HAL
open science

1,3-dipolar cycloadditions of aldehydes or Imines with carbonyl ylides generated from epoxides: Classical heating and microwave irradiation

Ghenia Bentabed-Ababsa, Mustapha Rahmouni, Florence Mongin, Aicha
Derdour, Jack. Hamelin, Jean-Pierre Bazureau

To cite this version:

Ghenia Bentabed-Ababsa, Mustapha Rahmouni, Florence Mongin, Aicha Derdour, Jack. Hamelin, et al.. 1,3-dipolar cycloadditions of aldehydes or Imines with carbonyl ylides generated from epoxides: Classical heating and microwave irradiation. Synthetic Communications, 2007, 37 (17), pp.2935-2948. 10.1080/07370650701471699 . hal-00781884

HAL Id: hal-00781884

https://hal.science/hal-00781884

Submitted on 28 Jan 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1,3-Dipolar cycloadditions of aldehydes or imines with carbonyl ylides generated from epoxides: classical heating and microwave irradiation

Ghenia Bentabed
Synthèse \& ElectroSynthèse Organiques, UMR 6510, CNRS-Université de Rennes 1, Bâtiment 10A, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France
Mustapha Rahmouni
Laboratoire de Catalyse et de Synthèse Organique, Université Ibn Khaldoun, Tiaret, Algérie
Florence Mongin
Synthèse \& ElectroSynthèse Organiques, UMR 6510, CNRS-Université de Rennes 1, Bâtiment
10A, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France
Aicha Derdour
Laboratoire de Synthèse Organique Appliquée, Faculté des Sciences de l'Université, BP 1524 Es-Senia, Oran 31000, Algérie
Jack Hamelin and Jean Pierre Bazureau*
Sciences Chimiques de Rennes, UMR 6226, CNRS-Université de Rennes 1, Bâtiment 10A, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Abstract

Cycloadditions of aldehydes with carbonyl ylides to give dioxolanes have been carried out without solvent under microwave irradiation. The reactions proceeded in similar yields and stereoselectivities, but in shorter reaction times, than those obtained in toluene at reflux using an oil bath. Cycloadditions conducted between imines and carbonyl ylides using the same protocol were less efficient since the oxazolidines formed proved unstable under the reaction conditions.

Keywords: 1,3-dipolar cycloaddition, microwave irradiation, dioxolanes, oxazolidines. * Corresponding author. e-mail: jean-pierre.bazureau@univ-rennes1.fr

1. Introduction

1,3-Dipolar cycloaddition reaction offers a versatile route for building five-membered heterocycles. ${ }^{1}$ Among dipoles, carbonyl ylides generated from thermal electrocyclic ring opening of epoxides are known to undergo [3+2] cycloaddition with π-bonds to afford oxacyclic systems. ${ }^{2}$

A rising number of articles have advocated the use of microwave technology in organic synthesis. Harsh conditions such as high temperatures and long reaction times often required for cycloaddition reactions could generally be reduced using this technique. ${ }^{3}$ In 2003 we have published the first microwave-induced syntheses of tetrahydrofurans using 1,3-dipolar cycloaddition reactions of alkenes with carbonyl ylides generated from epoxides. ${ }^{4}$ In continuation of our investigation, we studied the syntheses of dioxolanes and oxazolidines using reactions of aldehydes and imines, respectively, instead of alkenes with the same 1,3dipoles. We report here our results on the preparation of 2,4-disubstituted 1,3-dioxolane-5,5dicarbonitriles and 2,3,4-trisubstituted 1,3-oxazolidine-5,5-dicarbonitriles under microwaves.

2. Results and discussion

The cycloaddition reactions between a series of aldehydes and carbonyl ylides generated in situ from the oxiranes $\mathbf{1}(\mathrm{X}=\mathrm{H}, \mathrm{Cl}, \mathrm{OMe})$ were first attempted using different reaction conditions and methodologies. The best results were obtained using a solvent-free reaction coupled with microwave irradiation, ${ }^{5}$ with reduction of reaction times in comparison to classical heating conditions. ${ }^{2 d, e}$

Several experiments were performed, at various powers and irradiation times, in order to find the most adequate conditions, which are presented in Table 1. Thus, the dioxolanes 2-3 have been prepared by irradiating the mixtures of aldehyde (3,4,5-trimethoxybenzaldehyde or piperonal) and epoxide for $30-45 \mathrm{~min}$ so as to keep the temperature of the reaction mixture at $80-120^{\circ} \mathrm{C}$.

The reactions did not proceed when the reactants were heated without solvent in an oil bath, because of the more rapid decomposition of epoxides. The use of toluene at reflux afforded the dioxolanes 2-3 in similar yields, but after 35 to 72 h of stirring, depending on the electron-
donating ability of the group present at the para-position on the phenyl ring of the epoxide. Indeed, it has been previously observed that the reactivity of the epoxide varies in the order $\mathbf{1 -}$ $\mathbf{O M e} \gg 1-\mathrm{H} \sim \mathbf{1 - C l} .^{2 \mathrm{~d}, \mathrm{e}}$

The diastereoisomeric ratios in the mixtures were determined from ${ }^{1} \mathrm{H}$ NMR spectral analysis, and the cis- and trans-products were identified on the basis of their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, and in comparison with the literature data. ${ }^{2 d, e}$ The ratios proved to be similar using classical heating and microwave irradiation, with the cis isomer being the major product.

