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Abstract The theory of intra-surface viscous flow on

lipid bilayers is developed by combining the equations

for flow on a curved surface with those that describe the

elastic resistance of the bilayer to flexure. The model is

derived directly from balance laws and augments an al-

ternative formulation based on a variational principle.

Conditions holding along an edge of the membrane are

emphasized and the coupling between flow and mem-

brane shape is simulated numerically.

Keywords Lipid bilayers · Viscous membranes ·
Surface flow · Bending elasticity

1 Introduction

A formulation of the nonlinear mechanics of lipid mem-

branes, incorporating intra-membrane viscous flow and

accounting for viscous interaction with bulk liquids,

has recently been developed in (Arroyo and DeSimone,

2009). There it is demonstrated that intra-membrane
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viscosity has a significant effect on the dynamics of the

system vis a vis bulk viscosity at biologically relevant

length scales, contrary to earlier claims made in the lit-

erature (Seifert, 1997). This finding furnishes impetus

for the general theory of surface flow on lipid mem-

branes.

The work reported in (Arroyo and DeSimone, 2009)

relies on a variational principle combined with exterior

differential calculus. While such a framework is entirely

satisfactory from a theoretical point of view, we be-

lieve that understanding of the subject would be pro-

moted by the availability of an alternative treatment

based a priori on balance laws and associated consti-

tutive equations. Indeed, the authors of (Arroyo and

DeSimone, 2009) allude to the possibility of developing

the theory from the balance laws and boundary condi-

tions of the elastic model (Steigmann, 1999a), suitably

extended to account for the effects of intra-membrane

viscosity. They refer to such a development as a ’con-

ceptually interesting exercise’ which, however, lay be-

yond the scope of their investigation. Our purpose in

the present work is precisely to provide such a develop-

ment. Because differential forms are not widely used in

continuum mechanics we work in the setting of tensor

analysis on surfaces. Our view is that this framework,

which is more in keeping with the methods underlying

conventional bulk-fluid mechanics, is adequate for for-

mulating the general theory and addressing boundary-

value problems.

Section 2 contains a complete summary of the con-

ventional elastic theory and boundary conditions aris-

ing from a treatment based directly on balance laws

rather than variational principles (Steigmann, 1999a).

These of course are equivalent to the model derived

from variational considerations (Steigmann et al, 2003;

Agrawal and Steigmann, 2009). In the present work the
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notions of area incompressibility and uniformity of the

material properties are developed in detail, and the

adjustments to the theory required to accommodate

non-uniform material response are indicated. In Sec-

tion 3 we focus on uniform membranes and introduce

intra-membrane viscosity via a well-established interfa-

cial flow model (Scriven, 1960; Aris, 1989). There we

also develop the adjustments to the equilibrium and

boundary conditions required by the inclusion of intra-

membrane viscosity. Section 4 is concerned with the de-

velopment of the equations of the model in the Monge

parametrization, as a prerequisite to the numerical anal-

ysis of some example problems. For simplicity we do

not include viscous bulk interactions and thus impose a

uniformly distributed pressure on the lipid membrane;

that is, we effectively assume the bulk liquid to be in-

viscid and thus that it transmits a uniform pressure

to the membrane in the absence of inertial effects. In

light of the work reported in (Arroyo and DeSimone,

2009) this simplification may be regarded as realistic

at sufficiently small length scales. In any case viscous

interaction with the bulk may be taken into account in

a straightforward manner and so is not considered here

(see, for example, Secomb and Skalak, 1980; Arroyo and

DeSimone, 2009).

2 Inviscid membranes

In this section we present a thorough overview of the

conventional purely elastic theory of lipid membranes

based on a free energy per unit mass. Our purpose is to

establish a framework that is sufficiently general to sub-

sume the current literature and to allow for straightfor-

ward extension to accommodate surface flow and addi-

tional effects such as diffusion (Agrawal and Steigmann,

2011). The present work is limited to the consideration

of elastic response combined with surface flow. Later,

in Section 2.7, we connect this formulation to the more

commonly used framework based on a free energy per

unit area of the surface occupied by the membrane in

its current configuration.

2.1 Elastic surafces

Lipid membranes are special elastic surfaces with

energy densities that respond to changes in surface met-

ric and curvature. The equations of motion in the ab-

sence of inertia are simply the equations of mechanical

equilibrium. For an elastic surface, subjected to a net

lateral pressure p in the direction of the local surface

unit normal n, these may be summarized in the com-

pact form (Steigmann, 1999a):

Tα
;α + pn = 0, (1)

where Tα are the so-called stress vectors and Greek in-

dices range over {1, 2}. These are proportional to the

forces, per unit length, transmitted across the curves

on which the surface coordinates θα are constant. Here

the semi-colon refers to covariant differentiation with

respect to the metric aαβ = aα · aβ , where aα = r,α
and commas identify partial derivatives with respect to

θα. The aα comprise the natural tangent basis on the

surface induced by the parametrization r(θµ, t) of the

position field. The connection to the unit-normal field

is n = a1 × a2/ |a1 × a2| . Here and henceforth Greek

indices range over {1, 2} and, if repeated, are summed

over that range. We assume familiarity with tensor anal-

ysis and curvilinear coordinate systems. Useful intro-

ductions for mechanicians are given in (Sokolnikoff, 1964;

Kreyszig, 1959).

