the decrease of η∗
0,LJC with Nc is notice-

ably more pronounced when dealing with fully rigid chains
compared with fully flexible chains. This behavior can be un-
derstood as, for a given chain length, rigid chain “occupies”
more space (see Sec. III C) and so should be less viscous than
the corresponding flexible chain. Interestingly, it seems that,
for both LJC types, the dependence of η∗

0,LJC with Nc is of
a power-law type with an exponent independent of tempera-
ture. Furthermore, as for spherical molecular models,14 η∗

0,LJC
increases when the temperature increases.

Concerning the modeling of these results, it appears
clearly in Figure 2 that Eq. (6), which was designed to deal
with fully flexible chains,10 tends to overestimate η∗

0,LJC in all
cases, whereas Eq. (7) leads to an underestimation for short

TABLE I. Translational viscosity and radius of gyration of LJC fluids at ρ*

= 0.1, for different chain lengths (2 ≤ Nc ≤ 16), temperatures (3 ≤ T* ≤ 6),
and different stiffnesses (0 ≤ k* ≤ 1000).

k* Nc T* η∗
0,LJC R∗

g

0 2 3 0.196 ± 0.005 1.000
0 3 3 0.157 ± 0.002 1.192
0 4 3 0.132 ± 0.003 1.349
0 6 3 0.105 ± 0.001 1.619
0 8 3 0.088 ± 0.001 1.825
0 2 4 0.244 ± 0.005 1.000
0 3 4 0.194 ± 0.003 1.196
0 4 4 0.169 ± 0.001 1.358
0 6 4 0.132 ± 0.003 1.622
0 8 4 0.112 ± 0.003 1.853
0 16 4 0.075 ± 0.001 2.578
0 2 6 0.318 ± 0.007 1.000
0 4 6 0.219 ± 0.006 1.359
0 6 6 0.170 ± 0.005 1.627
0 8 6 0.141 ± 0.002 1.856
0 16 6 0.095 ± 0.004 2.631
10 3 3 0.152 ± 0.002 1.280
10 4 3 0.124 ± 0.001 1.530
10 6 3 0.087 ± 0.002 1.979
10 8 3 0.068 ± 0.001 2.381
10 12 3 0.046 ± 0.003 3.088
10 4 6 0.201 ± 0.003 1.476
10 8 6 0.121 ± 0.002 2.185
10 16 6 0.073 ± 0.002 3.223
100 4 3 0.118 ± 0.001 1.608
100 4 6 0.192 ± 0.002 1.599
100 8 6 0.101 ± 0.002 2.695
1000 3 3 0.141 ± 0.004 1.316
1000 4 3 0.111 ± 0.003 1.617
1000 6 3 0.077 ± 0.002 2.205
1000 8 3 0.056 ± 0.002 2.786
1000 3 4 0.178 ± 0.004 1.312
1000 4 4 0.140 ± 0.001 1.617
1000 6 4 0.098 ± 0.002 2.204
1000 8 4 0.075 ± 0.001 2.785
1000 10 4 0.058 ± 0.002 3.362
1000 12 4 0.050 ± 0.003 3.936
1000 3 6 0.230 ± 0.005 1.316
1000 4 6 0.183 ± 0.002 1.616
1000 6 6 0.126 ± 0.002 2.202
1000 8 6 0.095 ± 0.001 2.781
1000 10 6 0.076 ± 0.003 3.356
1000 12 6 0.065 ± 0.002 3.928
1000 16 6 0.049 ± 0.001 5.066

chains and overestimation for the longer chains. Concerning
the trend obtained with Eq. (7), this is not surprising as long as
this model12 has not being designed specifically for the fully
flexible, neither the fully rigid, Lennard-Jones chains. This
indicates that these models, Eqs. (6) and (7), may lead to dif-
ficulties when being applied to predict the shear viscosity of
real fluids adequately described by LJC at least in low density
conditions.