Table 1. Reactions between benzaldehydes and epoxides to give 1,3-dioxolanes

Entry	ArCHO	Epoxide	Conditions ${ }^{\text {a }}$	Products, a:b ratio ${ }^{\text {b }}$	Main product, yield
1		1-H	- MW, 60 W , rt to $120^{\circ} \mathrm{C}$ then 45 min at $120^{\circ} \mathrm{C}$ - toluene, reflux, 35 h	$\begin{aligned} & \text { 2-H, 68/32 } \\ & \text { 2-H, } 77 / 23 \end{aligned}$	$\begin{aligned} & \mathbf{2 a - H}, 49 \% \\ & \text { 2a-H, } 40 \% \end{aligned}$
2		1-Cl	- MW, 60 W , rt to $120^{\circ} \mathrm{C}$ then 40 min at $120^{\circ} \mathrm{C}$ - toluene, reflux, 68 h	$\begin{aligned} & \text { 2-Cl, } 71 / 29 \\ & \text { 2-Cl, } 72 / 28 \end{aligned}$	$\begin{aligned} & \text { 2a-Cl, } 45 \% \\ & \text { 2a-Cl, } 42 \% \end{aligned}$
3		1-OMe	- MW, 60 W , rt to $80^{\circ} \mathrm{C}$ then 35 min at $80^{\circ} \mathrm{C}$ - toluene, reflux, 45 h	2-OMe, 70/30 2-OMe, 68/32	$\begin{aligned} & \text { 2a-OMe, } 55 \% \\ & \text { 2a-OMe, } 52 \% \end{aligned}$
4		1-H	- MW, 60 W , rt to $120^{\circ} \mathrm{C}$ then 40 min at $120^{\circ} \mathrm{C}$ - toluene, reflux, 45 h	$\begin{aligned} & \text { 3-H, 66/34 } \\ & \text { 3-H, 58/42 } \end{aligned}$	$\begin{aligned} & 3 \mathrm{a}-\mathrm{H}, 25 \% \\ & 3 \mathrm{a}-\mathrm{H}, 31 \% \end{aligned}$
5		1-Cl	- MW, 60 W , rt to $120^{\circ} \mathrm{C}$ then 40 min at $120^{\circ} \mathrm{C}$ - toluene, reflux, 72 h	$\begin{aligned} & \text { 3-Cl, 60/40 } \\ & \text { 3-Cl, } 60 / 40 \end{aligned}$	$\begin{aligned} & \mathbf{3 a - C l}, 39 \% \\ & \text { 3a-Cl, } 28 \% \end{aligned}$
6		1-OMe	- MW, 60 W , rt to $80^{\circ} \mathrm{C}$ then 30 min at $80^{\circ} \mathrm{C}$ - toluene, reflux, 48 h	$\begin{aligned} & \text { 3-OMe, } 67 / 33 \\ & \text { 3-OMe, } 71 / 29 \end{aligned}$	$\begin{aligned} & \text { 3a-OMe, } 40 \% \\ & \text { 3a-OMe, } 54 \% \end{aligned}$

[^0]We next turned our attention to reactions between a series of imines and the oxiranes $\mathbf{1}(\mathrm{X}=$ $\mathrm{H}, \mathrm{Cl}, \mathrm{OMe}, \mathrm{NO}_{2}$), and attempted both methods.

Using classical heating at toluene reflux, the oxazolidines 4-7 were isolated in medium to high yields, except with quite unreactive epoxide $\mathbf{1}-\mathrm{NO}_{2}$. The reactivity of the epoxide again depends on the electron-donating ability of X , and varies in the order $\mathbf{1 - O M e} \gg \mathbf{1 - H} \sim \mathbf{1 - C l}$ >> $\mathbf{1 - N O} \mathbf{N}^{2 \mathrm{ab}, \mathrm{f}}$ (Table 2).

Table 2. Reactions between imines and epoxides to give 1,3-oxazolidines

Entry	$\mathrm{ArCH}=\mathrm{NR}$	Epoxide	Reaction time	Product, yield
1		1-H	24 h	4a, 52\%
2		1-Cl	20 h	4b, 60%
3		1-OMe	5 h	4c, 78\%
4		$1-\mathrm{NO}_{2}$	35 h	4d, 40\%
5		1-H	27 h	5a, 48%
6		1-Cl	25 h	5b, 59\%
7		1-OMe	9 h	5c, 60\%
8		$1-\mathrm{NO}_{2}$	45 h	5d, 35\%
9		1-H	32 h	6a, 56\%
10		1-Cl	32 h	6b, 59\%
11		1-OMe	9 h	6c, 60\%
12		$1-\mathrm{NO}_{2}$	65 h	6d, 18\%
13		1-H	40 h	7a, 60\%
14		1-Cl	37 h	7b, 50\%
15		1-OMe	18 h	7c, 80%
16		$1-\mathrm{NO}_{2}$	72 h	7d, 27\%

As previously reported with benzylidene anilines as imines, ${ }^{2 b, f}$ the ${ }^{1} \mathrm{H}$ NMR spectral analysis shows one diastereoisomer is predominantly formed (its relative configuration was not determined), with diastereoisomeric ratios varying from 90:10 to 100:0.

Using microwave irradiation without solvent, the expected oxazolidines 4-7 were also formed but rapidly converted to the corresponding 2,3,4-trisubstituted 2,3-dihydrooxazole-5carbonitriles 8. The attempts to reduce the formation of the unsaturated derivative $\mathbf{8}$ by
reducing the reaction time or the irradiation power resulted in lower amounts of $\mathbf{8}$ but with recovery of starting materials.

3. Conclusion

We have synthesized novel 1,3-dioxolanes using 1,3-dipolar cycloaddition of aldehydes with carbonyl ylides generated from epoxides, taking advantage of microwave irradiation under solvent-free conditions.

Concerning the reactions of imines with the same carbonyl ylides, the classical heating was preferred for the synthesis of novel 1,3-oxazolidines, since the compounds formed proved unstable under microwave irradiation. The synthesis of 2,3,4-trisubstituted 2,3-dihydrooxazole-5-carbonitriles under microwave irradiation will soon be investigated.

4. Experimental

4.1. General

Melting points were measured on a Kofler apparatus. NMR spectra were recorded with a Bruker ARX 200 P or a Bruker AC 300 P spectrometer (${ }^{1} \mathrm{H}$ at 200 or 300 MHz , respectively, and ${ }^{13} \mathrm{C}$ at 50 or 75 MHz , respectively). Mass spectra (HRMS) were recorded with a Varian MAT 311 spectrometer. Microwave reactions were performed in open glass containers (Prolabo Synthewave ${ }^{\circledR} 402$) with accurate control of power (maximum power: 300 W) and temperature (by infrared detection).

Starting materials.

Oxiranes ${ }^{6}$ and imines ${ }^{7}$ were prepared according to described procedures. Toluene was distilled before use. Reactions were performed under dry argon. Petrol refers to petroleum ether (bp 40-60 ${ }^{\circ}$).

4.2. General procedures 1 and 2:

General procedure 1: A mixture of epoxide (2.0 mmol) and aldehyde $(2.0 \mathrm{mmol})$ was heated in a microwave oven (power, temperature and time are given in the product description). The residue was purified as specified in the product description.

