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Introduction

The purpose of this paper is to present a stochastic algorithm finding some of the geometric p-means of probability measures defined on compact Riemannian manifolds, for p P r1, 8q. Its convergence is analyzed in the restricted case of the circle, as a first step toward a more general result which is conjectured to be true.

The general notion of p-means

The concepts of mean and median are well-understood for real valued random variables. They can be extended to random variables taking values in metric spaces in the following way. Let be given ν a probability measure on a metric space M , whose distance is denoted d. For p ě 1, consider the continuous mapping

U p : M Q x Þ Ñ ż d p px, yq νpdyq. (1) 
A global minimum of U p is called a p-mean of ν, at least if this function is not identically equal to `8 (equivalently, if all its values are finite, as it can be easily deduced from the triangle inequality). The set of p-means will be designated by M p , it is non-empty as soon as U p goes to infinity at infinity (in the Alexandroff sense), but in general it is not reduced to a singleton. The notion of intrinsic mean and median correspond respectively to p " 2 and p " 1. If M is R endowed with its absolute value, one recovers the usual mean and distance. These extensions are justified by the increasing number of available graph or manifold valued data samples in various scientific fields. Examples of manifold valued data samples are given by sets of parameters for families of laws endowed with Fisher information metric, by Lie groups (rotations, displacements) in control theory, by symmetric spaces in imaging or signal processing.

For some applications (see for instance Pennec [START_REF] Pennec | Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements[END_REF]), it may be important to find M p or at least some of its elements. In practice the knowledge of ν is often given by a finite sequence Y ≔ pY n q nPt1,2,...,N u of independent random variables, identically distributed according to ν. Since N P N is in general large enough, we will consider the limit situation where we have at our disposal an infinite sequence Y ≔ pY n q nPN . One is then looking for algorithms using this data and enabling to find some elements of M p . In this paper we will be mainly interested in the case where M is the circle, even if the proposed stochastic algorithm can be considered more generally for compact Riemannian manifolds.

Algorithms for finding p-means or minimax centers have been investigated in [START_REF] Le | Estimation of Riemannian barycentres[END_REF], [START_REF] Sturm | Probability measures on metric spaces of nonpositive curvature, Heat kernels and analysis on manifolds, graphs, and metric spaces[END_REF], [START_REF] Groisser | Newton's method, zeroes of vector fields, and the Riemannian center of mass[END_REF], [START_REF] Groisser | On the convergence of some Procrustean averaging algorithms[END_REF], [START_REF] Bȃdoiu | Smaller core-sets for balls[END_REF], [START_REF] Yang | Riemannian median and its estimation[END_REF], [START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF], [START_REF] Afsari | On the convergence of gradient descent for finding the Riemannian center of mass[END_REF], [START_REF] Arnaudon | Stochastic algorithms for computing means of probability measures Stoch[END_REF], [START_REF] Cardot | Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm[END_REF], [START_REF] Arnaudon | Medians and means in Finsler geometry[END_REF]. When possible a gradient descent algorithm is used. When the gradient of the functional to minimize is difficult or impossible to compute, a Robbins Monro type algorithm is prefered. Either the functional to minimize has only one local minimum which is also global, or ( [START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF]) a local minimum is seeked. The case of Karcher means in the circle is treated in [START_REF] Charlier | Necessary and sufficient condition for the existence of a Fréchet mean on the circle[END_REF] and [START_REF] Hotz | Intrinsic Means on the Circle: Uniqueness, Locus and Asymptotics[END_REF]. In this special situation the global minimum of the functional can be found by explicit formula.

For generalized means on compact manifolds the situation is different since the functional (1) to minimize may have many local minima, and no explicit formula for a global minimum can be expected.

The case of the circle

In this subsection we consider the case where M is the circle T ≔ R{p2πZq endowed with its natural angular distance d. As above, let Y ≔ pY n q nPN be a sequence of independent random variables distributed according to a fixed probability measure ν on T. Let p P r1, `8q be fixed, we present now a stochastic algorithm finding some elements of M p by using this data. It is based on simulated annealing and homogenization procedures. Thus we will need respectively an inverse temperature evolution β : R `Ñ R `and an inverse speed up evolution α : R `Ñ R ˚, where R ˚stands for the set of positive real numbers. Typically, they are respectively non-decreasing and non-increasing and we have lim tÑ`8 β t " `8 and lim tÑ`8 α t " 0, but we are looking for more precise conditions so that the stochastic algorithm we describe below finds M p (namely, some elements from this set). Let N ≔ pN t q tě0 be a standard Poisson process: it starts at 0 at time 0 and has jumps of length 1 whose interarrival times are independent and distributed according to exponential random variables of parameter 1. The process N is assumed to be independent from the sequence Y . We define the speeded-up process N pαq ≔ pN pαq t q tě0 via @ t ě 0,

