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LSS, CNRS, Supélec, and Université Paris-Sud 11, Plateau du Moulon, 91192 Gif-sur-Yvette, France

Correspondence should be addressed to Elena Veronica Belmega, belmega@lss.supelec.fr

Received 23 September 2009; Revised 5 July 2010; Accepted 27 November 2010

Academic Editor: Michael Gastpar

Copyright © 2010 Elena Veronica Belmega et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We consider a network composed of two interfering point-to-point links where the two transmitters can exploit one common relay
node to improve their individual transmission rate. Communications are assumed to be multiband, and transmitters are assumed
to selfishly allocate their resources to optimize their individual transmission rate. The main objective of this paper is to show that
this conflicting situation (modeled by a non-cooperative game) has some stable outcomes, namely, Nash equilibria. This result is
proved for three different types of relaying protocols: decode-and-forward, estimate-and-forward, and amplify-and-forward. We
provide additional results on the problems of uniqueness, efficiency of the equilibrium, and convergence of a best-response-based
dynamics to the equilibrium. These issues are analyzed in a special case of the amplify-and-forward protocol and illustrated by
simulations in general.

1. Introduction

A possible way to improve the performance in terms of
range, transmission rate, or quality of a network composed
of mutual interfering independent source-destination links,
is to add some relaying nodes in the network. This approach
can be relevant in both wired and wireless networks.
For example, it can be desirable and even necessary to
improve the performance of the (wired) link between the
digital subscriber line (DSL) access multiplexers (or central
office) and customers’ facilities and/or the (wireless) links
between some access points and their respective receivers
(personal computers, laptops, etc). The mentioned scenarios
give a strong motivation for studying the following system
composed of two transmitters communicating with their
respective receivers and which can use a relay node. The
channel model used to analyze this type of network has
been called the interference relay channel (IRC) in [1, 2]
where the authors introduce a channel with two transmitters,
two receivers, and one relay, all of them operating in the
same frequency band. The main contribution of [1, 2] is
to derive achievable transmission rate regions for Gaussian

IRCs assuming that the relay is implementing the decode-
and-forward protocol (DF) and dirty paper coding.

In this paper, we consider multiband interference relay
channels and three different types of protocols at the relay,
namely, DF, estimate-and-forward (EF), and amplify-and-
forward (AF). One of our main objectives is to study
the corresponding power allocation (PA) problems at the
transmitters. To this end, we proceed in two main steps.
First, we provide achievable transmission rates for single-
band Gaussian IRCs when DF, EF, and AF are, respectively,
assumed. Second, we use these results to analyze the proper-
ties of the transmission rates for the multiband case. In the
multiband case, we assume that the transmitters are decision
makers that can freely choose their own resource allocation
policies while selfishly maximizing their transmission rates.
This resource allocation problem can be modeled as a static
non-cooperative game. The closest works concerning the
game-theoretic approach we adopt here seem to be [3–
9]. In [3, 4], the authors study the frequency selective
and the parallel interference channels and provide sufficient
conditions on the channel gains that ensure the existence and
uniqueness of the Nash equilibrium (NE) and convergence of
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iterative water-filling algorithms. These conditions have been
further refined in [5]. In [7], a traffic game in parallel relay
networks is considered where each source chooses its power
allocation policy to minimize a certain cost function. The
price of anarchy [10] is analyzed in such a scenario. In [8],
a quite similar analysis is conducted for multihop networks.
In [9], the authors consider a special case of the Gaussian
IRC where there are no direct links between the sources
and destinations and there are two dedicated relays (one for
each source-destination pair) implementing DF. The power
allocation game consists in sharing the user’s power between
the source and relay transmission. The existence, uniqueness
of, and convergence to an NE issues are addressed. In the
present paper, however, we mainly focus on the existence
issue of an NE in the games under study, which is already
a nontrivial problem. The uniqueness, efficiency, and the
design of convergent distributed power allocation algorithms
are studied only in a special case and the generalization is left
as a very useful extension of the present paper.

This paper is structured as follows. Section 2 describes
the system model and assumptions in multiband IRCs.
Section 3 provides achievable transmission rates for single-
band IRCs. These rates are exploited further in multiband
IRCs (as users’ utility functions) analyzed in Section 4 where
the existence issue of NE in the non-cooperative power
allocation game is studied. Three relaying protocols are
considered: DF, EF, and AF. Section 4 provides additional
results on uniqueness of NE and convergence to NE for the
AF protocol. Section 5 illustrates simulations highlighting
the importance of optimally locating the relay and the
efficiency of the possible NE. We conclude with summarizing
remarks and possible extensions in Section 6.

2. System Model

The system under investigation is represented in Figure 1.
It is composed of two source nodes S1, S2 (also called
transmitters), transmitting their private messages to their
respective destination nodes D1, D2 (also called receivers).
To this end, each source can exploit Q nonoverlapping
frequency bands (the notation (q) will be used to refer to
band q ∈ {1, . . . ,Q}) which are assumed to be of unit
bandwidth. The signals transmitted by S1 and S2 in band

(q), denoted by X
(q)
1 and X

(q)
2 , respectively, are assumed to

be independent and power constrained:

∀i ∈ {1, 2},
Q∑
q=1

E

∣∣∣X(q)
i

∣∣∣
2
≤ Pi. (1)

For i ∈ {1, 2}, we denote by θ
(q)
i the fraction of power that

is used by Si for transmitting in band (q), that is, E|X(q)
i |

2
=

θ
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i Pi. Additionally, we assume that there exists a multiband
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where Z
(q)
i ∼N (0,N

(q)
i ), i ∈ {1, 2, r}, represents the Gaus-

sian complex noise on band (q) and, for all (i, j) ∈ {1, 2}2,

h
(q)
i j is the channel gain between Si and D j and h

(q)
ir is the

channel gain between Si and R in band (q). The channel
gains are considered to be static. In wireless networks,
this would amount, for instance, to considering a realistic
situation where only large-scale propagation effects can be
taken into account by the transmitters to optimize their
rates. The proposed approach can be applied to other types
of channel models. Concerning channel state information
(CSI), we will always assume coherent communications
for each transmitter-receiver pair (Si, Di) whereas, at the
transmitters, the information assumptions will be context
dependent. The single-user decoding (SUD) will always be
assumed at D1 and D2. This is a realistic assumption in
a framework where devices communicate in an a priori
uncoordinated manner. At the relay, the implemented recep-
tion scheme will depend on the protocol assumed. The

expressions of the signals transmitted by the relay, X
(q)
r ,

q ∈ {1, . . . ,Q}, depend on the relay protocol assumed
and will therefore also be explained in the corresponding
sections. So far, we have not mentioned any power constraint

on the signals X
(q)
r . Note that the signal model (2) is

sufficiently general for addressing two important scenarios. If

one imposes an overall power constraint
∑Q

q=1 E|X
(q)
r |

2
≤ Pr ,

multicarrier IRCs with a single relay can be studied. On the

other hand, if one imposes E|X(q)
r |

2
≤ P

(q)
r , q ∈ {1, . . . ,Q},

multiband IRCs where a relay is available on each band
(the relays are not necessarily co-located) can be studied. In
this paper, for simplicity reasons and as a first step towards
solving the general problem (where both source and relaying
nodes optimize their PA policies), we will assume that the
relay implements a fixed power allocation policy between the

Q available bands (E|X(q)
r |

2
= P

(q)
r , q ∈ {1, . . . ,Q}).

To conclude this section, we will mention and justify one
additional assumption. As in [1, 2, 11], the relay will be
assumed to operate in the full-duplex mode. Mathematically,
it is known from [12] that the achievability proofs for the
full-duplex case can be almost directly applied the half-
duplex case. But this is not our main motivation. Our
main motivation is that, in some communication scenarios,
the full-duplex assumption is realistic (see, e.g., [13] where
the transmit and receive radio-frequency parts are not co-
located) and even more suited. In the scenario of DSL
systems mentioned in Section 1, the relay is connected to
the source and destination through wired links. This allows
the implementation of full-duplex repeaters, amplifiers, or
digital relays. The same comment can be applied to optical
communications.
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Notational Conventions. The capacity function for complex

signals is denoted by C(x) � log2(1 + x); for all a ∈ [0, 1],
the quantity a stands for a = 1 − a; the notation −i means
that −i = 1 if i = 2 and −i = 2 if i = 1; for all
complex numbers c ∈ C, c∗, |c|, Re(c) and Im(c) denote
the complex conjugate, modulus, and the real and imaginary
parts, respectively.

3. Achievable Transmission Rates for
Single-Band IRCs

This section provides preliminary results regarding the
achievable rate regions for the IRCs assuming DF, EF, and AF
protocols. They are necessary to express transmission rates
in the multiband case. Thus, we do not aim at improving
available rate regions for IRCs as in [11] and related works
[14–16]. In the latter references, the authors consider some
special cases of the discrete IRC and derive rate regions
based on the DF protocol and different coding-decoding
schemes. In what follows, we make some suboptimal choices
for the used coding-decoding schemes and relaying protocols
which are motivated by a decentralized framework where
each destination does not know the codebook used by the
other destination. This approach facilitates the deployment
of relays since the receivers do not need to be modified. In
particular, this explains why we do not exploit techniques
like rate-splitting or successive interference cancellation. As
we assume single-band IRCs, we have that Q = 1. For the
sake of clarity, we omit the superscript (1) from the different

quantities used for example, X
(1)
i becomes in this section Xi.

3.1. Transmission Rates for the DF Protocol. One of the pur-
poses of this section is to state a corollary from [1]. Indeed,

the given result corresponds to the special case of the rate
region derived in [1] where each source sends to its respective
destination a private message only (and not both public and
private messages as in [1]). The reason for providing this
region here is threefold: it is necessary for the multiband case,
it is used in the simulation part to establish a comparison
between the different relaying protocols under consideration
in this paper, and it makes the paper sufficiently self-
contained. The principle of the DF protocol is detailed in
[12] and we give here only the main idea behind it. Consider
a Gaussian relay channel where the source-relay link has a
better quality than the source-destination link. From each
message intended for the destination, the source builds a
coarse and a fine message. With these two messages, the
source superposes two codewords. The rates associated with
these codewords (or messages) are such that the relay can
reliably decode both of them while the destination can only
decode the coarse message. After decoding this message,
the destination can subtract the corresponding signal and
try to decode the fine message. To help the destination
to do so, the relay cooperates with the source by sending
some information about the fine message. Mathematically,
this translates as follows. The signal transmitted by Si is
structured as Xi = Xi0 +

√
(τi/νi)(Pi/Pr)Xri. The signals

Xi0 and Xri are independent and correspond to the coarse
and fine messages, respectively; the parameter νi represents
the fraction of transmit power the relay allocates to user i,
hence we have ν1 + ν2 ≤ 1; the parameter τi represents the
fraction of transmit power Si allocates to the cooperation
signal (conveying the fine message). Therefore, we have the
following result.

Corollary 1 (see [1]). When DF is assumed, the following re-
gion is achievable; for i ∈ {1, 2},

Ri ≤ min

⎧⎪⎨
⎪⎩C

⎛
⎜⎝ |hir |2τiPi∣∣∣h jr

∣∣∣2
τ jP j + Nr

⎞
⎟⎠,C

⎛
⎜⎝ |hii|2Pi + |hri|2νiPr + 2Re

(
hiih

∗
ri

)√
τiPiνiPr∣∣∣h ji

∣∣∣2
P j + |hri|2ν jPr + 2Re

(
h jih

∗
ri

)√
τ jP jν jPr + Ni

⎞
⎟⎠

⎫⎪⎬
⎪⎭, (3)

where j = −i, (ν1, ν2) ∈ [0, 1]2 s.t. ν1 + ν2 ≤ 1 and (τ1, τ2) ∈
[0, 1]2, τ1 + τ2 ≤ 1.