General procedure 2: A mixture of epoxide (2.0 mmol) and aldehyde (2.0 mmol) in dry toluene (30 mL) was heated at reflux under N_{2}. The mixture was then evaporated to dryness and purified as specified in the product description.
4.2.1. 2-Phenyl-4-(3,4,5-trimethoxyphenyl)-1,3-dioxolane-5,5-dicarbonitrile (2-H). The general procedure $1\left(60 \mathrm{~W}, 9 \mathrm{~min}\right.$ to reach $100^{\circ} \mathrm{C}, 12 \mathrm{~min}$ to reach $120^{\circ} \mathrm{C}$, and 45 min at $120^{\circ} \mathrm{C}$), using 3-phenyloxirane-2,2-dicarbonitrile ($\left.\mathbf{1 - H}, \quad 0.34 \mathrm{~g}\right)$ and 3,4,5trimethoxybenzaldehyde (0.39 g), gave a 68/32 mixture from which the preponderant diastereoisomer 2a-H was isolated by recrystallization from petrol/ $\mathrm{Et}_{2} \mathrm{O}$ 85:15 in 49% yield as a beige powder: $\mathrm{mp} 122^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H})$, $6.59(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 3 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 56.7(\mathrm{p}), 60.7$ (p), $70.8(\mathrm{q}), 87.9(\mathrm{t}), 104.8(\mathrm{t}, 2 \mathrm{C}), 108.5(\mathrm{t}), 113.1(\mathrm{q}), 113.4(\mathrm{t}), 126.4(\mathrm{q}), 128.4(\mathrm{t}, 2 \mathrm{C})$, 129.8 (t, 2C), 132.0 (t), 134.3 (q), 141.0 (q), 155.0 (q, 2C); HRMS, m/z: 366.1189 found (calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{M}^{+\bullet}$ requires: 366.1216). The minor diastereoisomer $\mathbf{2 b - H}$ was identified by the ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixture: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.93(\mathrm{~s}, 6 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 3 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H})$. The general procedure 2 (reflux of 53 h), using 3-phenyloxirane-2,2-dicarbonitrile ($\mathbf{1 - H}, 0.34 \mathrm{~g}$) and 3,4,5trimethoxybenzaldehyde (0.39 g), gave a 77/23 mixture from which the preponderant diastereoisomer 2a-H was isolated by recrystallization from petrol/ $\mathrm{Et}_{2} \mathrm{O}$ 85:15 in 40% yield.

4.2.2. 2-(4-Chlorophenyl)-4-(3,4,5-trimethoxyphenyl)-1,3-dioxolane-5,5-dicarbonitrile (2-

Cl). The general procedure $1\left(60 \mathrm{~W}, 9 \mathrm{~min}\right.$ to reach $100^{\circ} \mathrm{C}, 12 \mathrm{~min}$ to reach $120^{\circ} \mathrm{C}$, and 40 \min at $120^{\circ} \mathrm{C}$), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 - C l}, 0.41 \mathrm{~g}$) and 3,4,5trimethoxybenzaldehyde (0.39 g), gave a 71/29 mixture from which the preponderant diastereoisomer 2a-Cl was isolated by recrystallization from petrol $/ \mathrm{Et}_{2} \mathrm{O} 85: 15$ in 45% yield as a white powder: mp $123^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H})$, $6.57(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.74(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 56.7(\mathrm{p}, 2 \mathrm{C}), 60.7(\mathrm{p}), 70.8(\mathrm{q}), 87.9(\mathrm{t}), 104.9(\mathrm{t}, 2 \mathrm{C}), 107.6(\mathrm{t}), 112.9(\mathrm{q})$, 113.3 (q), 126.2 (q), 130.0 (t, 2C), 130.1 (t, 2C), 133.1 (q), 137.4 (q), 141.0 (q), 155.0 (q, 2C); HRMS, $m / z: 400.0830$ found (calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{35} \mathrm{Cl}, \mathrm{M}^{+\cdot}$ requires: 400.0826). The minor diastereoisomer $\mathbf{2 b}-\mathbf{C l}$ was identified by the ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixture: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.6(4 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 4.03(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 6 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 7.5(4 \mathrm{H})$. The general procedure 2 (reflux of 68 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 - C l}, 0.41 \mathrm{~g}$) and 3,4,5-trimethoxybenzaldehyde (0.39 g), gave a $72 / 28$ mixture from which the preponderant diastereoisomer $\mathbf{2 a - C l}$ was isolated by recrystallization from petrol/Et $\mathrm{t}_{2} \mathrm{O}$ 85:15 in 42\% yield.

4.2.3. 2-(4-Methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)-1,3-dioxolane-5,5-dicarbonitrile