N pαq t ≔ N ş t 0 1 αs ds . (2) 
Consider the time-inhomogeneous Markov process X ≔ pX t q tě0 which evolves in M in the following heuristic way: if T ą 0 is a jump time of N pαq , then X jumps at the same time, from X T ´to X T which is obtained by following the shortest geodesic leading from X T ´to Y N pαq T at speed 1 during the time pp{2qβ T α T d p´1 pX T ´, Y N pαq T q Almost surely, the above shortest geodesic is unique and there is no problem with its choice. Indeed, by the end of the description below, X T ´will be independent of Y N pαq T and the law of X T ´will be absolutely continuous with respect to the Lebesgue measure λ on T renormalized into a probability measure. It ensures that almost surely, Y N pαq T is not the opposite point of X T ´on T. The schemes α and β will satisfy lim tÑ`8 α t β t " 0, so that for sufficiently large jump-times T , X T will be between X T ´and Y N pαq T on the above geodesic and quite close to X T ´.

To proceed with the construction, we require that between consecutive jump times (and between time 0 and the first jump time), X evolves as a Brownian motion on T and independently of Y and N . Very informally, the evolution of the algorithm X can be summarized by the equation @ t ě 0, dX t " dB t `pp{2qα t β t d p´1 pX T ´, Y N pαq

T qσpX t´, Y N pαq t q dN pαq t ,
where pB t q tě0 is a Brownian motion on T and where σpX t´, Y N pαq t q is 1 (respectively ´1) if the shortest way from X t´t o Y N pαq t goes in the anti-clock wise (resp. the clock-wise) direction, in the usual representation of R{p2πZq in C. In the above equation, pY N pαq t q tě0 should be interpreted as a fast auxiliary process. The law of X is then entirely determined by the initial distribution m 0 " LpX 0 q. More generally at any time t ě 0, denote by m t the law of X t .

The first main result of this paper states that at least if ν is sufficiently regular, the above algorithm X finds in probability at large times the set M p of p-means: Theorem 1 Assume that ν admits a density with respect to λ and that this density is Hölder continuous with exponent a P p0, 1s. Then there exist two constants a p ą 0, depending on p ě 1 and a, and b p ě 0, depending on p, such that for any scheme of the form @ t ě 0,

# α t ≔ p1 `tq ´1 ap β t ≔ b ´1 lnp1 `tq , (3) 
where b ą b p , we have for any neighborhood N of M p and for any m 0 , lim tÑ`8

PrX t P N s " 1.

Thus to find an element of M p with an important probability, one should pick up the value of X t for sufficiently large times t.

The constant a p is the simplest to define, since it is given by appq ≔ " a , if p " 1 or p ě 2 minpa, p ´1q , if p P p1, 2q.

(

The constant b p ě 0 comes from the theory of simulated annealing (see for instance Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF]), which will be recalled in next section. For the moment being, we just describe the constant b p , in the setting of a compact Riemannian manifold M , since there is no extra difficulty and we will need it later on to express a conjecture extending Theorem 1. For any x, y P M , let C x,y be the set of continuous paths C ≔ pCptqq 0ďtď1 going from Cp0q " x to Cp1q " y. The elevation U p pCq of such a path C relatively to U p is defined by

U p pCq ≔ max tPr0,1s
U p pCptqq and the minimal elevation U p px, yq between x and y is given by U p px, yq ≔ min CPCx,y U p pCq.

Then we consider bpU p q ≔ max x,yPM U p px, yq ´Up pxq ´Up pyq `min

M U p . (6) 
This constant can also be seen as the largest depth of a well not containing a fixed global minimum of U p . Namely, if x 0 P M p , then it is not difficult to see that bpU p q " max yPM U p px 0 , yq ´Up pyq,

independently of the choice of x 0 P M p (cf. Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF]).

Let us now describe a stochastic algorithm, derived from the previous one, which enables one to find some of the p-means of any probability measure ν on T.

For any x P T and κ ą 0, consider the probability measure K x,κ whose density with respect to the Lebesgue measure λpdyq is proportional to p1 ´κ }y ´x}q `. Assume next that we are given an evolution κ : R `Q t Þ Ñ κ t P R ˚and consider the process Z ≔ pZ t q tě0 evolving similarly to pX t q tě0 , except that at the jump times T of N pαq , the target Y N pαq T is replaced by a point W T sampled from K Y N pαq T

,κ T , independently from the other variables.