In a context of decentralized networks, each source Si

has to optimize the parameter τi in order to maximize its
transmission rate Ri. In the rate region above, one can
observe that this choice is not independent of the choice of
the other source. Therefore, each source finds its optimal
strategy by optimizing its rate w.r.t. τ∗i (τ j). In order to
do that, each source has to make some assumptions on
the value τ j used by the other source. This is precisely
a non-cooperative game where each player makes some
assumptions on the other player’s behavior and maximizes
its own utility. Interestingly, we see that, even in the single-
band case, the DF protocol introduces a power allocation
game through the parameter τi representing the cooperation
degree between the source Si and relay. In this paper, for

obvious reasons of space, we will restrict our attention to
the case where the cooperation degrees are fixed. In other
words, in the multiband scenario, the transmitter strategy
will consist in choosing only the power allocation policy over
the available bands. For more details on the game induced by
the cooperation degrees, the reader is referred to [17].

3.2. Transmission Rates for the EF Protocol. Here, we consider
a second main class of relaying protocols, namely, the
estimate-and-forward protocol. A well-known property of
the EF protocol for the relay channel [12] is that it
always improves the performance of the receiver w.r.t. the
case without relay (in contrast with DF protocols which
can degrade the performance of the point-to-point link).
The principle of the EF protocol for the standard relay
channel is that the relay sends an approximated version
of its observation signal to the receiver. More precisely,
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from an information-theoretic point of view [12], the relay
compresses its observation in the Wyner-Ziv manner [18],
that is, knowing that the destination also receives a direct
signal from the source, that is, correlated with the signal to
be compressed. The compression rate is precisely tuned by
taking into account this correlation degree and the quality of
the relay-destination link. In our setup, we have two different
receivers. The relay can either create a single quantized
version of its observation, common to both receivers, or
two quantized versions, one adapted for each destination.
We have chosen the second type of quantization which we
call the “bi-level compression EF”. We note the work by
[19] where the authors consider a different channel, namely
a separated two-way relay channel, and exploit a similar
idea, namely, using two quantization levels at the relay. In
the scheme used here, each receiver decodes independently

its own message, which is less demanding than a joint
decoding scheme in terms of information assumptions.
As we have already mentioned, the relay implements the
Wyner-Ziv compression and superposition coding similarly
to a broadcast channel. The difference with the broadcast
channel is that each destination also receives the two direct
signals from the source nodes. The rate region which can
be obtained by using such a coding scheme is given by the
following theorem proved in Appendix A.

Theorem 2. For the Gaussian IRC with private messages and
bi-level compression EF protocol, any rate pair (R1,R2) is
achievable where:

(1) if C(|hr1|2ν2Pr/(|h11|2P1 + |h21|2P2 + |hr1|2ν1Pr +

N1)) ≥ C(|hr2|2ν2Pr/(|h22|2P2 + |h12|2P1 + |hr2|2ν1Pr +N2)),
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subject to the constraints N
(1)
wz ≥ (|h11|2P1 + |h21|2P2 +

|hr1|2ν2Pr + N1)(A − A2
1)/|hr1|2ν1Pr and N

(2)
wz ≥ (|h22|2P2 +

|h12|2P1 + N2)(A− A2
2)/|hr2|2ν2Pr ,

(3) else

R1 ≤ C

⎛
⎝ |h11|2P1

N1 + |hr1|2ν2Pr + |h21|2P2

(
Nr + N

(1)
wz

)
/
(
|h2r|2P2 + Nr + N

(1)
wz

)

+
|h1r|2P1

Nr + N
(1)
wz + |h2r|2P2

(
|hr1|2ν2Pr + N1

)
/
(
|h21|2P2 + |hr1|2ν2Pr + N1

)
⎞
⎠

R2 ≤ C

⎛
⎝ |h22|2P2

N2 + |hr2|2ν1Pr + |h12|2P1

(
Nr + N

(2)
wz

)
/
(
|h1r|2P1 + Nr + N

(2)
wz

)

+
|h2r|2P2

Nr + N
(2)
wz + |h1r |2P1

(
|hr2|2ν1Pr + N2

)
/
(
|h12|2P1 + |hr2|2ν1Pr + N2

)
⎞
⎠

(6)

subject to the constraints N
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representing the quantization noise corresponding to receiver

i, (ν1, ν2) ∈ [0, 1]2, ν1 + ν2 ≤ 1, the relay PA, A =
|h1r|2P1+|h2r |2P2+Nr , A1 = 2Re(h11h

∗
1r)P1 +2Re(h21h

∗
2r)P2

and A2 = 2Re(h12h
∗
1r)P1+2Re(h22h

∗
2r)P2. The three scenarios

emphasized in this theorem correspond to the following situa-
tions: (1) D1 has the better link (in the sense of the theorem)
and can decode both the relay message intended for D2 and its
own message; (2) this scenario is the dual of scenario (1); (3) in
this latter scenario, each destination node sees the cooperation
signal intended for the other destination node as interference.

3.3. Transmission Rates for the AF Protocol. In this section,
the relay is assumed to implement an analog amplifier
which does not introduce any delay on the relayed signal.
The main features of AF-type protocols are well known
by now (e.g., such relays are generally cheap, involve low
complexity relay transceivers, and generally induce negligible
processing delays in contrast with DF and EF-type relaying
protocols). The relay merely sends Xr = arYr where ar cor-
responds to the relay amplification factor/gain. We call the
corresponding protocol the zero-delay scalar amplify-and-
forward (ZDSAF). The type of assumptions we make here
fits well to the setting of DSL or optical communication
networks. In wireless networks, the assumed protocol can be
seen as an approximation of a scenario with a relay equipped
with a power amplifier only. The following theorem provides
a region of transmission rates that can be achieved when
the transmitters send private messages to their respective
receivers, the relay implements the ZDSAF protocol, and the
receivers implement single-user decoding. The considered
framework is attractive in the sense that an AF-based

relay can be added to the network without changing the
receivers.

Theorem 3 (transmission rate region for the IRC with
ZDSAF). Let Ri, i ∈ {1, 2}, be the transmission rate for the
source node Si. When ZDSAF is assumed, the following region
is achievable:

∀i ∈ {1, 2},

RAF
i ≤C

⎛
⎜⎝ |arhirhri + hii|2ρi∣∣∣arh jrhri + h ji

∣∣∣2
ρ j

(
N j/Ni

)
+a2

r |hri|2(Nr/Ni) + 1

⎞
⎟⎠,

(7)

where ρi = Pi/Ni, j = −i, and ar is the relay amplification
gain.

The proof of this result is standard [20] and will
therefore be omitted. Only two points are worth being
mentioned. First, the proposed region is achieved by using
Gaussian codebooks. Second, the choice of the value of the
amplification gain ar is not always straightforward. In the
vast majority of the papers available in the literature, ar
is chosen in order to saturate the power constraint at the

relay (E|Xr|2 = Pr), that is, ar = ar �
√
Pr/E|Yr|2 =√

Pr/(|h1r|2P1 + |h2r|2P2 + Nr). However, as mentioned in
some works [21–24], this choice can be suboptimal in the
sense of certain performance criteria. The intuitive reason
for this is that the AF protocol not only amplifies the useful
signal but also the received noise. This effect can be negligible
in certain scenarios for the standard relay channel but can
be significant for the IRC. Indeed, even if the noise at the
relay is negligible, the interference term for user i (i.e., the
term h jrX j , j = −i) can be influential. In order to assess the
importance of choosing amplification factor ar adequately
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Figure 1: System model: a Q-band interference channel with a
relay; q is the band index and q ∈ {1, . . . ,Q}.

(i.e., to maximize the transmission rate of a given user or the
network sum-rate), we derive its best value. The proposed
derivation differs from [21, 23] because, here, we consider
a different system (an IRC instead of a relay channel with
no direct link), a specific relaying function (linear relaying
functions instead of arbitrary functions), and a different
performance metric (individual transmission rate and sum-
rate instead of raw bit error rate [21] and mutual information
[23]). Our problem is also different from [24] since we do
not consider the optimal clipping threshold in the sense
of the end-to-end distortion for frequency division relay
channels. At last, the main difference with [22] is that, for the
relay channel, the authors discuss the choice of the optimal
amplification gain in terms of transmission rate for a vector
AF protocol having a delay of at least one symbol duration;
here we focus on a scalar AF protocol with no delay and
a different system namely, the IRC. In this setup, we have
found an analytical expression for the best ar in the sense
of Ri(ar) for a given user i ∈ {1, 2}. We have also noticed that
the ar maximizing the network sum-rate has to be computed
numerically in general. The corresponding analytical result is
stated in the following theorem.

Theorem 4 (Optimal amplification gain for the ZDSAF in
the IRC). The transmission rate of user i, Ri(ar), as a function
of ar ∈ [0,ar] can have several critical points which are the

real solutions, denoted by c
(1)
r,i and c

(2)
r,i , to the following second

degree equation:

a2
r

[
|mi|2 Re

(
piq

∗
i

)
−
(∣∣pi

∣∣2
+ si

)
Re

(
min

∗
i

)]

+ar
[
|mi|2

(∣∣qi
∣∣2

+ 1
)
− |ni|2

(∣∣pi
∣∣2

+ si
)]

+
(∣∣qi

∣∣2
+ 1

)
Re

(
min

∗
i

)
− |ni|2 Re

(
piq

∗
i

)
= 0,

(8)

where mi = hirhri
√
ρi, ni = hii

√
ρi, pi = h jrhri

√
ρ j , qi =

h ji
√
ρ j , si = |hri|2, i ∈ {1, 2}, and j = −i. Thus, depending

on the channel parameters, the optimal amplification gain
a∗r = arg maxar∈[0,ar ]Ri(ar) takes one value in the set a∗r ∈

{0,ar , c
(1)
r,i , c

(2)
r,i }. If, additionally, the channel gains are real then

the two critical points are written as c
(1)
r,i = −ni/mi and c

(2)
r,i =

−(miq
2
i + mi − piqini)/(miqipi − p2

i ni − nisi).

The proof of this result is provided in Appendix B.
Of course, in practice, if the receive signal-to-noise plus
interference ratio (viewed from a given user) at the relay is
low, choosing the amplification factor ar adequately does not
solve the problem. It is well known that in real systems, a
more efficient way to combat noise is to implement error
correcting codes. This is one of the reasons why DF is also
an important relaying protocol, especially for digital relay
transceivers for which AF cannot be implemented in its
standard form (see, e.g., [24] for more details).

3.4. Time-Sharing. In terms of achievable Shannon rates,
distributed channels differ from their centralized counter-
part. Indeed, rate regions are not necessarily convex since the
time-sharing argument can be invalid (if no synchronization
is possible). Similarly, depending on the channel gains, the
achievable rate for a given transmitter can be nonconcave
with respect to its power allocation policy. This happens if the
transmitters cannot be coordinated (distributed channels).

Assuming that the users can be coordinated, we discuss
here a standard time-sharing procedure similarly to the
approach in [25] for the frequency-division relay channel.
More specifically, we assume that user 1 decides to transmit
only during a fraction α1 of the time using the power P1/α1

and user 2 transmits only with a fraction α2 percent of the
time using the power P2/α2.