 (2-OMe). The general procedure $1\left(60 \mathrm{~W}, 3 \mathrm{~min}\right.$ to reach $60^{\circ} \mathrm{C}, 6 \mathrm{~min}$ to reach $80^{\circ} \mathrm{C}$, and 35 \min at $80^{\circ} \mathrm{C}$), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile (1-OMe, 0.40 g) and 3,4,5-trimethoxybenzaldehyde (0.39 g), gave a 70/30 mixture from which the preponderant diastereoisomer 2a-OMe was isolated by recrystallization from petrol/Et $\mathrm{t}_{2} \mathrm{O}$ 85:15 in 55\% yield as a white powder: mp $110^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.93$ (s, 6H), $5.99(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.68(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}),{ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 55.8(\mathrm{p}), 56.6(\mathrm{p}, 2 \mathrm{C}), 60.7(\mathrm{p}), 70.7(\mathrm{q}), 87.7(\mathrm{t}), 104.8(\mathrm{t}, 2 \mathrm{C})$, 108.7 (t), 113.1 (q), 113.5 (q), 115.1 (t, 2C), 126.1 (q), 126.6 (q), 129.0 (q), 130.1 (t, 2C), 155.0 (q, 2C), 162.8 (q); HRMS, $m / z: 396.1356$ found (calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}, \mathrm{M}^{+\bullet}$ requires: 396.1321). The minor diastereoisomer 2b-OMe was identified by the ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixture: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 6 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H})$, $6.89(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.68(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$. The general procedure 2 (reflux of 45 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile (1-OMe, 0.40 g) and 3,4,5-trimethoxybenzaldehyde (0.39 g), gave a $68 / 32$ mixture from which the preponderant diastereoisomer 2a-OMe was isolated by recrystallization from petrol $/ \mathrm{Et}_{2} \mathrm{O}$ 85:15 in 52\% yield.4.2.4. 4-(1,3-Benzodioxol-5-yl)-2-phenyl-1,3-dioxolane-5,5-dicarbonitrile (3-H). The general procedure $1\left(60 \mathrm{~W}, 6 \mathrm{~min}\right.$ to reach $100^{\circ} \mathrm{C}, 9 \mathrm{~min}$ to reach $120^{\circ} \mathrm{C}$, and 40 min at $120^{\circ} \mathrm{C}$), using 3-phenyloxirane-2,2-dicarbonitrile ($\mathbf{1 - H}, 0.34 \mathrm{~g}$) and piperonal (0.30 g), gave a 66/34 mixture from which the preponderant diastereoisomer $\mathbf{3 a - H}$ was isolated by
recristallization from petrol/ $/ \mathrm{Et}_{2} \mathrm{O} 80: 20$ in 25% yield as a whitish powder: $\mathrm{mp} 126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 6.04(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~s}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.23(\mathrm{~s}$, $1 \mathrm{H}), 7.25(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.60(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 70.8(\mathrm{q})$,
 128.4 (t, 2C), 129.8 (t, 2C), 132.0 (t), 134.3 (q), 149.4 (q), 150.6 (q); HRMS, $m / z: 320.0774$ found (calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{M}^{+\bullet}$ requires: 320.0797). The minor diastereoisomer 3b-H was identified by the ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixture: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 5.96(\mathrm{~s}, 1 \mathrm{H})$, $6.17(\mathrm{~s}, 2 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.60$ $(\mathrm{m}, 3 \mathrm{H}), 7.76(\mathrm{~m}, 2 \mathrm{H})$. The general procedure 2 (reflux of 96 h), using 3-phenyloxirane-2,2dicarbonitrile ($\mathbf{1}-\mathbf{H}, 0.34 \mathrm{~g}$) and piperonal (0.30 g), gave a $58 / 42$ mixture from which the preponderant diastereoisomer $\mathbf{3 a - H}$ was isolated by recrystallization from petrol/ $/ \mathrm{Et}_{2} \mathrm{O}$ 80:20 in 31% yield.
4.2.5. 4-(1,3-Benzodioxol-5-yl)-2-(4-chlorophenyl)-1,3-dioxolane-5,5-dicarbonitrile (3-
Cl). The general procedure $1\left(60 \mathrm{~W}, 6 \mathrm{~min}\right.$ to reach $100^{\circ} \mathrm{C}, 9 \mathrm{~min}$ to reach $120^{\circ} \mathrm{C}$, and 40 min at $120^{\circ} \mathrm{C}$), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 - C l}, 0.41 \mathrm{~g}$) and piperonal $(0.30 \mathrm{~g})$, gave a $60 / 40$ mixture from which the preponderant diastereoisomer 3a-Cl was isolated by recristallization from petrol $/ \mathrm{Et}_{2} \mathrm{O}$ 80:20 in 39% yield as a white powder: mp $130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 6.05(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=8.6$ $\mathrm{Hz}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.65(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.79(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 70.8(\mathrm{q}), 87.8(\mathrm{t}), 102.9(\mathrm{~s}), 107.3$ (t), 107.5 (t$), 109.6$ (t$), 112.9$ (q), 113.3 (q), 121.8 (t), 124.5 (q), 130.0 (t, 2C), 130.2 (t, 2C), 133.2 (q), 137.4 (q), 149.4 (q), 150.6 (q); HRMS, $m / z: 354.0406$ found (calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}, \mathrm{M}^{+\bullet}$ requires: 354.0407). The minor diastereoisomer $\mathbf{3 b}-\mathbf{C l}$ was identified by the ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixture: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 5.98(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.23(\mathrm{~s}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.65(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.79(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$. The general procedure 2 (reflux of 72 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1 - C l}, 0.41 \mathrm{~g}$) and piperonal (0.30 g), gave a $60 / 40$ mixture from which the preponderant diastereoisomer 3a-Cl was isolated by recrystallization from petrol $/ \mathrm{Et}_{2} \mathrm{O}$ 80:20 in 28% yield.
4.2.6. 4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-1,3-dioxolane-5,5-dicarbonitrile (3$\mathbf{O M e})$. The general procedure $1\left(60 \mathrm{~W}, 3 \mathrm{~min}\right.$ to reach $60^{\circ} \mathrm{C}, 6 \mathrm{~min}$ to reach $80^{\circ} \mathrm{C}$, and 30 min at $80^{\circ} \mathrm{C}$), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile (1-OMe, 0.40 g) and
piperonal (0.30 g), gave a $67 / 33$ mixture from which the preponderant diastereoisomer 3aOMe was isolated by recristallization from petrol/ $\mathrm{Et}_{2} \mathrm{O}$ 80:20 in 40% yield as a beige powder: $\mathrm{mp} 137{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 3.91(\mathrm{~s}, 3 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 7.15$ $(\mathrm{m}, 5 \mathrm{H}), 7.67(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 55.8(\mathrm{p}), 70.7(\mathrm{q}), 87.5(\mathrm{t}), 102.9(\mathrm{~s})$, 107.3 (t), 108.6 (t), 109.6 (t), 112.9 (q), 113.3 (q), 115.1 (t, 2C), 121.7 (t), 124.8 (q), 126.1 (q), 130.1 (t, 2C), 149.4 (q), 150.5 (q), 162.8 (q); HRMS, $m / z: 350.0910$ found (calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}, \mathrm{M}^{+\bullet}$ requires: 350.0903). The minor diastereoisomer 3b-OMe was identified by the ${ }^{1} \mathrm{H}$ NMR spectra of the crude mixture: ${ }^{1} \mathrm{H}$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H})$, $6.16(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 5 \mathrm{H}), 7.67(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz})$. The general procedure 2 (reflux of 48 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile (1-OMe, 0.40 g) and piperonal (0.30 g), gave a $71 / 29$ mixture from which the preponderant diastereoisomer 3aOMe was isolated by recrystallization from petrol/ $\mathrm{Et}_{2} \mathrm{O}$ 80:20 in 54% yield.
4.3. General procedure 3: A mixture of epoxide (2.0 mmol) and imine (2.0 mmol) in dry toluene (30 mL) was heated at reflux under N_{2}. The mixture was then evaporated to dryness. The residue was dissolved in a minimum of $\mathrm{Et}_{2} \mathrm{O}$. Upon addition of petrol, the precipitate formed was collected by filtration before recrystallization from $\mathrm{Et}_{2} \mathrm{O}$.
4.3.1. 3-Methyl-2,4-diphenyl-1,3-oxazolidine-5,5-dicarbonitrile (4a). The general procedure 3 (reflux of 24 h), using 3-phenyloxirane-2,2-dicarbonitrile ($\mathbf{1 - H}, 0.34 \mathrm{~g}$) and N [phenylmethylene]methanamine (0.24 g), gave 52% of $\mathbf{4 a}$ as a brown powder: $\mathrm{mp} 128{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 7.6(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 34.2 (p), 71.3 (q), 77.4 (t), 100.8 (t), 112.3 (q), 112.8 (q), 128.5 (t, 2C), 128.7 (t, 2C), 128.9 (t, 2C), 129.4 (t, 2C), 129.7 (q), 130.7 (t), 130.8 (t), 134.7 (q); HRMS, $m / z: 288.1133$ found (calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O},[\mathrm{M}-\mathrm{H}]^{+}$requires: 288.1133).
4.3.2. 2-(4-Chlorophenyl)-3-methyl-4-phenyl-1,3-oxazolidine-5,5-dicarbonitrile (4b). The general procedure 3 (reflux of 20 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile (1$\mathbf{C l}, 0.41 \mathrm{~g})$ and N-[phenylmethylene]methanamine (0.24 g), gave 60% of $\mathbf{4 b}$ as a brown glitter: mp $114{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.21(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 7.6(\mathrm{~m}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 30.9$ (p), 71.2 (q), 77.3 (t), 99.9 (t$), 112.2$ (q), 112.6 (q), 128.5 (t, 2C), 129.2 (t, 2C), 129.4 (q), 129.5 (t, 2C), 130.0 (t, 2C), 130.8 (t), 133.3 (q), 136.8 (q); HRMS, m/z: 322.0739 found (calcd for $\mathrm{C}_{18} \mathrm{H}_{13}{ }^{35} \mathrm{ClN}_{3} \mathrm{O},[\mathrm{M}-\mathrm{H}]^{+}$requires: 322.0747).
4.3.3. 2-(4-Methoxyphenyl)-3-methyl-4-phenyl-1,3-oxazolidine-5,5-dicarbonitrile (4c). The general procedure 3 (reflux of 5 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile (1-OMe, 0.40 g) and N-[phenylmethylene]methanamine (0.24 g), gave 78% of $\mathbf{4 c}$ as a yellow glitter: mp $149^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.15(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.6(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 34.3(\mathrm{p}), 55.4(\mathrm{p}), 71.0(\mathrm{q}), 77.3(\mathrm{t})$, 100.6 (t), 112.4 (q), 112.9 (q), 114.3 (t, 2C), 126.6 (q), 128.5 (t, 2C), 129.4 (t, 2C), 129.8 (q), $130.1(\mathrm{t}, 2 \mathrm{C}), 130.6(\mathrm{t}), 161.5(\mathrm{q}) ;$ HRMS, $m / z: 319.1330$ found (calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}, \mathrm{M}^{+\cdot}$ requires: 319.1321).
4.3.4. 3-Methyl-2-(4-nitrophenyl)-4-phenyl-1,3-oxazolidine-5,5-dicarbonitrile (4d). The general procedure 3 (reflux of 35 h), using 3-(4-nitrophenyl)oxirane-2,2-dicarbonitrile (1$\mathbf{N O}_{2}, 0.43 \mathrm{~g}$) and N-[phenylmethylene]methanamine (0.24 g), gave 40% of $\mathbf{4 d}$ as a beige powder: mp $164^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.22(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 7.6(\mathrm{~m}, 5 \mathrm{H})$, $7.82(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.36(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 34.2(\mathrm{p}), 71.4$ (q), 77.3 (t), 99.0 (t), 111.9 (q), 112.3 (q), 124.2 (t, 2C), 128.4 (t, 2C), 128.6 (q), 128.9 (q), 129.6 (t, 2C), 129.7 (t, 2C), 131.0 (t), 141.5 (q); HRMS, $m / z: 333.0995$ found (calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{3}$, $[\mathrm{M}-\mathrm{H}]^{+\bullet}$ requires: 333.0988).