Theorem 2 Let ν be an arbitrary probability measure on M " T. For p " 2, consider the schemes

@ t ě 0, $ & % α t ≔ p1 `tq ´c β t ≔ b ´1 lnp1 `tq κ t ≔ p1 `tq k
, with b ą bpU 2 q, k ą 0 and c ě 2k `1. Then, for any neighborhood N of M 2 and for any initial distribution LpZ 0 q, we get lim tÑ`8

PrZ t P N s " 1,

where P stands for the underlying probability.

More generally, for any given p ě 1, it is possible to find similar schemes (where c depends furthermore on p ě 1) enabling to find the set of p-means M p (see Remark 36). Even if ν satisfies the condition of Theorem 1, it could be more advantageous to consider the alternative algorithm Z instead of X when the exponent a in ( 3) is too small.

Remark 3

The schemes α, β and κ presented above are simple examples of admissible evolutions, they could be replaced for instance by

@ t ě 0, $ & % α t ≔ C 1 pr 1 `tq ´c β t ≔ b ´1 lnpr 2 `tq κ t " C 2 pr 3 `tq k ,
where C 1 , C 2 ą 0, r 1 , r 3 ą 0, r 2 ě 1 and still under the conditions b ą bpU p q, k ą 0 and c ě 2k `1.

It is possible to deduce more general conditions insuring the validity of the convergence results of Theorems 1 and 2 (see e.g. Proposition 27 below). How to choose in practice the exponents c and k satisfying c ě 2k `1 in Theorem 2? We note that the larger c, the faster α goes to zero and the faster the algorithm Z is using the data pY n q nPN . In compensation, k can be chosen larger, which means that ν is closer to its approximation by its transport through the kernel K ¨,κt p¨q (defined before the statement of Theorem 2, for more details see Section 5), namely the convergence will be more precise. This is quite natural, since more data have been required at some fixed time. So in practice a trade-off has to be made between the number of i.i.d. variables distributed according to ν one has at his disposal and the quality of the approximation of M p .

Numerical illustration

The algorithm X (and similarly for Z) is not so difficult to implement. Let us identify T with p´π, πs and construct X t for some fixed t ą 0. Assume we are given pY n q nPN , pα s q sPr0,ts , pβ s q sPr0,ts and X 0 as in the introduction. We need furthermore two independent sequences pτ n q nPN and pV n q nPN , consisting of i.i.d. random variables, respectively distributed according to the exponential law of parameter 1 and to the Gaussian law with mean 0 and variance 1. We begin by constructing the finite sequence pT n q nP 0,N corresponding to the jump times of N pαq : let T 0 ≔ 0 and next by iteration, if T n was defined, we take T n`1 such that ş T n`1

Tn

1{α s ds " τ n`1 . This is done until T N ą t, with N P N, then we change the definition of T N by imposing T N " t. Next we consider the sequence p q X n , p X n q nP 0,N constructed through the following iteration (where the variables are reduced modulo 2π): starting from q X 0 ≔ p X 0 ≔ X 0 , if p X n was defined, with n P 0, N ´1 , we consider

q X n`1 ≔ p X n `aT n`1 ´Tn V n`1 . (8) 
Next we define

p X n`1 ≔ q X n`1 `pp{2qα T n`1 β T n`1 |W n`1 | p´2 V n`1 , (9) 
where W n`1 is the representative of Y n`1 ´q X n`1 in p´π, πs modulo 2π. Then q X N has the same law as X t .

Theorems 1 and 2 provide theoretical results at very large times, but in practice, one has to work with a finite horizon t, for which the best corresponding scheme β may not be of the form of those given in these theorems (see the lectures of Catoni [START_REF] Catoni | Simulated annealing algorithms and Markov chains with rare transitions[END_REF] for the classical simulated annealing algorithm). Thus the previous theorems should only be seen as indications of what could be tried in practice. Let us illustrate that by some numerical simulations. On the circle, still identified with p´π, πs, consider the probability distribution ν " pδ 0 `δπ q{2. A priori we should resort to Theorem 2, but let us just "apply" Theorem 1 with a " 1, namely with the scheme

@ t ě 0, α t ≔ 1 1 `t .
For p " 1 the function U 1 is constant, meaning that the set of medians M 1 is the whole circle. For p ą 1, the function U p admits two global minima, M p " t´π{2, π{2u, and two global maxima, 0 and π. It is easy to see that bpU p q " π p p1 ´21´p q, so that we can take for instance @ t ě 0, β t ≔ 2 π p p1 ´21´p q lnp1 `tq, (for p " 1, the factor in front of the logarithm can be chosen freely, one could even choose the scheme β to be constant). With the above notations, let pY n q nPN , pτ n q nPN and pV n q nPN be independent sequences consisting of i.i.d. random variables, respectively distributed according to the uniform law on t0, πu, to the exponential law of parameter 1 and to the Gaussian law with mean 0 and variance 1. Let t ą 0 be fixed. The finite sequence pT n q nP 0,N is constructed through the recurrence T 0 " 100 and