The achievable rate-region with coordinated time-
sharing, irrespective of the relay protocol, is

∀i ∈ {1, 2},

RTS
i ≤ αiβ jRi

(
Pi
αi

, 0

)
+ αiβ jRi

(
Pi
αi

,
P j

α j

)
,

(9)

where j = −i, (αi,α j)
2 ∈ [0, 1]2, and (βi,β j)

2 ∈ [0, 1]2 such
that β1α2 = β2α1. The rate Ri(Pi/αi, 0) represents the
achievable rate of user i (depends on the relay protocol
and was provided in the previous subsections) when user
j does not transmit and user i transmits with power Pi/αi,
Ri(Pi/αi,P j/α j) is the achievable rate when user i transmits
with power Pi/αi and user j transmits with power P j/α j .
In order to achieve this rate region, the users have to be
coordinated. This means that they have to know at each
instant if the other user is transmitting or not. User i also has
to know the parameters αi and α j . The parameter β j ∈ [0, 1]
represents the fraction of time when user j interferes with
user i. Considering the time when both users transmit with
nonzero power, we obtain the condition: β1α2 = β2α1.

4. Power Allocation Games in Multiband IRCs
and Nash Equilibrium Analysis

In the previous section, we have considered the system
model presented in Section 2 for Q = 1. Here, we consider
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multiband IRCs for which Q ≥ 2. As communications
interfere on each band, choosing the power allocation
policy at a given transmitter is not a simple optimization
problem. Indeed, this choice depends on what the other
transmitter does. Each transmitter is assumed to optimize
its transmission rate in a selfish manner by allocating its
transmit power Pi between Q subchannels and knowing that
the other transmitters want to do the same. This interaction
can be modeled as a strategic form non-cooperative game,
G = (K , (Ai)i∈K , (ui)i∈K ), where (i) the players of the game
are the two information sources or transmitters and K =
{1, 2} is used to refer to the set of players; (ii) the strategy of

transmitter i consists in choosing θi = (θ
(1)
i , . . . , θ

(Q)
i ) in its

strategy set Ai = {θi ∈ [0, 1]Q |
∑Q

q=1 θ
(q)
i ≤ 1}, where θ

(q)
i

represents the fraction of power used in band (q); (iii) ui(·)
is the utility function of user i ∈ {1, 2} or its achievable rate
depending on the relaying protocol. From now on, we will
call state of the network the (concatenated) vector of power
fractions that the transmitters allocate to the IRCs, that is,
θ = (θ1, θ2). An important issue is to determine whether
there exist some outcomes to this conflicting situation. A
natural solution concept in non-cooperative games is the
Nash equilibrium [26]. In distributed networks, the existence
of a stable operating state of the system is a desirable feature.
In this respect, the NE is a stable state from which the users
do not have any incentive to unilaterally deviate (otherwise
they would lose in terms of utility). The mathematical
definition is the following.

Definition 5 (nash equilibrium). The state (θ∗i , θ∗−i) is a
pure NE of the strategic form game G if ∀i ∈ K ,∀θ′i ∈
Ai, and ui(θ

∗
i , θ∗−i) ≥ ui(θ

′
i , θ

∗
−i).

In this section, we mainly focus on the problem of
existence of such a solution, which is the first step towards
equilibria characterization in IRCs. The problems of equilib-
rium uniqueness, selection, convergence, and efficiency are
therefore left as natural extensions of the work reported here.

4.1. Equilibrium Existence Analysis for the DF Protocol. As
explained in Section 3.1, the signals transmitted by S1

and S2 in band (q) have the following form: X
(q)
i =

X
(q)
i,0 +

√
(τ

(q)
i /ν

(q)
i )(θ

(q)
i Pi/P

(q)
r )X

(q)
r,i , where the signals X

(q)
i,0

and X
(q)
r,i are Gaussian and independent. At the relay R, the

transmitted signal is written as X
(q)
r = X

(q)
r,1 +X

(q)
r,2 . For a given

allocation policy θi = (θ
(1)
i , . . . , θ

(Q)
i ), the source-destination

pair (Si, Di) achieves the transmission rate
∑Q

q=1 R
(q),DF
i

where

R
(q),DF
1 = min

{
R

(q),DF
1,1 ,R

(q),DF
1,2

}
,

R
(q),DF
2 = min

{
R

(q),DF
2,1 ,R

(q),DF
2,2

}
,

(10)

R
(q),DF
1,1 = C

⎛
⎜⎝

∣∣∣h(q)
1r
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2
τ
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1 θ
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1 P1
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2
τ
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2 θ
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(q)
r

⎞
⎟⎠,

R
(q),DF
2,1 = C

⎛
⎜⎝

∣∣∣h(q)
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2
τ
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(q)
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2
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(q)
1 θ
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1 P1 + N

(q)
r

⎞
⎟⎠,

R
(q),DF
1,2 = C

⎛
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∣∣∣h(q)
11

∣∣∣
2
θ

(q)
1 P1 +

∣∣∣h(q)
r1

∣∣∣
2
ν

(q)P
(q)
r + 2 Re

(
h

(q)
11 h

(q),∗
r1

)√
τ

(q)
1 θ

(q)
1 P1ν

(q)P
(q)
r

∣∣∣h(q)
21

∣∣∣
2
θ

(q)
2 P2 +

∣∣∣h(q)
r1

∣∣∣
2
ν

(q)P
(q)
r + 2 Re

(
h

(q)
21 h

(q),∗
r1

)√
τ

(q)
2 θ

(q)
2 P2ν

(q)P
(q)
r + N

(q)
1

⎞
⎟⎠,

R
(q),DF
2,2 = C

⎛
⎜⎝

∣∣∣h(q)
22

∣∣∣
2
θ

(q)
2 P2 +

∣∣∣h(q)
r2

∣∣∣
2
ν

(q)P
(q)
r + 2 Re

(
h

(q)
22 h

(q),∗
r2

)√
τ

(q)
2 θ

(q)
2 P2ν

(q)P
(q)
r

∣∣∣h(q)
12

∣∣∣
2
θ

(q)
1 P1 +

∣∣∣h(q)
r2

∣∣∣
2
ν

(q)P
(q)
r + 2 Re

(
h

(q)
12 h

(q),∗
r2

)√
τ

(q)
1 θ

(q)
1 P1ν

(q)P
(q)
r + N

(q)
2

⎞
⎟⎠,

(11)

and (ν
(q), τ

(q)
1 , τ

(q)
2 ) is a given triple of parameters in [0, 1]3,

τ
(q)
1 + τ

(q)
2 ≤ 1.

The achievable transmission rate of user i is given by

uDF
i

(
θi, θ−i

)
=

Q∑
q=1

R
(q),DF
i

(
θ

(q)
i , θ

(q)
−i

)
. (12)

We suppose that the game is played once (one-shot or
static game), the users are rational (each selfish player does
what is best for itself), rationality is common knowledge,
and the game is with complete information that is, every
player knows the triplet GDF = (K , (Ai)i∈K , (uDF

i )i∈K).
Although this setup might seem to be demanding in terms
of CSI at the source nodes, it turns out that the equilibria
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predicted in such a framework can be effectively observed
in more realistic frameworks where one player observes the
strategy played by the other player and reacts accordingly
by maximizing his utility, the other player observes this and
updates its strategy and so on. We will come back to this
later on. The existence theorem for the DF protocol is given
hereunder.

Theorem 6 (Existence of an NE for the DF protocol). If the

channel gains satisfy the condition Re(h
(q)
ii h

(q)∗
ri ) ≥ 0, for all

i ∈ {1, 2} and q ∈ {1, . . . ,Q}, the game defined by GDF =
(K , (Ai)i∈K , (uDFi (θi, θ−i))i∈K) with K = {1, 2} and Ai =
{θi ∈ [0, 1]Q |

∑Q
q=1 θ

(q)
i ≤ 1} has always at least one pure

NE.

Proof. The proof is based on Theorem 1 of [27]. The latter
theorem states that in a game with a finite number of players,
if for every player (1) the strategy set is convex and compact,
(2) its utility is continuous in the vector of strategies and
3) concave in its own strategy, then the existence of at
least one pure NE is guaranteed. In our setup, checking
that conditions (1) and (2) are met is straightforward. The

condition Re(h
(q)
ii h

(q)∗
ri ) ≥ 0 is a sufficient condition that

ensures the concavity of RDF
i,2 w.r.t. θ

(q)
i . The intuition behind

this condition is that the superposition of the two signals
carrying useful information for user i (i.e., signal from Si and
R) has to be constructive w.r.t. the amplitude of the resulting
signal. As the sum of concave functions is a concave function,
the min of two concave functions is a concave function (see
[28] for more details on operations preserving concavity),

and R
(q)
i, j is a concave function of θi, it follows that (3) is also

met, which concludes the proof.

The theorem indicates, in particular, that for the path
loss model where the channel gains are positive real scalars
(i.e., hi j > 0, (i, j) ∈ {1, 2, r}2), there always exists an
equilibrium. As a consequence, if some relays are added in
the network, the transmitters will adapt their PA policies
accordingly and, whatever the locations of the relays, an
equilibrium will be observed. This is a nice property for
the system under investigation. As the PA game with DF is
concave, it is tempting to try to verify whether the sufficient
condition for uniqueness of [27] is met here. It turns out that
the diagonally strict concavity condition of [27] is not trivial
to be checked. Additionally, it is possible that the game has
several equilibria as it is proven to be the case for the AF
protocol.

4.2. Equilibrium Existence Analysis for the EF Protocol. In this
section, we make the same assumptions as in Section 4.1
concerning the reception schemes and PA policies at the
relays: we assume that each node R, D1, and D2 implements
single-user decoding and the PA policy at each relay that
is, ν = (ν

(1), . . . , ν
(Q)) is fixed. Each relay now implements

the EF protocol. Under this assumption, the utility for user
i ∈ {1, 2} can be expressed as follows:

uEF
i

(
θi, θ−i

)
=

Q∑
q=1

R
(q),EF
i , (13)

where

R
(q),EF
1 = C

⎛
⎜⎜⎝

(∣∣∣h(q)
2r

∣∣∣
2
θ

(q)
2 P2 + N

(q)
r + N

(q)
wz,1

)∣∣∣h(q)
11

∣∣∣
2
θ

(q)
1 P1 +

(∣∣∣h(q)
21

∣∣∣
2
θ

(q)
2 P2 +

∣∣∣h(q)
r1

∣∣∣
2
ν

(q)P
(q)
r + N

(q)
1

)∣∣∣h(q)
1r

∣∣∣
2
θ

(q)
1 P1

(
N

(q)
r + N

(q)
wz,1

)(∣∣∣h(q)
21

∣∣∣
2
θ

(q)
2 P2 +

∣∣∣h(q)
r1

∣∣∣
2
ν

(q)P
(q)
r + N

(q)
1

)
+
∣∣∣h(q)

2r

∣∣∣
2
θ

(q)
2 P2

(∣∣∣h(q)
r1

∣∣∣
2
ν

(q)P
(q)
r + N

(q)
1

)

⎞
⎟⎟⎠,

R
(q),EF
2 = C

⎛
⎜⎜⎝

(
|h1r|2θ(q)