We denote the membrane surface by ω. The coordi-

nate system θµ on ω plays a role analogous to that of a

fixed coordinate system used to parametrize a control

volume in the Eulerian or spatial description of classical

fluid mechanics.

The differential operation in (1) is the surface diver-

gence, given explicitly by

Tα
;α = (

√
a)−1(

√
aTα),α, (2)

where a = det(aαβ). The metric is a positive-definite

matrix, with a > 0, and so the divergence is well de-

fined. The metric (the coefficients of the first fundamen-

tal form) is one of two basic variables in surface theory;

the other is the curvature bαβ (the coefficients of the

2nd fundamental form), defined by bαβ = n · r,αβ .
This framework encompasses all elastic surfaces for

which the energy density responds to metric and curva-

ture. For example, if the energy density per unit mass

of the surface is F (aαβ , bαβ), then (Steigmann, 1999a)

Tα = Nα + Sαn, (3)

where

Nα = Nβαaβ with Nβα = σβα + bβµM
µα,

and Sα = −Mαβ
;β . (4)

These are given in terms of the energy density by (Steigmann,1999a)

σβα = ρ(
∂F

∂aαβ
+

∂F

∂aβα
)

Mβα =
1

2
ρ(

∂F

∂bαβ
+

∂F

∂bβα
), (5)

where ρ is the surface mass density. Substituting (3)

and (4) into (1), invoking the Gauss and Weingarten
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equations (Sokolnikoff, 1964) aβ;α = bβαn and n,α =

−bβαaβ , where bαβ = aαλbλβ , and projecting the result

onto the tangent and normal spaces to ω furnishes the

three equations

Nβα
;α − Sαbβα = 0, Sα;α +Nβαbβα + p = 0. (6)

This setting subsumes classical capillarity theory in

which the energy depends in a special manner on metric

alone (Mβα = 0). It also incorporates the well-known

Helfrich theory (Ou-Yang et al, 1999) of lipid bilayers

and monolayers in which the lipids are of fixed length

and everywhere aligned with the surface normal.

2.2 Edge conditions

Edge conditions may be deduced from a mechanical

power balance (Steigmann, 1999b) which is simply the

global form of the equation of motion in which inertia

is suppressed. In the purely elastic theory this is

d

dt
E = P, (7)

where

P =

∫
ω

pn · uda+ Pb (8)

is the power supplied to the membrane, u(θα, t) is the

membrane velocity field,

E =

∫
ω

ρFda (9)

is the net film energy and Pb is the power supplied by

the forces and moments acting at the boundary ∂ω.

This is (Steigmann, 1999a,b)

Pb =

∫
∂ω

(f · u +Mn · u,ν)ds+
∑

fi · ui, (10)

where u,ν is the normal derivative of u on ∂ω with

exterior unit normal ν = ναaα and unit tangent τ =

n× ν,

f = Tανα − (Mαβτανβn)
′
, M = Mαβνανβ (11)

are the distributed force and bending couple on the

edge, (·)′ = d(·)/ds is the arclength derivative on ∂ω in

the direction of τ , and

fi = −Mαβ [τανβ ]in (12)

is the force exerted at the ith corner of ∂ω if the bound-

ary is piecewise smooth with a finite number of points

where τ (and hence ν) is discontinuous; here the square

bracket refers to the forward jump as the ith corner is

traversed, and the sum in (10) accounts for all corners.

The corner forces vanish if the boundary is smooth in

the sense that its tangent τ is continuous.

The expression (10) for the power is convenient be-

cause u and u,ν may be specified independently on ∂ω.

In particular (Agrawal and Steigmann, 2009) n · u,ν =

−τ · ω where ω is the rate of change of the surface

orientation; i.e., the rotational velocity of the unit nor-

mal n. This yields Mn · u,ν = −Mτ · ω and hence the

interpretation of M as a bending couple.

2.3 Lipid membranes

The elastic theory of lipid membranes is based on

free-energy densities of the form F (ρ,H,K), where

H =
1

2
aαβbαβ , K =

1

2
εαβελµbαλbβµ, (13)

respectively, are the mean and Gaussian curvatures of

the surface. Here (aαβ) = (aαβ)−1 is the dual metric

and εαβ is the permutation tensor defined by ε12 =

−ε21 = 1/
√
a, ε11 = ε22 = 0. The set {ρ,H,K} of in-

dependent variables in the free-energy function is dic-

tated by material symmetry requirements pertaining

to the fluid-like response characteristics of lipid mem-

branes. The underlying concept is developed fully in

(Steigmann 1999a, 2003).