@ n P 0, N ´1 , T n`1 ≔ a pT n `1q 2 `τn`1 ´1
until T N ą t. Starting from q X 0 ≔ p X 0 ≔ 0, we consider the sequence p q X n , p X n q nP 0,N defined via ( 8) and ( 9). The following histograms of the distribution of q X N correspond to p " 1.1 and p " 2 and t " 200 and t " 400 and they are obtained with 100 samples of the procedure described above. It appears that as time goes on, there is a tendency to concentrate on the set of means t´π{2, π{2u, but that this is more difficult to achieve for small p ą 1, due to the fact that in the limit case p " 1, one is trying to sample according to the uniform distribution on p´π, πs.

The next picture is plotting a typical trajectory (observed at the jump times), with p " 2, t " 400 and for which the simulation gave N " 150366 (close to 400 2 ´100 2 ). It should be emphasized that if instead of using 100 samples in a Monte-Carlo procedure as above, one rather resorts to the empirical measure generated by one trajectory, one would get similar histograms. The description of the algorithm given in Subsection 1.2 can be extended to any compact Riemannian manifold M endowed with its distance d. For general books on Riemannian geometry, we refer to [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF].

As above, let Y ≔ pY n q nPN be a sequence of independent random variables distributed according to a fixed probability measure ν on M . Let p P r1, `8q be fixed. We also need an inverse temperature evolution β : R `Ñ R `and an inverse speed up evolution α : R `Ñ R ˚, which typically will be non-decreasing and non-increasing and satisfying lim tÑ`8 β t " `8 and lim tÑ`8 α t " 0. We consider again the speeded-up process N pαq ≔ pN pαq t q tě0 via @ t ě 0,

N pαq t ≔ N ş t 0 1 αs ds .
where N ≔ pN t q tě0 be a standard Poisson process independent from Y . The time-inhomogeneous Markov process X ≔ pX t q tě0 evolves in M in the following heuristic way: if T ą 0 is a jump time of N pαq , then X jumps at the same time, from X T ´to

X T ≔ exp X T ´ppp{2qβ T α T d p´2 pX T ´, Y N pαq T q ÝÝÝÝÝÝÑ X T ´YN pαq T q.
By definition the latter point is obtained by following during a time s

≔ pp{2qβ T α T d p´2 pX T ´, Y N pαq T q
the shortest geodesic leading from X T ´to Y N pαq T at time 1 (and thus may not really correspond to an image of the exponential mapping if s is not small enough). The schemes α and β will satisfy lim tÑ`8 α t β t " 0, so that for sufficiently large jump-times T , X T will be between X T ´and Y N pαq T on the above geodesic and quite close to X T ´. Almost surely, the above shortest geodesics are unique and there is no problem with their choices in the previous construction. Indeed, by the end of the description below, X T ´will be independent of Y N pαq T and the law of X T ´will be absolutely continuous with respect to the Riemannian probability λ, namely the volume measure standardized to total volume one. It ensures that almost surely, Y N pαq T is not in the cut-locus of X T ´(which is negligible with respect to λ) so that there is only one shortest geodesic from X T ´to Y N pαq T . To proceed with the construction, we require that between consecutive jump times (and between time 0 and the first jump time), X evolves as a Brownian motion, relatively to the Riemannian structure of M (see for instance the book of Ikeda and Watanabe [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF]) and independently of Y and N . Very informally, the evolution of the algorithm X can be summarized by the equation (in the tangent bundle T M )

@ t ě 0, dX t " dB t `pp{2qα t β t d p´2 pX T ´, Y N pαq T q Ý ÝÝÝÝÝ Ñ X t´Y N pαq t dN pαq t ,
where pB t q tě0 would be a Brownian motion on M and where pY N pαq t q tě0 should be interpreted as a fast auxiliary process. The law of X is then entirely determined by the initial distribution m 0 " LpX 0 q. We believe that the above algorithm X finds in probability at large times the set M p of p-means, at least if ν is sufficiently regular, as in the case where M " T: Conjecture 4 Assume that ν admits a density with respect to λ and that this density is Hölder continuous with exponent a P p0, 1s. Then there exist two constants a p ą 0, depending on p ě 1 and a, and b p ě 0, depending on p and M , such that for any scheme of the form given in [START_REF] Arnaudon | Means in complete manifolds: uniqueness and approximation[END_REF], where b ą b p , we have for any neighborhood N of M p and for any m 0 , lim tÑ`8 PrX t P N s " 1.