1 P1 + N
(q)
r + N

(q)
wz,2

)∣∣∣h(q)
22

∣∣∣
2
θ

(q)
2 P2 +

(∣∣∣h(q)
12

∣∣∣
2
θ

(q)
1 P1 +

∣∣∣h(q)
r2

∣∣∣
2
ν

(q)P
(q)
r + N

(q)
2

)∣∣∣h(q)
2r

∣∣∣
2
θ

(q)
2 P2

(
N

(q)
r + N

(q)
wz,2

)(∣∣∣h(q)
12

∣∣∣
2
θ

(q)
1 P1 +

∣∣∣h(q)
r2

∣∣∣
2
ν

(q)P
(q)
r + N

(q)
2

)
+
∣∣∣h(q)

1r

∣∣∣
2
θ

(q)
1 P1

(∣∣∣h(q)
r2

∣∣∣
2
ν

(q)P
(q)
r + N

(q)
2

)

⎞
⎟⎟⎠,

(14)

N
(q)
wz,1 =

(∣∣∣h(q)
11

∣∣∣
2
θ

(q)
1 P1 +

∣∣∣h(q)
21

∣∣∣
2
θ

(q)
2 P2 +

∣∣∣h(q)
r1

∣∣∣
2
ν

(q)P
(q)
r + N

(q)
1

)
A(q) −

∣∣∣A(q)
1

∣∣∣
2

∣∣∣h(q)
r1

∣∣∣
2
ν

(q)P
(q)
r

,

N
(q)
wz,2 =

(∣∣∣h(q)
22

∣∣∣
2
θ

(q)
2 P2 +

∣∣∣h(q)
12

∣∣∣
2
θ

(q)
1 P1 +

∣∣∣h(q)
r2

∣∣∣
2
ν

(q)P
(q)
r + N

(q)
2

)
A(q) −

∣∣∣A(q)
2

∣∣∣
2

∣∣∣h(q)
r2

∣∣∣
2
ν

(q)P
(q)
r

,

(15)



EURASIP Journal on Wireless Communications and Networking 9

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4

xr /d0

y r
/d

0

P1 = 10, P2 = 10 and Pr = 10

ZDSAF

Bi-level
compression EF

DF

S1

S2

D1

D2

Figure 2: For different relay positions in the plane (xr/d0, yr /d0) ∈
[−4, +4] × [−3, +4], the figure indicates the regions where one
relaying protocol (AF, DF or bi-level EF) dominates the two others
in terms of network sum-rate.
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1r |
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2 P2, and A

(q)
2 = h

(q)
12 h

(q),∗
1r θ

(q)
1 P1 +

h
(q)
22 h

(q),∗
2r θ

(q)
2 P2. What is interesting with this EF protocol is

that, here again, one can prove that the utility is concave for
every user. This is the purpose of the following theorem.

Theorem 7 (existence of an NE for the bi-level com-
pression EF protocol). The game defined by GEF =
(K , (Ai)i∈K , (uEFi (θi, θ−i))i∈K) with K = {1, 2} and Ai =
{θi ∈ [0, 1]Q |

∑Q
q=1 θ

(q)
i ≤ 1} has always at least one pure

NE.

The proof is similar to the proof of Theorem 6. To be able
to apply Theorem 1 of Rosen [27], we have to prove that the
utility uEF

i is concave w.r.t. θi. The problem is simpler than for

DF because the compression noise N
(q)
wz,i which appears in the

denominator of the capacity function in (14) depends on the
strategy θi of transmitter i. It turns out that it is still possible
to prove the desired result as shown in Appendix C.

4.3. Equilibrium Analysis for the AF Protocol. Here, we
assume that the relay implements the ZDSAF protocol, which
has already been described in Section 3.3. One of the nice
features of the (analog) ZDSAF protocol is that relays are
very easy to be deployed since they can be used without any
change on the existing (non-cooperative) communication
system. The amplification factor/gain for the relay on band

(q) will be denoted by a
(q)
r . Here, we consider the most

common choice for the amplification factor that it, the one
that exploits all the transmit power available on each band.
The achievable transmission rate is given by

uAF
i

(
θi, θ−i

)
=

Q∑
q=1

R
(q),AF
i

(
θ

(q)
i , θ

(q)
−i

)
, (16)

where R
(q),AF
i is the rate user i obtained by using band (q)

when the ZDSAF protocol is used by the relay R. After
Section 3.3, the latter quantity is

∀i ∈ {1, 2},R(q),AF
i

=C

⎛
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where

a
(q)
r = ã

(q)
r (θ

(q)
1 , θ

(q)
2 ) �

√
Pr/(|h(q)

1r |
2
P1 + |h2r|2P2 + Nr)

(18)

and ρ
(q)
i = Pi/N

(q)
i . Without loss of generality and for the

sake of clarity we will assume in Section 4.3 that ∀(i, q) ∈
{1, 2, r} × {1, . . . ,Q},N

(q)
i = N , P

(q)
r = Pr and we introduce

the quantities ρi = Pi/N . In this setup the following existence
theorem can be proven.

Theorem 8 (existence of an NE for ZDSAF). If any of the

following conditions are met: (i) |a(q)
r h

(q)
ir h

(q)
ri | ≫ |h(q)

ii | and

|a(q)
r h

(q)
jr h

(q)
ri | ≫ |h(q)

ji | (negligible direct links), (ii) |h(q)
ii | ≫

|a(q)
r h

(q)
ir h

(q)
ri | and |h(q)

ji | ≫ |a(q)
r h

(q)
jr |min{1, |h(q)

ri |} (negligible

relay links), and (iii) a
(q)
r = A

(q)
r ∈ [0, ã

(q)
r (1, 1)] (constant

amplification gain), there exists at least one pure NE in the PA
game GAF.

The proof is similar to the proof of Theorem 6. The
sufficient conditions ensure the concavity of the function

R
(q),AF
i w.r.t. θ

(q)
i . For the first case (i) where the direct links

between the sources and destinations are negligible (e.g.,
in the wired DSL setting these links are missing and the
transmission is only possible using the relay nodes), the
achievable rates become

∀i ∈ {1, 2},R
(q),AF
i = C

⎛
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and it can be proven that R
(q),AF
i is concave w.r.t. θ

(q)
i . The

other two cases are easier to prove since the amplification
gain is either constant or not taken into account and the rate

R
(q),AF
i is a composition of a logarithmic function and a linear

function of θ
(q)
i and thus concave.

The determination of NE and the convergence issue to
one of the NE are far from being trivial in this case. For
example, potential games [29] and supermodular games [30]
are known to have attractive convergence properties. It can
be checked that, the PA game under investigation is neither
a potential nor a supermodular game in general. To be more
precise, it is a potential game for a set of channel gains which
corresponds to a scenario with probability zero (e.g., the
parallel multiple access channel). The authors of [31] studied
supermodular games for the interference channel with K =
2, Q = 3, assuming that only one band is shared by the users
(IC) while the other bands are private (one interference-free
band for each user). Therefore, each user allocates its power
between two bands. Their strategies are designed such that
the game has strategic complementarities. However, as stated
in [31], this design trick does not work for more than two
players or if the users can access more than two frequency
bands. In conclusion, general convergence results seem to
require more advanced tools and further investigations.

Special Case Study. As we have just mentioned, the unique-
ness/convergence/efficiency analysis of NE for the DF and
EF protocols requires a separate work to be treated properly.
However, it is possible to obtain relatively easy some inter-
esting results in a special case of the AF protocol. The reason
for analyzing this special case is threefold: (a) it corresponds
to a possible scenario in wired communication networks; (b)
it allows us to introduce some game-theoretic concepts that
can be used to treat more general cases and possibly the DF
and EF protocols; (c) it allows us to have more insights on the

problem with a more general choice for a
(q)
r . The special case

under investigation is as follows: Q = 2 and for all q ∈ {1, 2},

a
(q)
r = A

(q)
r ∈ [0, ãr(1, 1)] are constant w.r.t. θ. We observe

that the strategy set of user i is scalar spaces θi ∈ [0, 1]

because we can consider θ
(1)
i = θi and θ

(2)
i = θi. For the sake

of clarity, we denote hi j = h
(1)
i j and gi j = h

(2)
i j . Note that the

case a
(q)
r = A

(q)
r can also be seen as an interference channel

for which there is an additional degree of freedom on each
band. The choice Q = 2 is totally relevant in scenarios where
the spectrum is divided in two bands, one shared band where
communications interfere and one protected band where

they do not (see, e.g., [32]). The choice a
(q)
r = const. has the

advantage of being mathematically simple and allows us to
initialize the uniqueness/convergence analysis. Moreover, it
corresponds to a suitable model for an analog repeater in
the linear regime in wired networks or, more generally, to
a power amplifier for which neither automatic gain control
is available nor received power estimation mechanism. By
making these two assumptions, it is possible to determine
exactly the number of Nash equilibria through the notion of
best response (BR) functions. The BR of player i to player j

is defined by BRi(θ j) = arg maxθiui(θi, θ j). In general, it is
a correspondence but in our case it is just a function. The
equilibrium points are the intersection points of the BRs of
the two players. In this case, using the Lagrangian functions
to impose the power constraint, it can be checked that

BRi

(
θ j

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fi
(
θ j

)
if 0 < Fi

(
θ j

)
< 1,

1 if Fi
(
θ j

)
≥ 1,

0, otherwise,

(20)

where j = −i, Fi(θ j) � −(ci j/cii)θ j + di/cii is an affine

function of θ j for (i, j) ∈ {(1, 2), (2, 1)}, cii = 2|A(1)
r hrihir

+hii|2|A(2)
r grigir + gii|

2
ρi; ci j = |A(1)

r hrihir + hii|
2
|A(2)

r grig jr

+g ji|2ρ j + |A(1)
r hrih jr + h ji|

2
|A(2)

r grigir + gii|
2
ρ j ; di =

|A(1)
r hrihir + hii|

2
[|A(2)

r grigir + gii|
2
ρi + |A(2)

r grig jr + g ji|
2
ρ j +

A
(2)
r |gri|2 + 1]− |A(2)

r grigir + gii|
2
(A

(1)
r |hri|2 + 1). By studying

the intersection points between BR1 and BR2, one can
prove the following theorem (the proof is provided in
Appendix D).

Theorem 9 (number of Nash equilibria for ZDSAF). For the
game GAF with fixed amplification gains at the relays, (i.e.,

∂ar/∂θ
(q)
i = 0), there can be a unique NE, two NE, three NE, or

an infinite number of NE, depending on the channel parameters

(i.e., hi j , gi j , ρi, A
(q)
r , (i, j) ∈ {1, 2, r}2, q ∈ {1, 2}.