4.3.5. 4-(1,3-Benzodioxol-5-yl)-2-phenyl-3-propyl-1,3-oxazolidine-5,5-dicarbonitrile (5a).

 The general procedure 3 (reflux of 27 h), using 3-phenyloxirane-2,2-dicarbonitrile (1-H, 0.34 g) and N-[1,3-benzodioxol-5-ylmethylene]propylamine (0.38 g), gave 48% of $\mathbf{5 a}$ as a beige glitter: mp $101^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.66(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.05(\mathrm{n}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.55$ $(\mathrm{m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.12(\mathrm{dd}, 1 \mathrm{H}, J=8.0$ and 1.5 Hz$), 7.19(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 7.5(\mathrm{~m}, 3 \mathrm{H}), 7.6(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.6(\mathrm{p})$, 18.9 (s), 49.9 (s), 71.2 (q), 75.5 (t), 99.2 (t), 101.7 (s$), 108.4$ (t), 108.9 (t), 112.5 (q), 112.9 (q), 122.9 (t), 123.7 (q), 128.7 (t, 2C), 128.8 (t, 2C), 130.6 (t), 135.9 (q), 148.5 (q), 149.5 (q); HRMS, $m / z: 361.1421$ found (calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}^{+\bullet}$ requires: 361.1426).
4.3.6. 4-(1,3-Benzodioxol-5-yl)-2-(4-chlorophenyl)-3-propyl-1,3-oxazolidine-5,5-

 dicarbonitrile (5b). The general procedure 3 (reflux of 25 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile (1-Cl, 0.41 g$)$ and N-[1,3-benzodioxol-5ylmethylene]propylamine (0.38 g), gave 59% of $\mathbf{5 b}$ as a beige powder: $\mathrm{mp} 140^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR$\left(\mathrm{CDCl}_{3}\right) \delta 0.64(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.11(\mathrm{n}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}$, $1 \mathrm{H}), 6.06(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.11(\mathrm{dd}, 1 \mathrm{H}, J=8.0$ and 1.7 Hz$), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=1.6$ $\mathrm{Hz}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.56(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.6(\mathrm{p}), 19.1(\mathrm{~s})$, $50.0(\mathrm{~s}), 71.1(\mathrm{q}), 75.5(\mathrm{t}), 98.4$ (t), 101.7 (s$), 108.3$ (t), 108.9 (t), 112.4 (q), 112.7 (q), 122.9 (t), 123.4 (q), 129.2 (t, 2C), 130.0 (t, 2C), 134.6 (q), 136.6 (q), 148.6 (q), 149.6 (q); HRMS, $m / z: 315.1013$ found (calcd for $\mathrm{C}_{18} \mathrm{H}_{18}{ }^{35} \mathrm{ClNO}_{2},\left[\mathrm{M}-\mathrm{OC}(\mathrm{CN})_{2}\right]^{+}$requires: 315.1026).