So

as in Subsection 1.2, to find an element of M p with an important probability, one should pick up the value of X t for sufficiently large times t.

The constant b p ě 0 should still coincide with the one defined in [START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF].

Let us now extend the stochastic algorithm Z, which should enable one to find some of the p-means of any probability measure ν on the compact Riemannian manifold M .

For any x P M and κ ą 0, consider, on the tangent space T x M , the probability measure r K x,κ whose density with respect to the Lebesgue measure dv is proportional to p1 ´κ }v}q `(where the Lebesgue measure and the norm are relative to the Euclidean structure on T x M ). Denote K x,κ the image by the exponential mapping at x of r K x,κ . Assume next that we are given an evolution κ : R `Q t Þ Ñ κ t P R ˚and consider the process Z ≔ pZ t q tě0 evolving similarly to pX t q tě0 , except that at the jump times T of N pαq , the target Y N pαq T is replaced by a point W T sampled from

K Y N pαq T
,κ T , independently from the other variables. We believe that a variant of Theorem 2 should hold more generally on compact Riemannian manifolds M . But it seems that the geometry of M should play a role, especially through the behavior of the volume of small enlargements of the cut-locus of points.

Notice that a major difficulty for implementing an algorithm in a high dimensional manifold simulating the process X t is to compute the logarithm map Ý Ñ xy " exp ´1 x pyq. Moreover this logarithm can be very instable around the cutlocus of x. In [START_REF] Arnaudon | A stochastic algorithm finding generalized means on compact manifolds[END_REF] it is proposed to replace it by the gradient of some cost function and then to follow the flow of this gradient.

Discussion

The purpose of this paper is to propose a stochastic algorithm finding p-means by a sequential use of samples from the underlying probability measure on a Riemannian manifold M , even if the formal proof of its convergence is only shown for the circle, the first non-trivial example.

When ν is an empirical measure p ř N l"1 δ x l q{N , where the x l , l P 1, N , are points on the circle, Charlier [START_REF] Charlier | Necessary and sufficient condition for the existence of a Fréchet mean on the circle[END_REF], Hotz and Huckemann [START_REF] Hotz | Intrinsic Means on the Circle: Uniqueness, Locus and Asymptotics[END_REF] and McKilliam, Quinn and Clarkson [START_REF] Mckilliam | Direction estimation by minimum squared arc length[END_REF] proposed algorithms finding the 2-mean with complexities of order N lnpN q and N for the latter work. Empirical measures can in practice be used to approximate more general probability measures on the circle, but it seems this is not a very efficient method, since for each new point added to the empirical measure, the whole algorithm finding the corresponding mean has to be started again from scratch. Up to our knowledge, the process of Theorem 1 is the only algorithm finding pmeans for any p ě 1 and for any probability measure ν admitting Hölderian densities, even in the restricted situation of the circle.

Another strong motivation for this paper is the treatment of the jumps of the algorithms X and Z, situation which is not covered by the techniques of [START_REF] Miclo | Recuit simulé partiel[END_REF] (to the contrary of the jumps of the auxilliary process, which can be more easily dealt with).

In [START_REF] Arnaudon | A stochastic algorithm finding generalized means on compact manifolds[END_REF] we extend the ideas of the present paper to the situation were d p px, yq in (1) is replaced by a quantity κpx, yq depending smoothly on the parameters x and y belonging to a compact Riemannian manifold M . Via convolutions with the underlying heat kernel, it leads to an algorithm enabling to deal with mappings κ which are only assumed to be continuous. But due to this regularization procedure, the corresponding algorithm is less straightforward to put in practice than the one presented here. Of course the direct implementability has a price, since it needs precise informations about a crucial object, L α,β r1s. It will be defined in Section 3 and its investigation has to be divided in several cases depending on the value of p. This is hidden in [START_REF] Arnaudon | A stochastic algorithm finding generalized means on compact manifolds[END_REF], because we were more interested there in the generalization to general compact manifolds than in practicality considerations.

More technical discussions of the results are partially scattered over the manuscript, when it seems more appropriate to introduce them, see for instance Remarks 28, 29, 35 and 36.

The paper is constructed on the following plan. In next section we recall some results about simulated annealing which give the heuristics for the above convergence. Another alternative algorithm is presented, in the same spirit as X and Z, but without jumps. In Section 3 we discuss about the regularity of the function U p , in terms of that of ν. It enables to see how close is the instantaneous invariant measure associated to the algorithm at large times t ě 0 to the Gibbs measures associated to the potential U p and to the inverse temperature β ´1 t . The proof of Theorem 1 is given in Section 4. The fifth section is devoted to the extension presented in Theorem 2 and the appendix deals with technicalities relative to the temporal marginal laws of the algorithms.