Notice that, if Ar = 0, we obtain the complete
characterization of the NE set for the two-users two-channels
parallel interference channel. In the proof in Appendix D,
we give explicit expressions of the possible NE in function
of the system parameters (i.e., the amplification gain Ar and
the channel gains). If the channel gains are the realizations
of continuous random variables, it is easy to prove that the
probability of observing the necessary conditions on the
channel gains for having two NEs or an infinite number
of NEs is zero. Said otherwise, considering the path loss
model and arbitrary nodes positioning, there will be, with
probability one, either one or three NE, depending on the
channel gains. When the channel gains are such that the NE
is unique, the unique NE can be shown to be

θNE = θ∗ =
(
c22d1 − c12d2

c11c22 − c12c21
,
c11d2 − c21d1

c11c22 − c12c21

)
. (21)

When there are three NE, it seems a priori impossible to pre-
dict the NE that will be effectively observed in the one-shot
game. In fact, in practice, in a context of adaptive/cognitive
transmitters (note that what can be adapted is also the PA
policy chosen by the designer/owner of the transmitter), it
is possible to predict the equilibrium of the network. First,
in general, there is no reason why the sources should start
transmitting at the same time. Thus, one transmitter, say i,
will be alone and using a certain PA policy. The transmitter
coming after, namely, S−i, will sense/measure/probe its
environment and play its BR to what it observes. As a
consequence, user i will move to a new policy, maximizing
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its utility to what transmitter −i has played and so on.
The key question is does this procedure converge? This
procedure is guaranteed to converge to one of the NE and
a detailed discussion about the asymptotic stability of the
NE can be found in Appendix D. The arguments for proving
this have been used for the first time in [33] where the
“Cournot duopoly” was introduced. In [33], the BRs of each
player are purely affine, which leads in this case to a unique
equilibrium. The corresponding iterative procedure is called
the Cournot tâtonnement process in [34]. In the case with
three NE, the effectively observed NE can be predicted by
knowing the initial network state that is, the PA policy played
by the first transmitting player (see Section 5). To implement
such an iterative procedure, it can be checked [13] that the
transmitters need to know less network parameters than in
the original game where the amplification factor saturates the
constraint. In fact, the needed parameters can be acquired by
realistic sensing/probing techniques or feedback mechanisms
based on standard estimation procedures. As a comment,
note that in the (modern) literature of decentralized or
distributed communications networks where the optimal
PA policy of a transmitter is to water-fill, the mentioned
iterative procedure is called iterative water-filling.

4.4. Equilibrium Analysis for the Time-Sharing Scheme. In the
previous subsections, we have given sufficient conditions that
ensure the existence of the Nash equilibrium. Our approach
is based on the concave games studied in [27] and consists
in finding the sufficient conditions that ensure the concavity
of the transmission achievable rates. We have seen that,
assuming ZDSAF or DF relaying protocols, the achievable
rates are not necessarily concave.

Assuming that the transmitters can be coordinated, and
by using the time-sharing scheme similarly to Section 3.4, the
achievable transmission rate of user i is given by

uTS
i

(
θi, θ−i

)
=

Q∑
q=1

R
(q),TS
i

(
θ

(q)
i , θ

(q)
−i

)
, (22)

where R
(q),TS
i is the rate user i obtained by using band (q) and

time-sharing technique. After Section 3.4, the latter quantity
is

∀i ∈ {1, 2},R
(q),TS
i = α

(q)
i β j

(q)
R

(q)
i

⎛
⎝θ

(q)
i Pi
αi

, 0

⎞
⎠

+ α
(q)
i β

(q)
j R

(q)
i

⎛
⎝θ

(q)
i Pi
αi

,
θ

(q)
j P j

α j

⎞
⎠,

(23)

where j = −i, (α
(q)
i ,α

(q)
j ) ∈ [0, 1]2, and (β

(q)
i ,β

(q)
j ) ∈ [0, 1]2

such that β
(q)
1 α

(q)
2 = β

(q)
2 α

(q)
1 . These parameters are fixed and

chosen such that the achievable rates are maximized. The
rates R

(q)
i (θ

(q)
i Pi/αi, 0), R

(q)
i (θ

(q)
i Pi/αi, θ

(q)
j P j/α j) represent the

achievable rates in band (q) when time-sharing is used. These
rates depend on the relaying protocol and are given by (10)
for DF and by (17) for ZDSAF. Notice that, when EF is
assumed, the rates are always concave irrespective of the
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Figure 3: Achievable system sum-rate versus xr (abscissa for the
relay position) for a fixed yr (yr = 0.5d0), with AF, DF and bi-level
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Figure 4: Best replies for a system composed of an IC in band (1)
and IRC in band (2) when the ZDSAF protocol is assumed (fixed
amplification factor). The number of equilibria is generally three as
indicated the figure.

channel gains and time-sharing techniques do not change the
achievable rate-region.

Theorem 10 (existence of an NE for TS). There always exists
at least one pure NE in the PA game GTS, regardless of the used
relaying scheme and the values of the channel gains.
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Figure 5: ZDSAF relaying protocol with fixed amplification gain.
Achievable network sum-rate at the NE as a function of Ar ∈ [0, ãr]
for L = 10 m, ε = 0.5 m, P1 = 20 dBm, P2 = 23 dBm, Pr = 22 dBm,
N1 = 10 dBm, N2 = 9 dBm, Nr = 7 dBm, γ(1) = γ(2) = 2. The
optimal amplification gain A∗r = 0.05 ≤ ãr(1, 1) = 0.17 meaning
that saturating the relay power constraint is suboptimal.

If the users are coordinated (i.e., each user is aware of the
moments where the other user is transmitting or not), then

their achievable rates R
(q),TS
i are always concave w.r.t. θ

(q)
i .

This implies directly that [27], irrespective of the relaying
technique and of the channel gains, the existence of an NE
will be guaranteed.

In the particular case where either P
(q)
r = 0 or h

(q)
ir =

0, for all q ∈ {1, . . . ,Q} and i ∈ {1, 2}, the parallel
IRC reduces to the parallel interference channel [4]. The
time-sharing scheme is useless since the achievable rates are
already concave and αi = 1, βi = 1 are optimal. Therefore,
Theorem 10 guarantees the existence of the NE in this case
and is consistent with the known results in [4].

5. Simulation Results

Single-Band IRCs. AF versus DF versus EF. Here, we assume
Q = 1 and a path loss exponent of 2, that is, |hi j| =
(di j/d0)−γ/2 for (i, j) ∈ {1, 2, r}2 where d0 = 5 m is a
reference distance and γ = 2 is the path loss exponent. The
nodes S1, S2, D1, and D2 are assumed to be located in a
plane. The positions of the nodes will be indicated on each
figure and are characterized by the distance between them
which are chosen as follows: d′11 = 11.5 m, d′22 = 10 m,
d′12 = 11 m, and d′21 = 14 m. As for the relay, to avoid
any divergence for the path loss in di j = 0, we assume
that it is located a hight ǫ = 0.1 m from this plane that
is, the relay location is given by the (xr , yr , zr) where zr is

fixed and equals 0.1 m; thus di j =
√
d′2i j + ǫ2 for i = r

or j = r and i /= j. The noise levels at the receiver nodes
are assumed to be normalized (N1 = N2 = Nr = 1). In
terms of transmit power, we analyze two cases: a symmetric

case where P1 = P2 = 10 (normalized power) and an
asymmetric one where P1 = 3 and P2 = 10. The relay
transmit power is fixed: Pr = 10. For the symmetric scenario,
Figure 2 represents the regions of the plane (xr/d0, yr /d0) ∈
[−4, +4] × [−3, +4] (corresponding to the possible relay
positions) where a certain protocol performs better than
the two others in terms of system sum-rate. These regions
are in agreement with what is generally observed for the
standard relay channel. This type of information is useful,
for example, when the relay has to be located in specific
places because of different practical constraints and one has
to choose the best protocol. Figure 3 allows one to better
quantify the differences in terms of sum-rate between the AF,
DF, and bi-level EF protocols since it represents the sum-rate
versus xr for a given yr = 0.5d0. The discontinuity observed
stems from the fact that for the bi-level EF protocol there is a
frontier delineating the scenarios where one receiver is better
than the other and can therefore suppress the interference of
the relay (as explained in Section 3.2).

Number of Nash Equilibria for the AF Protocol. First, we show
that in the PA game with ZDSAF, one can have three possible
Nash equilibria. For a given typical scenario composed
of an IC in parallel with an IRC (Q = 2) and ρ1 = 1,
ρ2 = 3, ρr = 2, and the channel gains (g11, g12, g21, g22) =
(2.76, 5.64,−3.55,−1.61), (h11,h12,h21,h22) = (14.15, 3.4,
0, 1.38), and (h1r ,h2r ,hr1,hr2) = (−3.1, 2.22,−3.12, 1.16),
we plot the best response functions in Figure 4. We see
that there are three intersection points and therefore
three Nash equilibria. As explained in Section 4.3, the
effectively observed NE in a one-shot game is not predictable
without any additional assumptions. However, the Cournot
tatônnement procedure converges towards a given NE which
can be predicted from the sole knowledge of the starting
point of the game, namely, θ0

1 or θ0
2 .

Stackelberg Formulation. We have mentioned that a strong
motivation for studying IRCs is to be able to introduce relays
in a network with non-coordinated and interfering pairs
of terminals. For example, relays could be introduced by
an operator aiming at improving the performance of the
communications of his customers. In such a scenario, the
operator acts as a player and more precisely as a game leader
in the sense of [35]. In [35], the author introduced what is
called nowadays a Stackelberg game. This type of hierarchical
games comprises one leader which plays in the first step of
the game and several players (the followers) which observe
the leader’s strategy and choose their actions accordingly. In
our context, the game leader is the operator/engineer/relay
who chooses the parameters of the relays. The followers are
the adaptive/cognitive transmitters that adapt their PA policy
to what they observe. In the preceding sections, we have
mentioned some of these parameters: the location of each
relay; in the case of AF, the amplification gain of each relay;
in the case of DF and EF, the power allocation policy between
the two cooperative signals at each relay that is, the parameter
ν

(q). Therefore, the relay can be thought of as a player who
maximizes its own utility. This utility can be either the
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Figure 7: EF versus DF relaying protocol. Achievable network sum-
rate at the NE as a function of ν ∈ [0, 1] for L = 10 m, ε = 1 m,
P1 = 22 dBm, P2 = 17 dBm, Pr = 23 dBm, N1 = 7 dBm, N2 =
9 dBm, Nr = 0 dBm, γ(1) = 2.5, and γ(2) = 2. The optimal relay PA
ν
∗ = 1 is in favor of the better user and outperforms the uniform

relay PA ν = 0.5 for both EF and DF.

individual utility of a given transmitter (picture one WiFi
subscriber wanting to increase his downlink throughput by
locating his cellular phone somewhere in his apartment while
his neighbor can also exploit the same spectral resources) or
the network sum-rate (in the case of an operator). In the
latter case, the operator possesses some degrees of freedom

to improve the efficiency of the equilibrium. In the remaining
part of this section, we focus on the Stackelberg formulation
where the strategy of the leader is, respectively, the relay
amplification factor, position, and power allocation between
the cooperative signals. The system considered is composed
of an IRC in parallel with an interference channel (IC) [36].
All the simulations provided are obtained by applying the
Cournot tatônnement procedure. The simulation setup is as
follows. The source and destination nodes are located in fixed
locations in the region [−L,L]2 of a plane, with L = 10 m,
such that the relative distances between the nodes are d11 =
6.52 m, d12 = 8.32 m, d21 = 6.64 m, and d22 = 6.73 m. We
assume a path loss model for the channel gains |gi j|, |hi j|.
For the path loss model, we take |hi j| = (di j/d0)−γ

(1)/2 and

|gi j| = (di j/d0)−γ
(2)/2 for (i, j) ∈ {1, 2, r}2 where d0 = 1 m

is a reference distance. The relay is at ǫ = 0.5 m from the

plane. We will also assume that N
(1)
i = N

(2)
i = Ni, i ∈ {1, 2},

N
(1)
r will be denoted by Nr , and also P

(1)
r = Pr , A

(1)
r = Ar ,

a
(1)
r = ar , ã

(1)
r = ar , ν

(1) = ν.