4.3.7 4-(1,3-Benzodioxol-5-yl)-2-(4-methoxyphenyl)-3-propyl-1,3-oxazolidine-5,5-

 dicarbonitrile (5c). The general procedure 3 (reflux of 9 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile (1-OMe, 0.40 g) and N-[1,3-benzodioxol-5ylmethylene]propylamine (0.38 g), gave 60% of $\mathbf{5 c}$ as yellow needles: $\mathrm{mp} 138^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.65(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}), 1.07(\mathrm{n}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~s}$, $1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 6.5(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{dd}, 1 \mathrm{H}, J=8.0$ and 1.7 Hz$), 7.18(\mathrm{~d}, 1 \mathrm{H}$, $J=1.6 \mathrm{~Hz}), 7.5(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.7(\mathrm{p}), 18.9(\mathrm{~s}), 50.0(\mathrm{~s}), 55.4$ (p), $71.0(\mathrm{q})$, 123.9 (q), 127.9 (q), 130.1 (t, 2C), 148.5 (q), 149.5 (q), 161.4 (q); HRMS, m/z: 311.1526 found (calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3},\left[\mathrm{M}-\mathrm{OC}(\mathrm{CN})_{2}\right]^{+\bullet}$ requires: 311.1521).

4.3.8. 4-(1,3-Benzodioxol-5-yl)-2-(4-nitrophenyl)-3-propyl-1,3-oxazolidine-5,5-

dicarbonitrile (5d). The general procedure 3 (reflux of 45 h), using 3-(4-nitrophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1}-\mathbf{N O}_{2}, 0.43 \mathrm{~g}$) and N-[1,3-benzodioxol-5-ylmethylene]propylamine (0.38 g), gave 35% of $\mathbf{5 d}$ as a beige powder: $\mathrm{mp} 178^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.65(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $1.11(\mathrm{n}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H}), 6.93(\mathrm{~d}, 1 \mathrm{H}$, $J=7.9 \mathrm{~Hz}), 7.12(\mathrm{dd}, 1 \mathrm{H}, J=8.0$ and 1.6 Hz$), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 8.34(\mathrm{~d}, 2 \mathrm{H}$, $J=8.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.6(\mathrm{p}), 19.4(\mathrm{~s}), 50.2(\mathrm{~s}), 71.3(\mathrm{q}), 75.7(\mathrm{t}), 97.6(\mathrm{t}), 101.8$ (s), 108.2 (t), 109.0 (t), 112.2 (q), 112.4 (q), 122.9 (t$), 122.9$ (q), 124.1 (t, 2C), 128.0 (q), 129.7 (t, 2C), 142.9 (q), 148.7 (q),149.8 (q); HRMS, $m / z: 406.1260$ found (calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5}, \mathrm{M}^{+\bullet}$ requires: 406.1277).
4.3.9. 4-(1,3-Benzodioxol-5-yl)-3-butyl-2-phenyl-1,3-oxazolidine-5,5-dicarbonitrile (6a). The general procedure 3 (reflux of 32 h), using 3-phenyloxirane-2,2-dicarbonitrile ($\mathbf{1 - H}, 0.34$ g) and N-[1,3-benzodioxol-5-ylmethylene]butylamine (0.41 g), gave 56% of $\mathbf{6 a}$ as a beige glitter: mp $107^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.66(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.05(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H})$,
$4.41(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.12(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.18$ $(\mathrm{d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 7.5(\mathrm{~m}, 3 \mathrm{H}), 7.6(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.6(\mathrm{p}), 20.2(\mathrm{~s}), 27.3(\mathrm{~s})$, $47.6(\mathrm{~s}), 71.2(\mathrm{q}), 75.4(\mathrm{t}), 99.1(\mathrm{t}), 101.7(\mathrm{~s}), 108.4(\mathrm{t}), 108.9(\mathrm{t}), 112.5(\mathrm{q}), 112.9(\mathrm{q}), 122.9$ (t), 123.7 (q), 128.7 (t, 2C), 128.8 ($\mathrm{t}, 2 \mathrm{C}$), 130.6 (t), 135.9 (q), 148.5 (q), 149.5 (q); HRMS, $\mathrm{m} / \mathrm{z}: 375.1573$ found (calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}^{+\bullet}$ requires: 375.1583).

4.3.10. 4-(1,3-Benzodioxol-5-yl)-3-butyl-2-(4-chlorophenyl)-1,3-oxazolidine-5,5-

dicarbonitrile (6b). The general procedure 3 (reflux of 32 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile (1-Cl, 0.41 g$)$ and N-[1,3-benzodioxol-5ylmethylene]butylamine (0.41 g), gave 59% of $\mathbf{6 b}$ as a pale yellow powder: mp $138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 0.67(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.05(\mathrm{~m}, 4 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}$, $1 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.11(\mathrm{dd}, 1 \mathrm{H}, J=8.0$ and 1.6 Hz$), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=1.4$ $\mathrm{Hz}), 7.44(\mathrm{~d}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 7.56(\mathrm{~d}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.5(\mathrm{p}), 20.2(\mathrm{~s})$, $27.4(\mathrm{~s}), 47.7(\mathrm{~s}), 71.1(\mathrm{q}), 75.3(\mathrm{t}), 98.2(\mathrm{t}), 101.7(\mathrm{~s}), 108.3(\mathrm{t}), 108.9(\mathrm{t}), 112.5(\mathrm{q}), 112.7(\mathrm{q})$, 122.9 (t), 123.4 (q), 129.1 (t, 2C), 130.0 (t, 2C), 134.6 (q), 136.6 (q), 148.6 (q), 149.6 (q); HRMS, $m / z: 329.1197$ found (calcd for $\mathrm{C}_{19} \mathrm{H}_{20}{ }^{35} \mathrm{ClNO}_{2},\left[\mathrm{M}-\mathrm{OC}(\mathrm{CN})_{2}\right]^{+\bullet}$ requires: 329.1183).