Principles underlying the proof

Here some results about the classical simulated annealing are reviewed. The algorithm X described in the introduction will then appear as a natural modification. This will also give us the opportunity to present another intermediate algorithm.

Simulated annealing

Consider again M a compact Riemannian manifold and denote x¨, ¨y, ∇, △ and λ the corresponding scalar product, gradient, Laplacian operator and probability measure. Let U be a given smooth function on M to which we associate the constant bpU q ě 0 defined similarly as in [START_REF] Bȃdoiu | Smaller core-sets for balls[END_REF]. We denote by M the set of global minima of U .

A corresponding simulated annealing algorithm θ ≔ pθ t q tě0 associated to a measurable inverse temperature scheme β : R `Ñ R `is defined through the evolution equation

@ t ě 0, dθ t " dB t ´βt 2 ∇U pθ t q dt.
It is a shorthand meaning that θ is a time-inhomogeneous Markov process whose generator at any time t ě 0 is L βt , where

@ β ě 0, L β ¨≔ 1 2 p△ ¨´β x∇U, ∇¨yq. (10) 
Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] have proven the following result Theorem 5 For any fixed T ě 1, consider the inverse temperature scheme @ t ě 0, β t " b ´1 lnpT `tq, with b ą bpU q. Then for any neighborhood N of M and for any initial distribution Lpθ 0 q, we have lim tÑ`8

Prθ t P N s " 1.

A crucial ingredient of the proof of this convergence are the Gibbs measures associated to the potential U . They are defined as the probability measures µ β given for any β ě 0 by

µ β pdxq ≔ expp´βU pxqq Z β λpdxq, (11) 
where Z β ≔ ş expp´βU pxqq λpdxq is the normalizing factor. Indeed, Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] show that Lpθ t q and µ βt become closer and closer as t ě 0 goes to infinity, for instance in the sense of total variation:

lim tÑ`8 }Lpθ t q ´µβt } tv " 0. ( 12 
)
Theorem 5 is then an immediate consequence of the fact that for any neighborhood N of M,

lim βÑ`8 µ β rN s " 1.
The constant bpU q is critical for the behaviour [START_REF] Groisser | Newton's method, zeroes of vector fields, and the Riemannian center of mass[END_REF], in the sense that if we take

@ t ě 0, β t " b ´1 lnpT `tq,
with T ě 1 and b ă bpU q, then there exist initial distributions Lpθ 0 q such that ( 12) is not true. But in general (see for instance [START_REF] Miclo | Une étude des algorithmes de recuit simulé sous-admissibles[END_REF]), the constant bpU q is not critical for Theorem 5, the corresponding critical constant being, with the notations of the introduction, b 1 pU q ≔ min x 0 PM max yPM U px 0 , yq ´U pyq ď bpU q (compare with [START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF], where U replaces U p and where a global minimum x 0 P M is fixed). Note that it may happen that b 1 pU q " bpU q, for instance if M has only one connected component.

Another remark about Theorem 5 is that the convergence in probability of θ t for large t ě 0 toward M cannot be improved into an almost sure convergence. Denote by A the connected component of tx P M : U pxq ď min M U `bu which contains M (the condition b ą bpU q ensures that M is contained in only one connected component of the above set). Then almost surely, A is the limiting set of the trajectory pθ t q tě0 (see [START_REF] Miclo | Remarques sur l'ergodicité des algorithmes de recuit simulé sur un graphe[END_REF], where the corresponding result is proven for a finite state space but whose proof could be extended to the setting of Theorem 5). We believe that all these remarks should also hold in the context of Conjecture 4 and Theorem 1.

Heuristic of the proof

Let us now heuristically put forward why a result such as Conjecture 4 should be true, in relation with Theorem 5. For simplicity of the exposition, assume that ν is absolutely continuous with respect to λ. For almost every x, y P M , there exists a unique minimal geodesic with speed 1 leading from x to y. Denote it by pγpx, y, tqq tPR , so that γpx, y, 0q " x and γpx, y, dpx, yqq " y. The process pX t q tě0 underlying Theorem 5 is Markovian and its inhomogeneous family of generators is pL αt,βt q tě0 , where for any α ą 0 and β ě 0, L α,β acts on functions f from C 2 pM q via

@ x P M, L α,β rf spxq ≔ 1 2 △f pxq `1 α ż f pγpx, y, pp{2qβαd p´1 px, yqqq ´f pxq νpdyq (13) 
(to simplify notations, we will try to avoid writing down explicitly the dependence on p ě 1). The r.h.s. is well-defined, due to the fact that ν ! λ which implies that the cut-locus of x is negligible with respect to ν. Furthermore Fubini's theorem enables to see that the function L α,β rf s is at least measurable. Next remark that as α goes to 0 `, we have for any f P C 1 pM q, any x P M and any y P M which is not in the cut-locus of x, @ β ě 0, lim αÑ0 `f pγpx, y, pp{2qβαd p´1 px, yqqq ´f pxq α " 1 2 βpd p´1 px, yq x∇f pxq, 9 γpx, y, 0qy , so that for any f P C 2 pM q and x P M , @ β ě 0, lim αÑ0 `Lα,β rf spxq " 