Optimal Relay Amplification Gain for the AF Protocol. First
we consider the ZDSAF relaying scheme assuming a fixed
amplification gain ar = Ar (Section 4.3). We want to analyze
the influence of the value of the amplification factor, Ar ∈
[0, ãr(1, 1)], on the achievable network sum-rate at the NE.
This is what Figure 5 shows for the following scenario: ǫ =
0.5 m, P1 = 20 dBm, P2 = 23 dBm, Pr = 22 dBm, N1 =
10 dBm, N2 = 9 dBm, Nr = 7 dBm, and γ(1) = γ(2) = 2.
We observe that the optimal value is A∗r = 0.05 and is
not equal to the one saturating the relay power constraint
ãr(1, 1) = 0.17. This result illustrates for the sum-rate what
we have proved analytically for the individual rate of a given
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user (see Section 3.3). Note that the gap between the optimal
choice for ar and the choice saturating the power constraint is
not that large and in fact other simulation results have shown
to be generally of this order and even smaller typically.

Optimal Relay Location for the AF Protocol. Now, we consider
the ZDSAF when the full power regime is assumed at the
relay, ar = ãr(θ1, θ2) (Section 4.3) and study the relay
location problem. Figure 6 represents the achievable network
sum-rate as a function of the relay position (xR, yR) ∈
[−L,L]2 for the scenario: P1 = 20 dBm, P2 = 17 dBm,
Pr = 22 dBm, N1 = 10 dBm, N2 = 9 dBm, Nr =
7 dBm, γ(1) = 2.5, and γ(2) = 2. We observe that there
are two local maximums that actually correspond to the
points that maximize the individual achievable rates. Many
simulation results have confirmed that, when the source
nodes are sufficiently far away from each other, maximizing
the individual rate of either user at the NE amounts to
locating the relay on one of the the segment between Si

and Di. This interesting and quite generic observation can
be explained as follows. For this purpose, consider Figure 6
which is a temperature image representing the values of θ1

and θ2 for different relay positions in [−L,L]2. The region
where (θ1, θ2) = (1, 0) (resp., (θ1, θ2) = (0, 1)) is the
region around S1 (resp., S2). We see that the intersection
between these regions corresponds to a small area. This quite
general observation shows that the selfish behavior of the
transmitters leads to self-regulating the interference in the
network. Said otherwise, a selfish transmitter will not use
at all a far away relay but leaves it to the other transmitter.
Thus, when one transmitter uses the relay, it is often alone
and sees no interference. In these conditions, by considering
the path loss effects it can be proved that the optimal relay
position is on the segment between the considered source
and destination nodes. This also explains why the position
that maximizes the network sum-rate lies also on one of the
segments from Si to Di.

Optimal Relay Power Allocation at the Relay for DF and EF.
For the DF protocol, we fix the cooperation degrees τ1 = 0
and τ2 = 0. In Figure 7, we plot the achievable sum-rate at
the equilibrium as the function of the relay power allocation
policy is ν ∈ [0, 1] (with the convention ν = ν

(1)) for the
scenario: xR = 0 m, yR = 0 m, P1 = 22 dBm, P2 = 17 dBm,
Pr = 23 dBm, N1 = 7 dBm, N2 = 9 dBm, Nr = 0 dBm,
γ(1) = 2.5, and γ(2) = 2. We observe that, for both protocols,
the optimal power allocation ν

∗ = 1, meaning that the relay
allocates all its available power to the better receiver, D1.
In this case, the relay is in very good conditions and can
therefore reliably decode the source messages. This explains
why DF outperforms EF which is in agreement with the
observations we have made in Section 3. We have observed
that, in general, the network sum-rate is not concave w.r.t.
ν ∈ [0, 1] and that the optimal power allocation lies on the
borders ν

∗ ∈ {0, 1} for both relaying protocols. In Figure 7,
we also see that the fair PA policy that is, ν = 1/2 can lead to
a relatively significant performance loss.

6. Conclusion

The complete study of PA games in IRCs is a wide problem
and we do not claim to fully characterize it here. One of
the main objectives in this paper has been to know whether
there exist some stable outcomes to the conflicting situation
where two transmitters selfishly allocate their power between
different subchannels in multiband interference relay chan-
nels in order to maximize their individual transmission
rate. Our approach has been to consider transmission rates
achievable in a decentralized framework where relays can
be deployed with minor or even with no changes for the
already existing receivers. For the three types of protocols
considered, we have proved that the utility of the transmitters
is a concave function of the individual strategy, which ensures
the existence of Nash equilibria in the power allocation game
after Rosen [27]. In a special case of the AF protocol, we
have fully characterized the number of NE and the con-
vergence problem of Cournot-type or iterative water-filling
procedures to an NE. Although we have limited the scope of
the paper, we have seen that studying IRCs deeply requires
further investigations. Many interesting questions which can
be considered as natural extensions of this work have arisen.
Considering more efficient coding-decoding schemes and
relaying protocols such as those of [14] and related works,
is it possible to prove that the utilities are still concave
functions? For these schemes and those considered in this
paper, it is also important to fully determine the number of
Nash equilibria and derive convergent iterative distributed
power allocation algorithms. We have also seen that several
power allocation games come into play and need to be
studied when considering DF, EF, and AF-type protocols: for
allocating transmit power between the different bands at the
sources, for choosing the cooperation degree at the sources,
and for allocating the power between the cooperation signals
at the relay, for allocating the transmit power over time.
Furthermore, a new agent can come into play (the relay) and
several Stackelberg formulations can be used to improve the
efficiency of the equilibria.

Appendices

A. Proof of Theorem 2 (Achievable
Transmission Rates for IRCs with
the EF Protocol)

In order to prove that the transmission rate region of
Theorem 2 is achievable for Gaussian IRCs, we use a quite
common approach [20] for proving coding theorems: we
first prove that it is achievable for discrete input discrete
output channels and obtain the Gaussian case from standard
quantization and continuity arguments [20], and a proper
choice of coding auxiliary variables.

Definitions and Notations. We denote by A
(n)
ǫ (X) the weakly

ǫ-typical set for the random variable X. If X is a discrete
variable, X ∈ X, then ‖X‖ denotes the cardinality of the
finite set X. We use xn to indicate the vector (x1, x2, . . . , xn).
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Definition 11. A two-user discrete memoryless interference
relay channel (DMIRC) without feedback consists of three
input alphabets X1, X2, and Xr , and three output alphabets
Y1, Y2, and Yr , and a probability transition function that
satisfies p(yn1 , yn2 , ynr | xn1 , xn2 , xnr ) =

∏n
k=1p(y1,k , y2,k , yr,k |

x1,k, x2,k , xr,k) for some n ∈ N∗.

Definition 12. A (2nR1 , 2nR2 ,n)-code for the DMIRC with
private messages consists of two sets of integers W1 =
{1, . . . , 2nR1} and W2 = {1, . . . , 2nR2}, two encoders: fi :
Wi → Xn

i , a set of relay functions { fr,k}nk=1 such that
xr,k = fr,k(yr,1, yr,2, . . . , yr,k−1),1 ≤ k ≤ n, and two decoding
functions gi : Yn

i → Wi, i ∈ {1, 2}. The source node Si

intends to transmit Wi, the private message, to the receiver
node Di.

Definition 13. The average probability of error is defined
as the probability that the decoded message pair differs

from the transmitted message pair; that is, P
(n)
e =

Pr[g1(Yn
1 ) /=W1 org2(Yn

2 ) /=W2 | (W1,W2)], where (W1,
W2) is assumed to be uniformly distributed over W1 ×W2.
We also define the average probability of error for each

receiver as P
(n)
ei = Pr[gi(Y

n
i ) /=Wi | Wi]. We have 0 ≤

max{P(n)
e1 ,P

(n)
e2 } ≤ P

(n)
e ≤ P

(n)
e1 +P

(n)
e2 . Hence P

(n)
e → 0 implies

that both P
(n)
e1 → 0 and P

(n)
e2 → 0, and conversely.

Definition 14. A rate pair (R1,R2) is said to be achievable for
the IRC if there exists a sequence of (2nR1 , 2nR2 ,n) codes with

P
(n)
e → 0 as n → ∞.

Overview of Coding Strategy. At the end of the block k, the
relay constructs two estimations ŷnr1(k) and ŷnr2(k) of its
observation ynr (i) that intends to transmit to the receivers D1

and D2 to help them resolve the uncertainty on w1,k and w2,k,
respectively, at the end of the block k + 1.

Details of the Coding Strategy.

Codebook Generation.

(i) Generate 2nRi i.i.d. codewords xni (wi) ∼
∏n

k=1p(xi,k),
where wi ∈ {1, . . . , 2nRi}, i ∈ {1, 2}.

(ii) Generate 2nR
(1)
0 i.i.d. codewords un1 ∼

∏n
k=1p(u1,k).

Label these un1(s1), s1 ∈ {1, . . . , 2nR
(1)
0 }.

(iii) Generate 2nR
(2)
0 i.i.d. codewords un2 ∼

∏n
k=1p(u2,k).

Label these un2(s2), s1 ∈ {1, . . . , 2nR
(2)
0 }.

(iv) For each pair (un1(s1),un2(s2)), choose a sequence xnr
where xnr ∼ p(xnr | un1(s1),un2(s2)) =

∏n
k=1p(xr,k |

u1,k(s1),u2,k(s2)).

(v) For each un1(s1), generate 2nR̂1 conditionally i.i.d.
codewords ŷnr1 ∼

∏n
k=1p( ŷr1k | u1,k(s1)) and

label them ŷnr1(z1 | s1), z1 ∈ {1, . . . , 2nR̂1}. For

each pair (u1, ŷr1) ∈ U1 × Ŷr1, the conditional
probability p( ŷr1 | u1) is defined as p( ŷr1 | u1) =∑

x1 ,x2,y1,y2,yr p(x1)p(x2)p(y1, y2, yr | x1, x2, xr)p( ŷr1 |
yr ,u1).

(vi) For each un2(s2), generate 2nR̂2 conditionally i.i.d.
codewords ŷnr2 ∼

∏n
k=1p( ŷr2k | u2,k(s2)) and label

them ŷnr2(z2 | s2), z2 ∈ {1, 2nR̂2}. For each triplet

(u2, ŷr1) ∈ U2 × Ŷr1, the conditional probabil-
ity p( ŷr2 | u2) is defined as p( ŷr2 | u2) =∑

x1,x2 ,y1,y2,yr p(x1)p(x2)p(y1, y2, yr | x1, x2)p( ŷr2 |
yr ,u2).

(vii) Randomly partition the message set {1, 2, . . . , 2nR̂1}
into 2nR

(1)
0 sets {S(1)

1 , S
(1)
2 , . . . , S

(1)

2nR
(1)
0
} by indepen-

dently and uniformly assigning each message in

{1, . . . , 2nR̂1} to an index in {1, . . . , 2nR
(1)
0 }.

(viii) Also, randomly partition the message set

{1, 2, . . . , 2nR̂2} into 2nR
(2)
0 sets {S(2)

1 , S
(2)
2 , . . . , S

(2)

2nR
(2)
0
} by

independently and uniformly assigning each message

in {1, . . . , 2nR̂2} to an index in {1, . . . , 2nR
(2)
0 }.

Encoding Procedure. Let w1,k and w2,k be the messages
to be send in block k. S1 and S2, respectively, transmit
the codewords xn1 (w1,k) and xn2 (w2,k). We assume that

(un1(s1,k−1), ŷnr1(z1,k−1 | s1,k−1), ynr (k − 1)) ∈ A
(n)
ǫ and z1,k−1 ∈

S
(1)
s1,k and also that (un2(s2,k−1), ŷnr2(z2,k−1 | s2,k−1), ynr (k − 1)) ∈
A

(n)
ǫ with z2,k−1 ∈ S

(2)
s2,k . Then the relay transmits the codeword

xnr (s1,k, s2,k).