To define an alternative to Eqs. (6) and (7) for both
types of chains, one has to define a reference fluid model
valid for the two types of chains. As shown in Figure 2, the
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T*

3 4 5 6

η∗ 0,
N

c=
2

0.10

0.15

0.20

0.25

0.30

0.35

0.40
MD
Eq. (6)
Eq. (7)
Eq. (12)

FIG. 3. Zero-density viscosity of the LJC dimer for different temperatures.

alternative relation should be dependent on the rigidity when
Nc ≥ 2 but should be independent of the rigidity when going
from the monomer to the dimer, as long as there is no dif-
ference between the “flexible” dimer and the “rigid” dimer.
Thus, it makes sense to choose the dimer, Nc = 2, as the refer-
ence fluid and not the monomer. To describe the zero-density
viscosity of the LJC dimer, we have first tested Eqs. (6) and
(7) combined with Eq. (4) against the data provided by the
MD simulation. As shown in Figure 3, Eq. (6) provides rea-
sonable results (with a slight overestimation) for the dimer,
whereas Eq. (7) does not provide the correct temperature de-
pendence. As a simple and accurate alternative for the zero-
density viscosity of the LJC dimer, we propose the following
relation:

η∗
0,Nc=2 = 2

3
η∗

0,LJ = 5

24�v

√
T ∗

π
. (12)

This relation, compared with the MD results for the stud-
ied range of temperatures, yields an average absolute devia-
tion (AAD) equal to 0.6% with a maximum absolute deviation
(MxD) below 1.2%.

1. Fully flexible chains

Using the data (see Figure 2), it appears that a power-
law independent of temperature should be able to describe
well the zero-density viscosity of the fully flexible LJC using
the dimer as a reference. Thus, η∗

0,LJC should be proportional

to
(

Nc

2

)α
, where α is a numerical parameter adjusted on the

MD data. For the fully flexible chain (for Nc ≥ 2), we have
obtained

η∗
0,LJC flex = η∗

0,Nc=2(
Nc

2

)0.57 = 5

24�v

(
Nc

2

)0.57

√
T ∗

π
. (13)

The obtained value (α = −0.57) will be discussed in
Sec. III C.

When Eq. (13) is employed to describe the zero-density
viscosity of the fully flexible LJC fluid (for 2 ≤ Nc ≤ 16
and 2.5 ≤ T* ≤ 6), it yields, compared with MD results
(24 points), an AAD = 1.5% with a MxD = 4.3%. This result

can be considered as excellent taken into account the uncer-
tainties of the NEMD data.

It should be noticed that, by combining Eqs. (12) and
(13), it is possible to obtain another relation for the fully flex-

ible LJC, i.e., η∗
0,LJC flex = 5

16�vN0.57
c

√
T ∗
π

because 2−0.57 ≈ 2/3.

2. Fully rigid chains

Similarly to what was done for the fully flexible chain,
it can be seen from Figure 2 that a relation of the type of
Eq. (13) should be suitable to describe the zero-density vis-
cosity of a rigid Lennard-Jones chain but with a different ex-
ponent α. By fitting the MD data on the fully rigid chain, we
get α = −0.88, a value that will be discussed in Section III C
and so for Nc ≥ 2:

η∗
0,LJC rigid = η∗

0,Nc=2(
Nc

2

)0.88 = 5

24�v

(
Nc

2

)0.88

√
T ∗

π
. (14)

When this model is employed to describe the MD zero-
density viscosity of the fully rigid LJC fluid (for 2 ≤ Nc

≤ 16 and 3 ≤ T* ≤ 6), it provides an AAD = 2.8% with a
MxD = 5.7% (20 points) which is good but slightly poorer
than what obtained for a fully flexible chain.

C. Universal relation between the zero-density
viscosity of chains of variable rigidities and the radius
of gyration

From the results obtained previously, it appears that the
zero-density viscosity of a chain divided by its dimer value
can be simply related to the chain length. This probably in-
dicates that the zero-density viscosity of a chain, flexible or
rigid, can be related to a geometric quantity describing its ef-
fective size. In the following, we will show that this statement
is valid and that the radius of gyration is the appropriate ge-
ometric quantity to describe the effective size of the chains
studied in this study.

The average radius of gyration, Rg, of Nmol long chains
i composed of Nc particles j reduced to points located at Mi,j

and linked by segments of dimension σ , is given by36

|Rg|2 = 1

Nmol

∑Nmol

i=1

1

Nc

∑Nc

j=1
|Gi Mi, j |2, (15)

where Gi is the barycenter of the chain i. However, because
we are dealing here with short chains, we have to take into
account the size of the spheres and so,

|Rg| =
√

1

NcNmol

∑Nmol

i=1

∑Nc

j=1
|Gi Mi, j |2 + σ

2
. (16)

Thus, for different temperatures ranging from T* = 3 to
T* = 6, different chain lengths with Nc ranging from 2 to 16
and different rigidities k* = 0, 10, 100, and 1000, the radius of
gyration, and the zero-density viscosity have been computed.
Values are provided in Table I.