It follows that or any f P C 2 pM q and x P M , @ β ě 0, lim αÑ0 `Lα,β rf spxq " L β rf spxq. Since lim tÑ`8 α t " 0, it appears that at least for large times, pX t q tě0 and pθ t q tě0 should behave in a similar way. The validity of Theorem 5 for any T ě 1 and any initial distribution Lpθ 0 q then suggests that Conjecture 4 should hold. But this rough explanation is not sufficient to understand the choice of the scheme pα t q tě0 , which will require more rigorous computations relatively to the corresponding homogenization property. The heuristics for Theorem 2 are similar, since the underlying algorithm pZ t q tě0 is Markovian and its inhomogeneous family of generators pL αt,βt,κt q tě0 satisfies @ f P C 2 pM q, lim tÑ`8

}L αt,βt,κt rf s ´Lβt rf s} 8 " 0.

For any α ą 0, β ě 0 and κ ą 0, the generator L α,β,κ acts on functions f P C 2 pM q via

@ x P M, L α,β,κ rf spxq ≔ 1 2 △f pxq `1 α ż f pγpx, z, pp{2qβαd p´1 px, zqqq ´f pxq K y,κ pdzqνpdyq.
The previous observations suggest another possible algorithm to find the mean of a probability measure ν on M . Consider the M ˆM -valued inhomogeneous Markov process p r

X t , Y N pαq t `1q tě0
where pN pαq t q tě0 was defined in (2) and where

@ t ě 0, d r X t " dB t `pp{2qβ t d p´1 p r X t , Y N pαq t `1q 9 γp r X t , Y N pαq t `1, 0q dt. (15) 
Again, up to appropriate choices of the schemes pα t q tě0 and pβ t q tě0 , it can be expected that for any neighborhood N of M and for any initial distribution Lp r X 0 q, lim tÑ`8

Pr r X t P N s " 1.

Indeed, this can be obtained by following the line of arguments presented in [START_REF] Miclo | Recuit simulé partiel[END_REF], see [START_REF] Arnaudon | Means in complete manifolds: uniqueness and approximation[END_REF]. But the main drawback of the algorithm p r X t q tě0 is that theoretically, it is asking for the computation of the unit vector 9 γp r X t , Y N pαq t `1, 0q and of the distance dp r X t , Y N pαq t `1q, at any time t ě 0. From a practical point of view, its complexity will be bad in comparison with that of the algorithm X ≔ pX t q tě0 , which is not so difficult to implement, as it was seen in Subsection 1.3.

Outline of the proof

Since the Gibbs measure µ β defined in [START_REF] Stewart | Markov processes[END_REF], with U replaced by U p , concentrates on M p for large β, it will be sufficient to show that the law m t of X t becomes closer and closer to µ βt for large t.

To measure this closeness, we use the L 2 -discrepancy of m t with respect to µ βt defined by

@ t ą 0, I t ≔ ż ˆmt µ βt ´1˙2 dµ βt .
(alternatively, it would be interesting to see if the considerations that follow could be extended to the case where this quantity is replaced by the more natural relative entropy of m t with respect to µ βt ). To show that this quantity goes to zero as t becomes large, we study its temporal evolution, by differentiating it. The fact that µ βt is not the instantaneous invariant measure (namely the probability measure left invariant by the generator at time t), leads to supplementary term with respect to what one usually gets by applying this approach (see for instance [START_REF] Miclo | Recuit simulé sans potentiel sur une variété riemannienne compacte[END_REF]). This term measures in some sense the distance between µ βt and the instantaneous invariant measure at time t (which itself is not explicitly known). A large part of the paper is devoted to estimate this supplementary term, the final result being presented in Proposition 22. In Proposition 23, we deduce a bound on the evolution of the quantity I t . To conclude in Proposition 27 that the obtained ordinary differential inequality is sufficient to conclude that lim tÑ`8 I t " 0, we need an estimate of the spectral gap of the operator presented in [START_REF] Charlier | Necessary and sufficient condition for the existence of a Fréchet mean on the circle[END_REF] for large β. For that we resort to a result due to Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] recalled in Proposition 26.