Decoding Procedure. In what follows, we will only detail the
decoding procedure at the receiver node D1 (at D2 the
decoding is analogous). At the end of block k, the following
occurs.

(i) The receiver node D1 estimates ŝ1,k = s1 if and only if
there exists a unique sequence un1(s1), that is, jointly
typical with yn1 (k). We have s1 = s1,k with arbitrarily
low probability of error if n is sufficiently large and

R
(1)
0 < I(U1;Y1).

(ii) Next, the receiver node D1 constructs a set L1(yn1 (k−
1)) of indexes z1 such that (un1(ŝ1,k−1), ŷnr1(z1 |
ŝ1,k−1), yn1 (k − 1)) ∈ A

(n)
ǫ . D1 estimates ẑ1,k−1 by

doing the intersection of sets L1y
n
1 (k − 1) and S

(1)
ŝ1,k

.

Similarly to [12, Theorem 6] and using [12, Lemma
3], one can show that ẑ1,k−1 = z1,k−1 with arbitrarily
low probability of error if n is sufficiently large and

R̂1 < I(Ŷr1;Y1 | U1) + R
(1)
0 .

(iii) Using ŷnr1(ẑ1,k−1 | ŝ1,k−1) and yn1 (k − 1), the receiver
node D1 finally estimates the message ŵ1,k−1 = w1

if and only if there exists a unique codeword xn1 (w1)
such that (xn1 (w1),un1(ŝ1,k−1), yn1 (i − 1), ŷnr1(ẑ1,k−1 |
ŝ1,k−1)) ∈ A

(n)
ǫ . One can show that w1 = w1,k−1 with

arbitrarily low probability of error if n is sufficiently
large and

R1 < I
(
X1;Y1, Ŷr1 | U1

)
. (A.1)

(iv) At the end of the block k, the relay looks for the
suitable estimation of its observation that it intends
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to transmit to the receiver node D1 by estimating ẑ1,k.
It estimates ẑ1,k = z1 if there exists a sequence ŷnr (z1 |
s1,k) such that (un1(s1,k), ŷnr1(z1 | s1,k), ynr (k)) ∈ A

(n)
ǫ .

There exists such a sequence if n is sufficiently large

and R̂1 > I(Ŷr1;Yr | U1).

From (i), (ii), (iii), we further obtain

I
(
Ŷr1;Yr | U1,Y1

)
< I(U1;Y1). (A.2)

The achievability proof for the second receiver node follows
in a similar manner. Therefore, we have completed the proof.

From the Discrete Case to the Gaussian Case. As mentioned
in the beginning of this section, obtaining achievable
transmission rates for Gaussian IRCs from those for
discrete IRCs is an easy task. Indeed, the latter consists
in using Gaussian codebooks everywhere and choosing
the coding auxiliary variables properly namely, choosing

U1, U2, Ŷr,1, and Ŷr,2. The coding auxiliary variables U1

and U2 are chosen to be independent and distributed as
U1 ∼ N (0, ν1Pr) and U2 ∼ N (0, ν2Pr). The corresponding
codewords un1 and un2 convey the messages resulting from

the compression of Yr . The auxiliary variables Ŷr,1 and Ŷr,2

write as Ŷr,1 = Yr + Z
(1)
wz and Ŷr,2 = Yr + Z

(2)
wz where the

compression noises Z
(1)
wz ∼ N (0,N

(1)
wz ) and Z

(2)
wz ∼ N (0,N

(2)
wz )

are independent. At last, the relay transmits the signal
Xr = U1 + U2 as in the case of a broadcast channel except
that, here, each destination also receives two direct signals
from the source nodes. By making these choices of random
variables we obtain the desired rate region.

B. Proof of Theorem 4 (Optimal Amplification
Gain for ZDSAF in IRCs)

Using the notations given in Theorem 4 and also the signal-
to-noise plus interference ratio in the capacity function of
(7), the rate Ri can be written as

Ri(ar) = C

(
|miar + ni|2∣∣piar + qi

∣∣2
+ sia2

r + 1

)
. (B.1)

We observe that Ri(0) = C(|ni|2/(|qi|2 + 1)) and that

we have an horizontal asymptote Ri,∞ � limar →∞R1(ar) =
C(|mi|2/|pi|2 + si). Also the first derivative w.r.t. ar is size

R′i(ar)

=
a2
rA

′ + arA′′+
(∣∣qi

∣∣2
+ 1

)
Re

(
min

∗
i

)
− |ni|2 Re

(
piq

∗
i

)
[∣∣piar + qi

∣∣2
+sia2

r + 1
]
A′′′

,

(B.2)

where A′ denotes [|mi|2Re(piq
∗
i )−(|pi|2 +si) Re(min

∗
i )], A′′

denotes [|mi|2(|qi|2 + 1)−|ni|2(|pi|2 +si)], and A′′′ denotes
[|miar + ni|2+|piar + qi|2+sia2

r + 1].

The explicit solution, a∗r , depends on the channel
parameters and is given here below. We denote by ∆ the
discriminant of the nominator in the previous equation. If
∆ < 0, then in function of the sign of |mi|2 Re(piq

∗
i ) −

(|pi|2 + si) Re(min
∗
i ), the function Ri(ar) is either decreasing

and a∗r = 0 or increasing and a∗r = ar . Let us now focus on
the case where ∆ ≥ 0.

(1) If |mi|2 Re(piq
∗
i )− (|pi|2 + si) Re(min

∗
i ) ≥ 0 then

(a) if c
(1)
r,i ≤ 0 and c

(2)
r,i ≤ 0 then a∗r = ar ;

(b) if c
(1)
r,i > 0 and c

(2)
r,i ≤ 0 then

(i) if ar ≥ c
(1)
r,i then a∗r = 0;

(ii) if ar < c
(1)
r,i then

if Ri(0) ≥ Ri(ar) then a∗r = 0 else a∗r = ar ;

(c) if c
(1)
r,i ≤ 0 and c

(2)
r,i > 0 then the analysis is similar

to the previous case and a∗r ∈ {0,ar} depending

on a
(2)
r this time;

(d) if c
(1)
r,i > 0 and c

(2)
r,i > 0

(i) if c
(1)
r,i < c

(2)
r,i

(A) if ar ≤ c
(1)
r,i then a∗r = ar ;

(B) if c
(1)
r,i < ar ≤ c

(2)
r,i then a∗r = c

(1)
r,i ;

(C) if ar > c
(2)
r,i then

if Ri(c
(1)
r,i ) ≥ R1(ar) then a∗r = c

(1)
r,i else a∗r =

ar ;

(ii) if c
(1)
r,i > c

(2)
r,i then the analysis is similar to

the previous case, exchanging the roles of

c
(1)
r,i and c

(2)
r,i ;

(iii) if c
(1)
r,i = c

(2)
r,i then a∗r = ar .

(2) If |mi|2 Re(piq
∗
i ) − (|pi|2 + si) Re(min

∗
i ) < 0 then

the analysis follows in the same lines and a∗r ∈
{0,ar , c

(1)
r,i , c

(2)
r,i }.

C. Proof of Theorem 7 (Existence of an NE for
the Bi-Level Compression EF Protocol)

We want to prove that for each user R
(q)
i is concave w.r.t.

θ
(q)
i . Consider w.l.o.g. the case of user 1. The general case of

complex channel gains is considered. We analyze the second

derivative of R
(q)
1 given in (14). For the sake of clarity, we

denote by Ñ
(q)
1 = |hr1|2ν

(q)P
(q)
r + N

(q)
1 , Γ0 = |hr1|2ν

(q)P
(q)
r

and Γ1 = |h21|2θ(q)
2 P2 + Ñ

(q)
1 . After some manipulations, we

obtain the following relation: d2R
(q)
1 /d(θ

(q)
1 )2 =M1−M2 with

Mk = NMk/DMk, k ∈ {1, 2} where (for the sake of clarity we
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have denoted h
(q)
i j by hi j):

NM1

= 2

(
|h11|2P1

2|h1r |2 − Λ2
2P1

2
)
|h11|2θ

(q)
1 P1

Γ0Λ5

+ 2
Λ8|h11|2P1

Γ0Λ5

− 2

⎛
⎝Λ8|h11|2θ(q)

1 P1

Γ0

+Λ6 |h11|2P1 +|h1r|2Γ1P1

⎞
⎠ Λ8Γ1

Λ5
2
Γ0

+2
Λ7Λ8

2
Γ1

2

Γ0
2
Λ5

3 −2
Λ7

(
|h11|2P1

2|h1r|2−Λ2
2P1

2
)
Γ1

Λ5
2
Γ0

,

NM2

=

⎡
⎣
⎛
⎝Λ8|h11|2θ

(q)
1 P1

Γ0
+ Λ6|h11|2P1 + |h1r |2Γ1P1

⎞
⎠ 1

Λ5

−Λ7Λ8Γ1

Λ5
2
Γ0

]2

,

DM1 = 1 +
Λ7

Λ5
,

DM2 = DM2
1 ,

(C.1)

Λ1 = 2Re
(
h11h

∗
1rh

∗
21h2r

)
,

Λ2 =
∣∣h11h

∗
1r

∣∣,

Λ3 = A(q),

Λ4 = |h11|2θ
(q)
1 P1 + Γ1,

Λ5 =
(
N

(q)
r + N

(q)
wz,1

)
Γ1 + |h2r|2θ(q)

2 P2Ñ
(q)
1 ,

Λ6 = |h2r |2θ(q)
2 P2 + N

(q)
r + N

(q)
wz,1,

Λ7 = Λ6|h11|2θ(q)
1 P1 + Γ1|h1r |2θ(q)

1 P1,

Λ8 = |h11|2P1Λ3 + |h1r|2P1Λ4 − 2Λ2
2θ

(q)
1 P2

1

−Λ1θ
(q)
2 P1P2.

(C.2)

We observe that the terms Λk ≥ 0, k ∈ {2, . . . , 7}. Also we
can easily see from (C.1) that M2 ≥ 0, DM1 ≥ 0. Thus if we

prove that NM1 ≤ 0, the concavity of R
(q)
1 will be guaranteed.

In this purpose, we plug the expressions ofΛ5,Λ6,Λ7,Λ8 into
(C.1) and obtain that NM1 = NNM1/DNM1 with

NNM1

=2P2
1Γ0

[
P2

2

(
θ

(q)
2

)2
|h21|4|h1r|2 + P2

2

(
θ

(q)
2

)2
|h21|2|h11|2|h2r |2

+
(
Ñ

(q)
1

)2
|h1r |2 + 2P2 Ñ

(q)
1 θ

(q)
2 |h21|2|h1r|2

]

×
(
|h21|2θ(q)

2 P2 + Γ0 + Ñ
(q)
1

)

×
(
θ

(q)
2 P2N

(q)
r |h21|2 + |h2r |2θ(q)

2 P2Ñ
(q)
1 + N

(q)
r Ñ

(q)
1

)

×
(
|h1rh21 − h11h2r |2θ(q)

2 P2 + |h1r |2Ñ (q)
1 + |h11|2N (q)

r

)

≥ 0,

(C.3)

DNM1

= −|h11h2r − h21h1r |2θ(q)
1 P1θ

(q)
2 P2Ñ

(q)
1

− |h21|2|h1r |2θ
(q)
1 P1θ

(q)
2 P2Ñ

(q)
1 − |h11|2θ

(q)
1 P1N

(q)
r Ñ

(q)
1

− |h21|2|h2r |2
(
θ

(q)
2

)2
P2

2Ñ
(q)
1 − 2|h21|2θ(q)

2 P2N
(q)
r Ñ

(q)
1

− |h21|4
(
θ

(q)
2

)2
P2

2N
(q)
r

− |h21h1r − h11h2r|2|h21|2θ(q)
1 P1

(
θ

(q)
2

)2
P2

2

− |h1r |2θ
(q)
1 P1

(
Ñ

(q)
1

)2
− |h2r|2θ

(q)
2 P2

(
Ñ

(q)
1

)2
−
(
Ñ

(q)
1

)2
N

(q)
r

− |h21|2θ(q)
2 P2N

(q)
r Γ0 −N

(q)
r Γ0Ñ

(q)
1 − |h2r |2θ(q)

2 P2Ñ
(q)
1 Γ0

− |h11|2|h21|2θ
(q)
1 P1θ

(q)
2 P2N

(q)
r

≤ 0.