In this case the functions listed in (4) and (5) reduce

to (Steigmann 1999a)

σαβ = −[ρ2Fρ + 2H(ρFH) + 2K(ρFK)]aαβ + (ρFH)b̃αβ ,

Mαβ =
1

2
(ρFH)aαβ + (ρFK)b̃αβ ,

Nαβ = −[ρ2Fρ +H(ρFH) +K(ρFK)]aαβ +
1

2
(ρFH)b̃αβ ,

−Sα =
1

2
(ρFH),βa

αβ + (ρFK),β b̃
αβ , (14)

where

b̃αβ = 2Haαβ − bαβ (15)

is the cofactor of the curvature, in which bαβ = aαλaβµbλµ,

and use has been made of the Mainardi-Codazzi equa-

tions of surface theory (Sokolnikoff, 1964) in the form

(Steigmann, 1999a)

b̃αβ;β = 0. (16)

Later, we use the connection

bβµb̃
µα = Kaαβ . (17)

From (14) we have,

Nβα
;α −Sαbβα = −[(ρ2Fρ),α+ρ(FKK,α+FHH,α)]aβα,(18)

and the positive definiteness of the metric then fur-

nishes the tangential equilibrium equations (cf. (6)1)

(ρ2Fρ),α + ρ(FKK,α + FHH,α) = 0, (19)

whereas the normal part of the equilibrium equation

reduces to

p = ∆(
1

2
ρFH) + (ρFK);αβ b̃

αβ + 2Hρ(ρFρ +KFK)

+ρ(2H2 −K)FH , (20)
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in which ∆(·) = (·);αβaαβ is the surface Laplacian, also

known as the Beltrami operator. The subscripts ρ,H,K

refer to partial derivatives of the energy with respect to

the indicated variables. Eqs. (19) and (20) together con-

stitute the generalization of the well known shape equa-

tion (Ou-Yang et al 1999) to films with possibly non-

uniform properties (Jenkins, 1977; Steigmann 1999a).

In the absence of bending elasticity this system re-

duces to the equations of classical capillarity theory:

p = 2H(ρ2Fρ) (21)

in which (ρ2Fρ),α = 0.

2.4 Convected coordinates

To ease the formulation of balance laws and to fa-

cilitate their correct interpretation, we parametrize the

material manifold by a convected coordinate system ξα.

This may be identified with the system θα at a fixed in-

stant t0, say. The associated surface Ω, with parametric

representation x(ξα) = r(ξα, t0), is fixed and may serve

as a reference surface in a Lagrangian or referential de-

scription of the motion. That is, we regard these coordi-

nates as being convected in the sense that they identify,

via a map r = r̂(ξα, t), the current position at time t of

a material point that was located at x(ξα) ∈ Ω at time

t0. The notion may be generalized by regarding Ω as a

surface that is in one-to-one correspondence with that

occupied at time t0, so that Ω need not actually be oc-

cupied in the course of the motion. The connection with

the θα - parametrization of ω is provided by (Scriven,

1960; Aris, 1989)

r̂(ξα, t) = r(θβ(ξα, t), t). (22)

Thus, we specify the fixed surface coordinates θα as

functions of ξα and t subject to θα(ξβ , t0) = ξα. We

assume the relations giving θα in terms of ξα to be

invertible, to reflect the notion that at fixed t, the co-

ordinates θα can be associated with a unique material

point (identified by fixed values of ξα). Any function,

f(θα, t), say, may then be expressed in terms of con-

vected coordinates as f̂(ξα, t), where

f̂(ξα, t) = f(θβ(ξα, t), t). (23)

The material derivative of f is its partial time deriva-

tive in the convected-coordinate representation, i.e. ḟ =

∂f̂(ξα, t)/∂t, whereas its local time derivative in the

fixed-coordinate parametrization is ft = ∂f(θα, t)/∂t.

By the chain rule, the two are related by ḟ = ft +

(θα)·f,α.

The velocity of a material point on Ω that has been

convected by the motion to ω is u = ṙ = ∂r̂/∂t. We may

write this in terms of components on the natural basis

induced by the fixed-coordinate (θα) parametrization.

Thus,

u = vαaα + wn. (24)

This is not the same as the time derivative rt. However,

the two are related by

u = (θα)·aα + rt. (25)

Following (Aris, 1968) we adopt the fixed-coordinate

parametrization defined by

d

dt
θα = vα(θβ , t), θα|t0 = ξα, (26)

where the derivative is evaluated at a fixed value of the

doublet {ξα} and is therefore equal to (θα)·. Accord-

ingly, the normal velocity in (24) is given by

wn = rt, (27)

and the convected and fixed-coordinate time derivatives

satisfy

ḟ = ft + vαf,α. (28)

Later, we require an expression for the material deriva-

tive ȧαβ in terms of the θα - parametrization. To this

end we adopt convected coordinates ξα whose values

coincide with the instantaneous values of θα. The two

coordinate systems will of course differ at different in-

stants due to the fact that material is convecting with

respect to the θα - system. Said differently, the ma-

terial point instantaneously located at the place with

surface coordinates θα will have different locations at

different instants and hence be associated with different

values of θα, whereas the values of ξα remain invariant.