4.3.11 4-(1,3-Benzodioxol-5-yl)-3-butyl-2-(4-methoxyphenyl)-1,3-oxazolidine-5,5-

 dicarbonitrile (6c). The general procedure 3 (reflux of 9 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile (1-OMe, 0.40 g) and N-[1,3-benzodioxol-5ylmethylene]butylamine (0.41 g), gave 60% of $\mathbf{6 c}$ as orange needles: mp $114^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.65(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.05(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 5.29$ $(\mathrm{s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.11(\mathrm{dd}, 1 \mathrm{H}, J=8.0$ and $1.5 \mathrm{~Hz}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 7.53(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.6(\mathrm{p}), 20.3$ (s$), 27.2(\mathrm{~s}), 47.6(\mathrm{~s}), 55.4(\mathrm{p}), 71.0(\mathrm{q}), 75.3(\mathrm{t}), 98.9(\mathrm{t}), 101.7(\mathrm{~s}), 108.4(\mathrm{t}), 108.9(\mathrm{t}), 112.6$ (q), 113.0 (q), 114.2 (t, 2C), 122.9 (t), 123.8 (q), 127.9 (q), 130.1 (t, 2C), 148.5 (q), 149.5 (q), 161.4 (q); HRMS, m/z: 378.1597 found (calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$, [M-HCN] ${ }^{+}$requires: 378.1580).
4.3.12. 4-(1,3-Benzodioxol-5-yl)-3-butyl-2-(4-nitrophenyl)-1,3-oxazolidine-5,5-

dicarbonitrile ($\mathbf{6 d}$). The general procedure 3 (reflux of 65 h), using 3-(4-nitrophenyl)oxirane-2,2-dicarbonitrile ($\mathbf{1}-\mathbf{N O}_{\mathbf{2}}, 0.43 \mathrm{~g}$) and N-[1,3-benzodioxol-5-ylmethylene]butylamine (0.41 g), gave 18% of $\mathbf{6 d}$ as an orange powder: $\mathrm{mp} 126^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.66(\mathrm{t}, 3 \mathrm{H}, J=6.8$
$\mathrm{Hz}), 1.05(\mathrm{~m}, 4 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=7.9$ $\mathrm{Hz}), 7.10(\mathrm{dd}, 1 \mathrm{H}, J=8.1$ and 1.6 Hz$), 7.14(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 7.81(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.33(\mathrm{~d}$, $2 \mathrm{H}, J=8.8 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.5(\mathrm{p}), 20.2(\mathrm{~s}), 27.7(\mathrm{~s}), 47.9(\mathrm{~s}), 71.3(\mathrm{q}), 75.5(\mathrm{t})$, $97.4(\mathrm{t}), 101.8(\mathrm{~s}), 108.2(\mathrm{t}), 109.0(\mathrm{t}), 112.2(\mathrm{q}), 112.4(\mathrm{q}), 122.9(\mathrm{t}), 124.1(\mathrm{t}, 2 \mathrm{C}), 128.0(\mathrm{q})$, 129.7 (t, 2C), 142.9 (q), 148.7 (q), 149.3 (q), 149.8 (q); HRMS, $m / z: 420.1457$ found (calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{5}, \mathrm{M}^{+}$requires: 420.1434).

4.3.13. 4-(1,3-Benzodioxol-5-yl)-3-benzyl-2-phenyl-1,3-oxazolidine-5,5-dicarbonitrile

 (7a). The general procedure 3 (reflux of 40 h), using 3-phenyloxirane-2,2-dicarbonitrile (1-H, $0.34 \mathrm{~g})$ and N-[1,3-benzodioxol-5-ylmethylene]benzylamine (0.48 g), gave 60% of 7 a as a beige glitter: mp $132^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.64(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}), 3.86(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz})$, $4.28(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.17(\mathrm{~d}, 1 \mathrm{H}$, $J=8.1 \mathrm{~Hz}), 7.3(\mathrm{~m}, 4 \mathrm{H}), 7.6(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 49.2(\mathrm{~s}), 70.8(\mathrm{q}), 72.7(\mathrm{t}), 96.4(\mathrm{t})$, $101.8(\mathrm{~s}), 108.6(\mathrm{t}), 109.1(\mathrm{t}), 112.7$ (q), $112.8(\mathrm{q}), 122.8(\mathrm{t}), 123.2(\mathrm{q}), 128.3(\mathrm{t}), 128.5(\mathrm{t}, 2 \mathrm{C})$, 128.9 (t, 2C), 129.2 (t, 2C), 130.1 (t, 2C), 130.8 (t), 131.4 (q), 134.6 (q), 148.7 (q), 149.6 (q); HRMS, $m / z: 329.1426$ found (calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{2},\left[\mathrm{M}-\mathrm{CO}(\mathrm{CN})_{2}\right]^{+\bullet}$ requires: 329.1416).
4.3.14. 4-(1,3-Benzodioxol-5-yl)-3-benzyl-2-(4-chlorophenyl)-1,3-oxazolidine-5,5-

 dicarbonitrile (7b). The general procedure 3 (reflux of 37 h), using 3-(4-chlorophenyl)oxirane-2,2-dicarbonitrile (1-Cl, 0.41 g$)$ and N-[1,3-benzodioxol-5ylmethylene]benzylamine (0.48 g), gave 50% of $\mathbf{7 b}$ as a white powder: $\mathrm{mp} 147^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.63(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}), 3.85(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{~s}$, $2 \mathrm{H}), 6.84(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.2(\mathrm{~m}, 5 \mathrm{H}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.58(\mathrm{~d}, 2 \mathrm{H}$, $J=8.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 49.5(\mathrm{~s}), 70.8(\mathrm{q}), 72.9(\mathrm{t}), 95.7(\mathrm{t}), 101.8(\mathrm{~s}), 108.6(\mathrm{t}), 109.2$ (t), 112.6 (q), 112.6 (q), 122.6 (t), 123.2 (q), $128.4(\mathrm{t}), 128.6$ (t, 2C), $129.3(\mathrm{t}, 2 \mathrm{C}), 130.0(\mathrm{t}$, 2C), 130.5 (t, 2C), 131.4 (q), 133.2 (q), 136.7 (q), 148.8 (q), 149.7 (q); HRMS, $m / z: 363.1040$ found (calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{35} \mathrm{Cl}^{2} \mathrm{M}^{+\cdot}$ requires: 363.1026).
4.3.15. 4-(1,3-Benzodioxol-5-yl)-3-benzyl-2-(4-methoxyphenyl)-1,3-oxazolidine-5,5-