(C.4)

Therefore, we obtain the desired result NM1 ≤ 0 and thus

M1 ≥ 0, which implies that d2R
(q)
1 /d(θ

(q)
1 )

2
≤ 0, whatever the

channel parameters.

D. Proof of Theorem 9 (Number of Nash
Equilibria for ZDSAF)

Before discussing these situations in detail, let us first observe
that the two functions Fi(θ j) are decreasing w.r.t. θ j and also
Fi(0) = di/cii, Fi(θ

o
j ) = 0 where θoj = di/ci j .

In this section, we will investigate the NE of the game and
also their asymptotical stability of each NE point. A sufficient
and necessary condition that guarantees the asymptotic
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stability of a certain NE point is related to the relative slopes
of the best-response functions and is given by [37, 38]

∣∣∣∣
dBR1

dθ2

dBR2

dθ1

∣∣∣∣ < 1 (D.1)

in an open neighborhood of the NE point. We denote by

V(θ1, θ2) an open neighborhood of (θ1, θ2) ∈ [0, 1]2.

(1) If d1 ≤ 0 and d2 ≤ 0, then the BRs are constants
BRi(θ j) = 0 and thus the NE is unique (θNE

1 , θNE
2 ) =

(0, 0), for all cii ≥ 0, c ji ≥ 0. The condition (D.1) is
met since |(dBR1/dθ2)(dBR2/dθ1)| = 0 for (θ1, θ2) ∈
V(0, 0) and thus the NE is asymptotically stable.

(2) If d1 ≤ 0 and d2 > 0, then it can be checked that the
NE is unique, for all cii ≥ 0, c ji ≥ 0: θNE

1 = 0 and

θNE
2 =

⎧⎪⎨
⎪⎩

d2

c22
if d2 < c22,

1, otherwise.
(D.2)

It can be checked that |(dBR1/dθ2)(dBR2/dθ1)| = 0
for (θ1, θ2) ∈ V(θNE

1 , θNE
2 ) and the NE is asymptoti-

cally stable.

(3) If d1 > 0 and d2 ≤ 0, then, similar to the previous
item, we have a unique NE, for all cii ≥ 0, c ji ≥ 0:

θNE
2 = 0 and

θNE
1 =

⎧⎪⎨
⎪⎩

d1

c11
if d1 < c11,

1, otherwise.
(D.3)

Here as well we have |(dBR1/dθ2)(dBR2/dθ1)| = 0 for
(θ1, θ2) ∈ V(θNE

1 , θNE
2 ) and the NE is asymptotically

stable.

(4) If d1 > 0 and d2 > 0, we have to take into
consideration the parameters cii ≥ 0, c ji ≥ 0.

(a) If F1(1) ≥ 1 and F2(1) ≥ 1, then we have
d1 ≥ c12 + c11 and d2 ≥ c21 + c22. In this case, the
BRs are constants, that is, BRi(θ j) = 1 and thus

the NE is unique (θNE
1 , θNE

2 ) = (1, 1). We have
|(dBR1/dθ2)(dBR2/dθ1)| = 0 for (θ1, θ2) ∈
V(1, 1) and the NE is asymptotically stable.

(b) If F1(1) ≥ 1 and F2(1) < 1, then we have d1 ≥
c12 + c11 and d2 < c21 + c22. Here also the NE is
unique and θNE

1 = 1 and

θNE
2 =

⎧⎪⎨
⎪⎩

d2 − c21

α22
if d2 > c22,

0, otherwise.
(D.4)

Similarly, we have |(dBR1/dθ2)(dBR2/dθ1)| =
0 for (θ1, θ2) ∈ V(θNE

1 , θNE
2 ) and the NE is

asymptotically stable.

(c) If F1(1) < 1 and F2(1) ≥ 1, then we have d1 <
c12 + c11 and d2 ≥ c21 + c22. Here also the NE is
unique and θNE

2 = 1 and

θNE
1 =

⎧⎪⎨
⎪⎩

d1 − c12

c11
if d1 > c11,

0, otherwise.
(D.5)

Here as well we have |(dBR1/dθ2)(dBR2/dθ1)|
= 0 for (θ1, θ2) ∈ V(θNE

1 , θNE
2 ) and the NE is

asymptotically stable.

(d) If F1(1) < 1 and F2(1) < 1, then we will have d1 < c12+
c11 and d2 < c21+c22. This case is the most demanding
one and will be treated in detail separately.

At this point an important observation is in order.
The discussed scenarios, for which we have determined the
unique NE, have a simple geometric interpretation. If the
intersection point (θ∗1 , θ∗2 ) is such that either θ∗1 ∈ R \ [0, 1]
or θ∗2 ∈ R\[0, 1], then the NE is unique and differs from this
point ((θNE

1 , θNE
2 ) /= (θ∗1 , θ∗2 )). The case (4)(d) corresponds to

the case where the intersection point (θ∗1 , θ∗2 ) ∈ [0, 1]2 is
an NE point. Now we are interested in finding whether this
intersection point is the unique NE or there are more than
one NE. If 0 < d1 < c11 + c12 and 0 < d2 < c22 + c21, we have
the following situations.

(1) If c11c22 = c21c12, then the curves described by θi =
Fi(θ j) are parallel.

(a) If d1 = d2, then the curves are superposed. In
this special case, we have an infinity of NE that
can be characterized by (θNE

1 , θNE
2 ) ∈ T where

T =
{

(θ1, θ2) ∈ [0, 1]2 | θ1 = F1

(
θNE

2

)}
. (D.6)

In this case we have an infinity of NE such
that |(dBR1/dθ2)(dBR2/dθ1)| = 1 for (θ1, θ2) ∈
V(θNE

1 , θNE
2 ) and the NEs are not stable states.

This can be easily understood since a small
deviation from a certain NE drives the users to
a new NE point. Thus, the users do not return
to the initial state.

(b) If d1 /= d2, then the two lines are only paral-
lel. In this case, it can be checked that the
NE is unique and also asymptotically stable
since again |(dBR1/dθ2)(dBR2/dθ1)| = 0 for
(θ1, θ2) ∈ V(θNE

1 , θNE
2 ). In order to explicit the

exact relation of the NE, one has to consider
all scenarios in function of the sign of the
following four relations Fi(0) − 1 and θoj − 1,
i ∈ {1, 2}. We will explicit only one of them.
Let us assume that Fi(0) − 1 < 0 and θoj < 0
which means that d1 < min{c12, c12c21/c22} and
d2 < min{c21, c22}. Here we have two subcases.

(i) If d1/c12 < d2/c22, then the NE is character-
ized by θNE

1 = 0 and θNE
2 = d2/c22.

(ii) If d1/c12 > d2/c22, then the NE is character-
ized by θNE

1 = d1c22/c12c21 and θNE
2 = 0.

(2) Consider c11c22 /= c21c12. Here we have to consider all
cases in function of the sign of the four relations
Fi(0) − 1 and θoj − 1, i ∈ {1, 2}. We will focus on
only one of them. Let us assume that Fi(0) − 1 < 0
and θoj − 1 < 0 and thus d1 < min{c12, c11} and
d2 < min{c21, c22}. Here we have four subcases.
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(i) If d2/c22 < d1/c12 and d1/c11 > d2/c21, then
the NE is unique: θNE

1 = θ∗1 and θNE
2 = θ∗2 .

Also we have that |(dBR1/dθ2)(dBR2/dθ1)| <
1 for (θ1, θ2) ∈ V(θ∗1 , θ∗2 ) and the NE is
asymptotically stable.

(ii) If d2/c22 > d1/c12 and d1/c11 < d2/c21, then
there are three different NE: (θNE

1 , θNE
2 ) ∈

{(θ∗1 , θ∗2 ), (0,d2/c22), (d1/c11, 0)}, the intersec-
tion point, and two other NEs on the bor-
der. The intersection point is unstable since
|(dBR1/dθ2)(dBR2/dθ1)| > 1 for (θ1, θ2) ∈
V(θ∗1 , θ∗2 ) but the other two NEs are asymp-
totically stable since |(dBR1/dθ2)(dBR2/dθ1)| =
0 for (θ1, θ2) ∈ V(0,d2/c22) and (θ1, θ2) ∈
V(d1/c11, 0).

(iii) If d2/c22 = d1/c12 and d1/c11 < d2/c21, then
there are only two different NE: (θNE

1 , θNE
2 ) ∈

{(0,d2/c22), (d1/c11, 0)}. In this case both of NEs
are on the border, one of which represents the
intersection point of the BR’s. It turns out that
the intersection point is not a stable NE because
|(dBR1/dθ2)(dBR2/dθ1)| > 1 for (θ1, θ2) ∈
V(0,d2/c22). However, the other NE is asymp-
totically stable since |(dBR1/dθ2)(dBR2/dθ1)| =
0 for (θ1, θ2) ∈ V(d1/c11, 0).

(iv) If d2/c22 > d1/c12 and d1/c11 = d2/c21,
then there are two NE: (θNE

1 , θNE
2 ) ∈

{(d1/c11, 0), (0,d2/c22)}. Here the analysis
of the stability of the two NEs is similar to the
previous case.

In conclusion, the number of NE states depends on
the geometrical properties of the best-response functions.
Three different cases can be identified: (1) when the lines
θi = Fi(θ j) are superposed, the game has an infinity
of NE which are not stable; (2) when the lines have a
unique intersection point that lies outside of the borders
[0, 1] × [0, 1], the NE is unique and asymptotically stable;
(3) when the lines have a unique intersection point (θ∗1 , θ∗2 )
that lies inside [0, 1] × [0, 1], there can be one, two, or
three different NE among which one is identical to this
intersection point. In the case where the the NE is unique,
it is also asymptotically stable. When the game has two
or three NE, the intersection point (θ∗1 , θ∗2 ) is an unstable
equilibrium while the other/others are asymptotically stable.
The best-response algorithm converges to one of the NE
points depending on the initial state of the system.
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[11] I. Marié, R. Dabora, and A. Goldsmith, “On the capacity of the
interference channel with a relay,” in Proceedings of the IEEE
International Symposium on Information Theory, pp. 554–558,
Toronto, Canada, July 2008.

[12] T. M. Cover and A. A. EL Gamal, “Capacity theorems for the
relay channel,” IEEE Transactions on Information Theory, vol.
25, no. 5, pp. 572–584, 1979.

[13] E.-V. Belmega, B. Djeumou, and S. Lasaulce, “What happens
when cognitive terminals compete for a relaying node?” in
Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’09), pp. 2609–2612,
Taipei, Taiwan, April 2009.
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