Accordingly, while it is always permissible to identify

ξα with θα at any particular instant t0, say, it is not

possible to do so over an interval of time. However,

for our purposes this limitation is not restrictive. Using

ȧλµ = ȧλ · aµ + aλ · ȧµ and

ȧλ = (∂r/∂θλ)· = [∂r/∂ξµ(∂ξµ/∂θλ)]· (29)

= ∂u/∂ξµ(∂ξµ/∂θλ) + ∂r/∂ξµ(∂2ξµ/∂θλ∂θα)vα,

together with ∂ξµ/∂θλ = δµλ (the Kronecker delta) and

hence ∂2ξµ/∂θλ∂θα = 0 at time t0, we derive ȧα =

∂u/∂ξα and

ȧλµ = u,λ · aµ + aλ · u,µ, (30)

where u,λ = ∂u/∂θλ at the considered instant.

Combining (24) with the Gauss and Weingarten equa-

tions yields

u,λ = (vα;λ − wbαλ)aα + (vαbαλ + w,λ)n, (31)

where aα = aαβaβ and vα;λ is the covariant derivative

defined by

vα;λ = vα,λ − vβΓ βαλ, (32)
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in which Γ βαλ are the Christoffel symbols on ω computed

using the θα - system (Sokolnikoff, 1964). This delivers

the desired expression (Steigmann et al, 2003):

ȧλµ = vµ;λ + vλ;µ − 2wbλµ. (33)

The corresponding result in Aris’ book (Aris, 1989;

eqs. (10.21.3), (10.21.4)) is given, in our notation, by

ȧλµ = vµ;λ + vλ;µ + (aλµ)t, (34)

where (·)t is computed at fixed θα. The latter is (aλµ)t =

(aλ)t ·aµ+aλ · (aµ)t, where (aλ)t = (r,λ)t = (rt),λ, and

(cf. (27))

(rt),λ = (wn),λ = w,λn− wbλαaα, (35)

yielding (aλµ)t = −2wbλµ, in agreement with (33). How-

ever, (33) is not given explicitly in (Aris, 1989).

2.5 Mass balance

The foregoing relationships facilitate the derivation

of balance laws. For example, if f is the areal density

of a particular quantity on ω, then the rate of change

of the total quantity in a part π of ω is

d

dt

∫
π

fda =
d

dt

∫
Π

fJdA =

∫
π

(ḟ + fJ̇/J)da, (36)

where Π is the part of the fixed surface Ω that is con-

vected to π and J is the local areal dilation of the sur-

face; i.e.,∫
π

da =

∫
Π

JdA for all Π ⊂ Ω. (37)

To express the right-hand side of (36) in terms of the

fixed-coordinate parametrization, we combine J̇/J =
1
2a
αβ ȧαβ (Steigmann et al, 2003) with (33), obtaining

J̇/J = vα;α − 2Hw. (38)

For example, mass conservation is expressed by

d

dt

∫
π

ρda = 0. (39)

Using (36) with f = ρ and invoking the arbitrariness of

π then yields the local conservation law

0 = ρ̇+ ρJ̇/J = ρt + vαρ,α + ρ(vα;α − 2Hw). (40)

2.6 Area incompressibility

It is well known that lipid membranes are relatively

stiff against areal dilation in comparison to bending or

shearing in the tangent plane (Evans and Skalak, 1980;

Secomb and Skalak, 1982). To model this we impose

J = 1 as a local constraint at material points. Accord-

ingly, J̇ vanishes and (40) simplifies to

0 = ρ̇ = ρt + vαρ,α, (41)

the first of which implies that ρ is independent of t

in the convected-coordinate description; that is, ρ is

independent of t when expressed as a function of ξµ

and t. Its value at a particular material point is thus

invariant in time and hence given by the density in the

fixed configuration associated with Ω.

The constraint on J is seen to be equivalent to the

invariance of ρ at any material point. To accommodate

it we replace F in Section 2.3 by

F (ρ,H,K; ξµ, t) = F̄ (H,K; ξµ)− γ(ξµ, t)/ρ, (42)

where γ is a constitutively-indeterminate Lagrange-multiplier

field. The latter takes whatever values that may be re-

quired by the equations of equilibrium and any sub-

sidiary conditions in the particular problem at hand

and may thus depend on the coordinates and time. This

yields the formula γ = ρ2Fρ and hence the mechanical

interpretation of the Lagrange-multiplier field γ as a

surface pressure. However, it is not a material property

and so its a priori specification in terms of the known

surface tension of a particular liquid - commonplace in

works concerned with incompressible lipid membranes

- is logically inconsistent. This point appears to be a

source of considerable misunderstanding in the litera-

ture.

2.7 Areal free-energy density

It is customary in the literature to formulate the

mechanics of lipid membranes in terms of the free en-

ergy per unit area of the surface ω currently occupied

by the material; namely,

W = ρF̄ . (43)

In terms of this we have

σαβ = (λ+W )aαβ − (2HWH + 2KWK)aαβ +WH b̃
αβ ,

Mαβ =
1

2
WHa

αβ +WK b̃
αβ ,

Nαβ = (λ+W )aαβ − (HWH +KWK)aαβ +
1

2
WH b̃

αβ ,

−Sα =
1

2
(WH),βa

αβ + (WK),β b̃
αβ , (44)

where

λ = −(γ +W ). (45)

The shape equation (20) is then seen to be equivalent

to

p = ∆(
1

2
WH) + (WK);αβ b̃

αβ +WH(2H2 −K)