As expected, the radius of gyration is increasing when
Nc increases and when k increases (see Figure 4 and Table I).
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Nc
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R
* g

1
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8
k*=0
k*=10
k*=100
k*=1000

FIG. 4. Radius of gyration versus chain length for different rigidities at
T* = 6.

Furthermore, the relation between the radius of gyration and
the chain length seems to be of the power law form. We
will address that point in the following. Very interestingly,
as shown in Figure 5, the ratio η∗

0,LJC/η∗
0,Nc=2 seems to be a

unique function of the radius of gyration whatever the tem-
perature, the length, and the rigidity of the chain. In addition,
we have noticed that a simple power law of the form

η∗
0,LJC

η∗
0,Nc=2

= (R∗
g)β (17)

with β = −1.2 is able to consistently represent the full set
of data obtained as shown in Figure 5 for the studied range
of temperatures. Such a result indicates that, for the LJ short
chains studied here, flexible or not, the knowledge of the ra-
dius of gyration provides directly a very good estimate of the
zero-density viscosity if the dimer value is known. More pre-
cisely, when combining Eqs. (12) and (17), one obtains, when
Nc ≥ 2,

η∗
0,LJC = 5

24�v(R∗
g)1.2

√
T ∗

π
, (18)

which leads to an AAD = 3.3% with a MxD below 9% com-
pared to the MD results of all types of LJ chain, from fully
flexible to fully rigid.

R*
g

1 2 3 4 5

η* 0,
LJ

C
 / 

η* 0,
N

c=
2

0.2

0.4

0.6

0.8

1.0
k*=0, T*=3
k*=0, T*=6
k*=10, T*=3
k*=10, T*=6
k*=100, T*=3
k*=100, T*=6
k*=1000, T*=3
k*=1000, T*=6
Eq. (17)

FIG. 5. Variations of the zero-density viscosity versus the radius of gyration
for different temperatures, chain lengths, and rigidities.

The universal law so obtained, Eq. (18), provides an ex-
planation of the values of α obtained when relating η∗

0,LJC to
the chain length, Eqs. (13) and (14). It is well known37 that
a freely jointed chain (ideal chain) yields a radius of gyration
proportional to (Nc/2)0.5. Thus, a freely jointed LJC should
lead to a similar result, even if there exist several differences
between the two chain models. In fact, when combining Eqs.
(13) and (18), one obtains a radius of gyration of the fully
flexible LJC proportional to Nc

0.475 which is consistent with
what known for an ideal chain. Concerning the fully rigid
linear chain, the reduced radius of gyration can be estimated

analytically37 and is equal to
√

(Nc−1)(Nc+1)
12 + 1

2 . In this study,
when combining Eqs. (14) and (18), we can deduce that Rg is
equal to (Nc/2)0.733 for the fully rigid LJC. Despite not being
exact, this relation is a good approximation of the analytical
solution, the MxD between the two relations being 10% when
Nc ≤ 16.

IV. CONCLUSION

To estimate the zero-density shear viscosity of short
Lennard-Jones chains, a nonequilibrium molecular dynamics
scheme is proposed in this article. The simulations have been
performed for various supercritical temperatures, T* varying
from 2.5 to 6, and for various chain lengths from the dimer to
the hexa-decamer. Furthermore, we have not only studied the
fully flexible LJC but as well LJC of variable rigidities up to
the fully rigid LJC.

The most striking result is that the zero-density viscosity
of LJC is a unique function of the radius of gyration what-
ever the rigidity of the chain for the studied states, i.e., there
exists a scaling law between the zero-density viscosity of a
short chain and its radius of gyration. More precisely, a sim-
ple power law provides an estimation of the zero-density vis-
cosity of any LJC (with 2 ≤ Nc ≤ 16) knowing the radius of
gyration with deviations below 9% for all cases tested here.

In addition, as the radius of gyration can be expressed as
a simple power law function of the chain length for both the
fully flexible and the rigid cases, two relations are proposed
to accurately describe, respectively, the zero-density viscosity
of the fully flexible LJC and the fully rigid LJC fluid models
(up to the hexa-decamer) knowing only the dimer viscosity
and the length of the chain. It is shown that these relations al-
low to obtain the zero-density viscosity of the two LJC mod-
els with deviations of the order of a few percent. We hope
that this preliminary work and the proposed relations, which
have only been tested for a relatively limited range of temper-
atures, could be useful in order to improve molecular based
models aiming at predicting shear viscosities using a chain
fluid model.
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