 dicarbonitrile (7c). The general procedure 3 (reflux of 18 h), using 3-(4-methoxyphenyl)oxirane-2,2-dicarbonitrile (1-OMe, 0.40 g) and N-[1,3-benzodioxol-5ylmethylene]benzylamine (0.48 g), gave 80% of 7 c as pale yellow needles: $\mathrm{mp} 116{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 3.63(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}), 3.86(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H})$,$5.21(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~m}, 2 \mathrm{H}), 7.0(\mathrm{~m}, 3 \mathrm{H}), 7.2(\mathrm{~m}, 5 \mathrm{H}), 7.59(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 49.1$ (s$), 55.4(\mathrm{p}), 70.6(\mathrm{q}), 72.5(\mathrm{t}), 96.1$ (t$), 101.7$ (s$), 108.6$ (t$), 109.1(\mathrm{t})$, 112.8 (q), 112.9 (q), 114.4 (t, 2C), 122.9 (t), 123.2 (q), 126.4 (q), 128.3 ($\mathrm{t}, 128.5$ (t, 2C), 130.1 (t, 2C), 130.6 (t, 2C), 131.5 (q), 148.7 (q), 149.6 (q), 161.5 (q); HRMS, $m / z: 412.1401$ found (calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4},[\mathrm{M}-\mathrm{HCN}]^{+}$requires: 412.1423).

4.3.16. 4-(1,3-Benzodioxol-5-yl)-3-benzyl-2-(4-nitrophenyl)-1,3-oxazolidine-5,5-

dicarbonitrile (7d). The general procedure 3 (reflux of 72 h), using 3-(4-nitrophenyl)oxirane-
 g), gave 27% of $\mathbf{7 d}$ as a white powder: $\mathrm{mp} 187^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.70(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz})$, $3.82(\mathrm{~d}, 1 \mathrm{H}, J=15 \mathrm{~Hz}), 4.36(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}$, $J=8.0 \mathrm{~Hz}), 7.2(\mathrm{~m}, 5 \mathrm{H}), 7.77(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.29(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 50.3 (s), 70.9 (q), 73.6 (t), 95.5 (t), 101.9 (s), 108.4 (t), 109.3 (t), 112.3 (q), 112.4 (q), 122.1 (t), 123.2 (q$), 124.0(\mathrm{t}, 2 \mathrm{C}), 128.6(\mathrm{t}), 128.7$ (t, 2C), $129.8(\mathrm{t}, 2 \mathrm{C}), 130.1(\mathrm{t}, 2 \mathrm{C}), 131.5(\mathrm{q})$, 141.7 (q), 148.9 (q), 149.2 (q), 149.9 (q); HRMS, $m / z: 374.1258$ found (calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$, $\left[\mathrm{M}-\mathrm{CO}(\mathrm{CN})_{2}\right]^{+\cdot}$ requires: 374.1267$)$.

References and notes

1. (a) 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley Interscience: New York, 1984. (b) Gothelf, K. V.; Jorgenson, K. A. Chem. Rev. 1998, 98, 863-909.
2. (a) Robert, A.; Pommeret, J. J.; Foucaud, A. C. R. Acad. Sci. Paris, Ser. C 1970, 270, 1739-1742. (b) Pommeret, J; J.; Robert, A. C. R. Acad. Sci. Paris, Ser. C 1971, 272, 333-336. (c) Pommeret, J. J.; Foucaud, A. Tetrahedron 1971, 27, 2977-2987. (d) Robert, A.; Pommeret, J. J.; Foucaud, A. Tetrahedron Lett. 1971, 12, 231-234. (e) Robert, A.; Pommeret, J. J.; Foucaud, A. Tetrahedron 1972, 28, 2085-2097. (f) Robert, A.; Pommeret, J. J.; Marchand, E.; Foucaud, A. Tetrahedron 1973, 29, 463-468. (g) Clawson, P.; Lunn, P. M.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1990, 159162. (h) Meier, K.-R.; Linden, A.; Mlostoñ, G.; Heimgartner, H. Helv. Chim. Acta 1997, 80, 1190-1204. (i) Ruf, S. G.; Dietz, J.; Regitz, M. Tetrahedron 2000, 56, 6259-6267. (j) Yoakim, C.; Goudreau, N.; McGibbon, G. A.; O'Meara, J.; White, P. W.; Ogilvie, W. W. Helv. Chim. Acta 2003, 86, 3427-3444. (k) Wang, G.-W.; Yang, H.-T.; Wu, P.; Miao, C.-B., Xu, Y. J. Org. Chem. 2006, 71, 4346-4348.
3. (a) de la Hoz, A.; Díaz-Ortiz, A.; Langa, F. in Microwave in Organic Synthesis; First Edition; Loupy, A., Ed.; Wiley-VCH: Weinhein, 2002; Chapter 9. (b) Bougrin, K.; Soufiaoui, M.; Bashiardes, G. in Microwave in Organic Synthesis; Second Edition; Vol. 1, Loupy, A., Ed.; Wiley-VCH: Weinhein, 2006; Chapter 11, in press.
4. Bentabed, G.; Derdour, A.; Benhaoua, H. Synth. Commun. 2003, 33, 1861-1866.
5. Using a monomode reactor (Prolabo Synthewave ${ }^{\circledR}$ 402) with accurate control of power and temperature (by infrared detection).
6. Baudy, M.; Robert, A.; Foucaud, A. J. Org. Chem. 1978, 43, 3732-3736.
7. Chérouvrier, J.-R.; Carreaux, F.; Bazureau, J. P. Tetrahedron Lett. 2002, 43, 35813584.

[^0]: ${ }^{a}$ For more detailed conditions, see the experimental part.
 ${ }^{b}$ Determined from the ${ }^{1}$ H NMR spectra of the crude mixture.