+2H(KWK −W )− 2λH, (46)

whereas

Nβα
;α − Sαbβα = −(γ,α +WKK,α +WHH,α)aβα

= (∂W/∂θα|exp + λ,α)aβα, (47)
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wherein the derivative ∂W/∂θα|exp accounts for any ex-

plicit coordinate dependence of the material properties

arising in non-uniform membranes. Further, the La-

grange multiplier is presumed, by virtue of the one-

to-one relation between the convected and fixed coordi-

nates at any t, to be expressible in terms of θα; that is,

γ,α = ∂γ/∂θα. The tangential equations of equilibrium

are then equivalent to (Agrawal and Steigmann, 2009)

λ,α = −∂W/∂θα|exp. (48)

The specializations of the edge conditions follow by

substituting (44) into (3), (4) and (11). The involved

calculations are found to yield results which coincide

exactly with those derived in detail elsewhere (Agrawal

and Steigmann, 2009) by a variational method. These

are

M =
1

2
WH + κτWK and f = fνν + fττ + fnn, (49)

where

fν = W + λ− κνM
fτ = −τM,

fn = (τWK)′ − (
1

2
WH),ν − (WK),β b̃

αβνα, (50)

and

fi = WK [τ ]in. (51)

Here,

κν = bαβν
ανβ , κτ = bαβτ

ατβ , τ = bαβν
ατβ , (52)

respectively, are the normal curvatures of ω in the di-

rections ν and τ and the twist of ω on the (ν, τ ) - axes.

Use has also been made of the identities H = 1
2 (κν+

κτ ) and K = κνκτ − τ2.
Evidently the actual surface tension is given by fν .

This is the projection onto ν of the force per unit length

transmitted across a curve with unit normal ν. The net

force reduces to f = λν (= −γν) only in the absence

of bending effects.

Suppose the membrane is such that the mass density

is uniformly distributed on the fixed surface Ω used in

the definition of convected coordinates. The presumed

existence of such a configuration, even if it is never

actually occupied in the course of the motion, consti-

tutes part of the definition of a uniform film. By the

chain rule we then have 0 = ∂ρ/∂ξα = ρ,β∂θ
β/∂ξα.

The presumed invertibility of the relation between the

fixed and convected coordinates implies that the matrix

(∂θβ/∂ξα) is non-singular and hence that ρ,β = 0. The

mass-conservation law (41) then yields ρt = 0, implying

that ρ is a fixed constant on the surface ω, independent

of θα and t.

If the film is uniform in the sense described, then its

response to H and K should be the same at all material

points. There is then no explicit coordinate dependence

in the specific energy density F̄ , and hence neither in

the areal energy density W. Thus ∂W/∂θα|exp vanishes

in uniform membranes, implying (cf. (48)) that λ is

uniformly distributed on ω. The latter result is modified

in the case of films with non-uniform bending properties

in which the non-uniformity is induced by a diffusing

species, for example (Agrawal and Steigmann, 2011).

We show below that it is also modified by viscous flow

in the surface.

This framework incorporates the well-known shape

equation

k[∆H + 2H(H2 −K)]− 2λH = p (53)

for uniform Helfrich membranes, defined by

W = kH2 + k̄K, (54)

in which λ is uniform and k and k̄ are the (constant)

bending moduli.

3. Effect of intra-membrane viscosity

3.1 Conventional theory of intra-membrane viscosity

Extensions of classical capillarity theory to accom-

modate intra-surface viscous flow are well known (Scriven,

1960; Aris, 1989). They entail the addition of a conven-

tional viscous term to the stress σαβ = −(ρ2Fρ)a
αβ ,

while bending effects are of course suppressed in the

classical theory. Typically the viscous stress is assumed

to be the two-dimensional analogue of that appearing in

the three-dimensional Navier-Stokes theory. This stress

arises in response to straining of the fluid, which is sim-

ply the time derivative of the evolving metric in the

convected-coordinate description (Aris, 1989). Accord-

ingly, in the case of area incompressibility we have

σαβ = −γaαβ + παβ , where παβ = νaαλaβµȧλµ (55)

and ν is the intra-membrane shear viscosity.

This form of the viscous stress is not appropriate

for use with θα - parametrization. To rectify this we

substitute (33), obtaining

παβ = ν[aαλaβµ(vµ;λ + vλ;µ)− 2wbαβ ], (56)

which is equivalent to eqs. (10.23.3,4) of (Aris, 1989) in

the case of area incompressibility (aαβ ȧαβ = 0).

3.2 Viscous lipid membranes

We suppose that viscous interaction among lipids

arises mainly from their relative motion in the surface

ω, while the effect of relative misalignment of neigh-

boring lipids due to bending remains essentially elastic

in nature. Accordingly, the required adjustment to the
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elastic theory of Section 2, to account for viscosity, is

limited simply to the addition of a viscous stress παβ of

the form (56) to the expression (44)1 for σαβ and hence

also to the expression (44)3 for Nαβ (see (4)). This has

the effect of adding the terms

πβα;α and πβαbβα (57)

to the left-hand sides of (46) and (47), respectively. To

aid in the reduction of the first term we recast (56),

using (15), as

πβα = ν[aβλaαµ(vµ;λ + vλ;µ)− 4wHaβα + 2wb̃βα)].(58)

From the Mainardi-Codazzi equations (16) and because

the metric is covariant-constant (Sokolnikoff, 1964), we

then obtain

πβα;α = 2ν(aβλaαµdλµ;α − w,αbβα − 2wH,αa
βα), (59)

where

dλµ =
1

2
(vµ;λ + vλ;µ) (60)

and

dαβ;µ = dαβ,µ − dβλΓλαµ − dαλΓλβµ. (61)

Using (13)1 and (17) we also derive

πβαbβα = 2ν[bαβdαβ − w(4H2 − 2K)]. (62)

The equations of motion for viscous membranes, re-

placing (46) and (48) respectively, are thus given in the

case of uniform membranes of Helfrich type (cf. (54))

by

λ,γ − 4νwH,γ + 2ν(aαµdγµ;α − w,αbαγ ) = 0,

vα;α − 2wH = 0, (63)

and

k[∆H + 2H(H2 −K)]− 2λH

+2ν[bαβdαβ − w(4H2 − 2K)] = p. (64)

The constraint (63)2 may be treated by introducing

a function ϕ such that

∆ϕ = 2Hw, where ∆ϕ = (
√
a)−1(

√
aaαβϕ,β),α,(65)

and then defining a vector field $α such that

vα = aαβϕ,β +$α. (66)

From (63)2 and (65)1 we have $α
;α = 0 and it follows,

for any simply-connected patch of the surface, that

$α = εαβψ,β (67)

for some scalar field ψ. However, we make no use of this

decomposition in the present work.

3.3 Explicit edge conditions

The edge conditions for lipid membranes with vis-

cosity are given by (3), (4) and (11) in which the vis-

cous stress παβ is added to the expression (44)1 for σαβ .

This results in the addition of the term πβαναaβ to the

right-hand side of the formula (49) for the edge force

f . The decomposition aβ = νβν + τβτ facilitates the

separation of terms into normal and tangential parts,

yielding (44) with

fν = W + λ− κνM + πβανβνα

fτ = πβατβνα − τM, (68)

while fn remains unaltered. The expressions (49)1 and

(51) for the bending moment and corner forces are also

unchanged.

The full set of edge conditions for uniform viscous

Helfrich membranes is

M =
1

2
k(κν + κτ ) + k̄τ

fν =
1

4
k(κ2τ − κ2ν)− k̄τ2 + λ+ πβανβνα,

fτ = πβατβνα −
1

2
kτκν − (

1

2
k + k̄)τκτ ,

fn = k̄τ ′ − kH,ν (69)

with corner forces

fi = k̄[τ ]in. (70)

3.4 Dissipation

The discrepancy between the power supplied to the

membrane and rate at which energy is stored in it is

the dissipation D, defined by

D = P − d

dt
E, (71)

and satisfying

D ≥ 0 (72)

in any dissipative process, this effectively serving as a

surrogate for the second law of thermodynamics in the

present, purely mechanical, setting.

In (Steigmann, 1999b) it is shown that the equations

of mechanical equilibrium for surfaces yield the global

balance equation

S = P, (73)

where S is the stress power. In the purely elastic theory

this is given simply by S = dE/dt, yielding (7) and

D = 0. In the presence of both elasticity and viscosity

the appropriate expression for S follows from eq. (2.18)

of (Steigmann, 1999b) and is given by

S =
d

dt
E +

∫
ω

πβαaβ · ȧαda, (74)
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where E is again given by (9). Accordingly,

D = (P − S) +

∫
ω

πβαaβ · ȧαda, (75)

yielding

D =

∫
ω

πβαaβ · ȧαda (76)

in all inertia-less motions of the surface. The argument

is easily modified to accommodate inertia. In this case

the equations of motion of the film yield dK/dt+S = P

in place of (73), where K is the kinetic energy of the

surface. The dissipation is now defined by D = P −
d(E +K)/dt, while (74) and (76) are unaltered.

The integrand in (73) is πβαaβ · ȧα = 1
2π

βαȧβα,

where

πβαȧβα = νaβλaαµȧλµȧβα. (77)

The factor multiplying ν is the squared norm of the

surface tensor with covariant components equal to ȧαβ .

A positive value of the viscosity thus ensures that any

motion involving straining of the surface is strictly dis-

sipative in the sense of the strict inequality in (72).

Further, the dissipation vanishes only if the straining

vanishes pointwise.

If the loading on the membrane is conservative, then

there exists L such that P = d
dtL. In this case we have

D = − d

dt
(E − L) (78)

and hence
d

dt
(E − L) ≤ 0. (79)

The potential energy E −L then furnishes a Lyapunov

function for the motion. In particular, it is minimized

by asymptotically stable equilibria at which dissipation

ceases and the response is purely elastic.

4. Monge parametrization

To illustrate the use of the theory we adopt the

Monge representation

r(θα, t) = θ + z(θ, t)k (80)

of ω, where θ(θα) is position on a plane with unit nor-

mal k. The shape of the membrane is then determined

by the single function z(θ, t). For example, the plane

may be parametrized globally by a single system of

Cartesian coordinates θα, in which case

θ = θαeα, (81)

where {eα} is an orthonormal basis for the plane. These

then furnish a parametrization of ω via (83). We com-

pute

rt = ztk, aα = eα + z,αk, aαβ = δαβ + z,αz,β

and n = (k−∇z)/
√
a, (82)

where δαβ is the Kronecker delta, ∇z = z,αeα is the

gradient on the plane, and

a = det(aαβ) = 1 + |∇z|2 . (83)

Further, the integrand in (8) is

n · r = (z − θαz,α)/
√
a, (84)

the covariant curvature components are

bαβ = n · aα,β = z,αβ/
√
a, (85)

and the curvature tensor is b = bαβaα ⊗ aβ , where

a1 =
1

a
{[1 + (z,2)2](e1 + z,1k)− z,1z,2(e2 + z,2k)}, (86)

together with a similar formula for a2, obtained by in-

terchanging the subscripts. These are derived by using

aα = aαβaβ with (aαβ) = (aαβ)
−1
.

The Christoffel symbols Γλαβ = aλ·aα,β (Sokolnikoff,

1964), required in (60) and (61), are

Γλαβ = z,λz,αβ/a, (87)

and the normal velocity is

w = n · rt = zt/
√
a. (88)

It is straightforward to use these formulas to cast

the equations of motion (63), (64) in terms of z(θα, t).

However, the resulting system is quite complicated and

so we refrain from exhibiting it explicitly.

4.1 Example

Consider an example in which the membrane flows

over a rectangular portion of the plane with sides of

length a and b. The kinematic boundary conditions are

z = 0, n = k (89)

The latter implies that z,α vanish on the boundary and

hence so too the normal derivative z,ν = ναz,α. From

(88) we have

w = 0 (90)

on the boundary, while the condition z,ν = 0 implies

that w,ν also vanishes there. We conclude that n · u,ν
vanishes on the boundary. Because boundary conditions

entail the specification of one or the other member of a

pair of power-conjugate variables, it follows from (10)

that the transverse shear force fn and the bending mo-

ment M are not specified.

No-slip boundary conditions are used on three of

the four boundaries for the tangential velocity compo-

nents, i.e. vα = 0. On the fourth boundary, the traction

boundary condition given in (91) is used to relate the
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velocity gradient to the surface pressure and the mem-

brane shape. On the fourth boundary, we specify the

left hand sides of

fν = λ− 1

4
k(νανβz,αβ)2 + πβανβνα, (91)

fτ = πβατβνα,

where use has been made of the fact that κτ and τ van-

ish on the boundary; the former following from the fact

that the boundary is piecewise straight and the latter

from the fact that∇z vanishes identically on the bound-

ary. In particular there are no jumps in the twist τ at

the corners and thus no corner forces. The boundary

conditions are listed in Table 1.

To solve this highly nonlinear coupled system, we

use the multiphysics code Comsol. We study the evo-

lution of membrane shape and flow in response to an

applied uniform pressure, p, normal to the surface. It

should be noted that when p = 0, z = 0 is a solution

to the shape equation even when the tangential flow is

not zero. The model was implemented in the equations-

based PDE interface of Comsol Multiphysics, using

the backward difference formula solver for time depen-

dent problems. The equations were solved on a domain

of 1000 nm square with an intramembrane surface vis-

cosity of 10−4 pN · s/nm (Hochmuth, 1987). The value

of bending modulus of the membrane assumed here is

82 pN · nm (Derenyi, 2002).

We choose fν = λ on one boundary as shown in

Table 1. In Figure 1, we show the height of the mem-

brane z at the center in response to the applied lateral

pressure at different times. The lateral pressure is in-

creased as a ramp function, as shown in Figure 1a. In

response to this increasing pressure, the height, z, at the

center also increases with time and eventually attains

a constant value when p is held constant (Figure 1b),

indicating that the system has attained a steady-state

configuration.

The tangential velocity field (Figure 2) also under-

goes transient changes to accommodate the flow of lipids

required to produce the change in shape. The fluid

membrane flows in from the open boundary. At early

times, the fluid flow rate is low because the lateral pres-

sure is small and at later times the tangential velocity

settles into a steady flow pattern in response to the

steady surface pressure. This steady flow (Figure 2b,

c) is maintained even after the lateral pressure attains

a constant value because the velocity gradient at that

boundary is coupled to the function z(θα, t).

The surface pressure λ varies spatially to accommo-

date the tangential flow of the lipids into the computa-

tional domain. Even though the lipid membrane is ho-

mogeneous, the change in the fluid flow pattern results

in a change in the surface pressure in a region adjoin-

ing the open boundary. At early times, the change is

the surface pressure is very small and not discernible.

As the shape evolves in response to the lateral pressure

p, the surface pressure λ develops a spatial inhomo-

geneity, which begins to appear around t = 0.1 s and

intensifies as lateral pressure increases. The value of λ

ranged from −0.01pN/nm to 0.01pN/nm in a region

adjacent to the open boundary.

The coupling between surface shape and surface flow

is primarily through the behavior of λ. The choice of fν
at the boundary is important in determining the flow

of lipids and how membrane shape evolves. In this ex-

ample, the choice fν = λ resulted in a boundary con-

dition wherein the velocity gradient arises in response

to surface shape alone and not surface pressure. To fur-

ther understand how the system responds to different

values of fν , we conducted simulations with the same

lateral pressure function but changed the value fν/λ on

boundary 4.

Figure 3 depicts the shape of the membrane along

the center of the domain. When fν/λ is less than unity,

the height of the membrane increases. As the value of

fν/λ is increased, not only does the membrane flatten;

it also adopts an asymmetric shape. That is, the max-

imum height is not at the center of the domain but

rather closer to the open boundary. This is due to the

role played by λ as an effective surface pressure; larger

values at a given pressure correlate roughly with smaller

curvature and hence, in this example, smaller height.

The other parameter that governs the relationship

between surface deformation and flow is the number of

boundaries that allow flow of lipids. In Figure 4, we

show cases where two adjacent boundaries, boundaries

3 and 4, allow flow with the boundary conditions fν = λ

and fτ = 0. The shape is symmetric (Figure 4) but the

tangential flow field of lipids is very different from that

of in the previous example. In Figure 4, we observe the

lipids entering and leaving the domain from the two

adjacent walls. Similarly, when only one boundary is

treated as a wall (Figure 5), the lipids flow in and out of

three boundaries (Figure 5). Even though the shape is

similar for these boundary conditions, the flow pattern

of lipids on the surface and the surface pressure pattern

are quite different in each of these conditions.

We note that the shape equation (cf. (64)) involves

λ algebraically, whereas the remaining equations of the

model involve λ only through ∇λ. Thus, if the mem-

brane remains flat under the stated boundary condi-

tions, λ affects the flow only through ∇λ and the spec-

ification of λ on the boundary is neither necessary nor

consistent. In the general case in which membrane shape

evolves, we specify a uniform value of λ on the traction
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part of the boundary, and use the fully coupled system

for flow and shape to obtain its distribution in the in-

terior. In effect we are solving a one-parameter family

of problems, parametrized by the specified boundary

value of λ. To find the physiologically relevant value, it

would be necessary in principle to assess the predictions

obtained using different parameter values against some

empirically determined aspect of membrane shape; the

appropriate value of the parameter is then given by that

which furnishes the best-fit simulation. This exercise is

beyond our present scope, however, due to the paucity

of available data consistent with our boundary condi-

tions.

5. Conclusions

In this work, we have developed a model for the

intra-surface flow of lipids on a bilayer membrane by

coupling the elastic model for membrane bending with

a model for flow on an evolving curved surface. This

model is based entirely on balance laws and constitutive

equations. Solutions to representative problems exhibit

the coupled interplay between lipid flow and membrane

shape. Potential applications to biophysics include the

simulation of membrane nanotube formation and the

cubic-to-lamellar transition. Our work on these prob-

lems is in progress and will be reported elsewhere.
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Table 1 Boundary conditions used in Figures 1 and 2

Variable Boundary 1 Boundary 2 Boundary 3 Boundary 4

z 0 0 0 0
zx 0 – – 0
zy – 0 0 –
vα 0 0 0 –
fν – – – λ
fτ – – – 0
λ – – – 10−4pN/nm

Table 2 Boundary conditions used in Figure 4

Variable Boundary 1 Boundary 2 Boundary 3 Boundary 4

z 0 0 0 0
zx 0 – – 0
zy – 0 0 –
vα 0 0 – –
fν – – λ λ
fτ – – 0 0
λ – – 10−4pN/nm 10−4pN/nm

Table 3 Boundary conditions used in Figure 5

Variable Boundary 1 Boundary 2 Boundary 3 Boundary 4

z 0 0 0 0
zx 0 – – 0
zy – 0 0 –
vα 0 −− – –
fν – λ λ λ
fτ – 0 0 0
λ – 10−4pN/nm 10−4pN/nm 10−4pN/nm
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Fig. 1 (a) Lateral pressure as a function of time, and (b) the height z at the center of the square patch.
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Fig. 2 The tangential velocity vector illustrates the flow of lipids on the surface of the membrane at times (a) t=0.05 s, (b)
t=0.1 s, and (c) t=0.22 s. The flow of lipids settles into a steady pattern in accordance with the prescribed boundary conditions
and vortices can be seen near the open boundary where traction is assigned.
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the boundary. As fν/λ increases, the height decreases and the surface shape becomes increasingly asymmetric for the same
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Fig. 4 In this example the condition fν = λ is imposed on boundaries 3 and 4. The remaining boundaries are walls on
which velocity vanishes. The characteristics of the membrane are shown at time t = 0.22 s, after shape evolution has ceased.
The tangential velocity field exhibits lipid flow into and out of two boundaries and the presence of vortices adjacent to these
boundaries.
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Fig. 5 In this example the condition fν = λ is imposed on boundaries 1, 3 and 4. The remaining boundary is a wall on which
velocity vanishes. The characteristics of the membrane are shown at time t = 0.22 s, after shape evolution has ceased. The
tangential velocity field features lipid flow into and out of these three boundaries together with adjacent vortices.