Let us emphasize that the resort to the object L α,β r1s defined and investigated in Section 3 to estimate the discrepancy between a well-know measure and an instantaneous invariant measure, which is more difficult to apprehend, should be of much broader use than the one presented here. Indeed, the function L α,β r1s is constructed by using directly only two objects which are supposed to be known: the generator and the convenient measure we choose to replace the instantaneous invariant measure, because L α,β is just the dual operator of L α,β in L 2 rµ β s and 1 is the constant function taking the value 1.

Regularity issues

From this section on, we restrict ourselves to the case of the circle. Here we investigate the regularity of the potential U p introduced in (1) and use the obtained information to evaluate how far are the instantaneous invariant measures of the algorithm X from the corresponding Gibbs measures, as well as some other preliminary bounds.

For any x P T, we denote x 1 the unique point in the cut-locus of x, namely the opposite point x 1 " x `π. Recall that for y P Tztx 1 u, pγpx, y, tqq tPR denotes the unique minimal geodesic with speed 1 going from x to y and that δ x stands for the Dirac mass at x. Lemma 6 For any probability measure ν on T, we have for the potential U p defined in [START_REF] Afsari | On the convergence of gradient descent for finding the Riemannian center of mass[END_REF], in the distribution sense, for x P T,

U 2 p pxq " " ppp ´1q ş T d p´2 py, xq ´2pπ p´1 δ y 1 pxq νpdyq , if p ą 1 2 ş pδ y pxq ´δy 1 pxqq νpdyq , if p " 1 .
In particular if ν admits a continuous density with respect to λ, still denoted ν, then we have that U p P C 2 pTq and

@ x P T, U 2 p pxq " " ppp ´1q ş T d p´2 py, xq νpdyq ´pπ p´2 νpx 1 q , if p ą 1 pνpxq ´νpx 1 qq{π , if p " 1 .

Proof

We begin by considering the case where p ą 1. Furthermore, we first investigate the situation where ν " δ y for some fixed y P T. Then U p pxq " d p px, yq for any x P T and we have seen in ( 14) that @ x " y 1 , U 1 p pxq " ´pd p´1 px, yq 9 γpx, y, 0q.

By continuity of U p , this equality holds in the sense of distributions on the whole set T. To compute U 2 p , consider a test function ϕ P C 8 pTq: ż So we get that for x P T, U 2 p pxq " ppp ´1qd p´2 py, xq ´2pπ p´1 δ y 1 pxq.

If p " 1, starting again from

@ x " y 1 , U 1 1 pxq " ´9 γpx, y, 0q, (16) 
we rather get for any test function ϕ P C 8 pTq:

ż T ϕ 1 pxqU 1 1 pxq dx " ż y`π y ϕ 1 pxq dx ´ż y y´π ϕ 1 pxq dx " 2pϕpy 1 q ´ϕpyqq, so that U 2 1 " 2pδ y ´δy 1 q.
The general case of a probability measure ν follows by integration with respect to νpdyq.

The second announced result follows from the observation that if ν admits a density with respect to λ, we can write for any x P T, ż δ y 1 pxq νpdyq "

ż δ x 1 pyqνpyq dy 2π " νpx 1 q 2π .
In particular, it appears that the potential U p belongs to C 8 pTq, if the density ν is smooth.

Let us come back to the case of a general probability measure ν on T. For any α ą 0 and β ě 0, we are interested into the generator L α,β defined in [START_REF] Groisser | On the convergence of some Procrustean averaging algorithms[END_REF]. Rigorously speaking, this definition is only valid if ν is absolutely continuous. Otherwise the r.h.s. of ( 13) is not well-defined for x P T belonging to the union of the cut-locus of the atoms of ν. To get around this little inconvenience, one can consider for x P T, pγ `px, x `π, tqq tPR and pγ ´px, x `π, tqq tPR , the unique minimal geodesics with speed 1 leading from x to x `π respectively in the anti-clockwise (namely increasing in the cover R of T) and clockwise direction. If y P Tztx 1 u, we take as before pγ `px, y, tqq tPR ≔ pγpx, y, tqq tPR ≕ pγ ´px, y, tqq tPR . Next let k be a Markov kernel from T 2 to t´, `u and modify the definition [START_REF] Groisser | On the convergence of some Procrustean averaging algorithms[END_REF] by imposing that for any f P C 2 pTq,

@ x P T, L α,β rf spxq ≔ 1 2 B 2 f pxq `1 α ż f pγ s px, y, pp{2qβαd p´1 px, yqqq ´f pxq kppx, yq, dsqνpdyq,
where B stands for the natural derivative on T. Then the function L α,β rf s is at least measurable. But these considerations are not very relevant, since for any given measurable evolutions

R `Q t Þ Ñ α t P R ˚and R `Q t Þ Ñ β t P R `,
the solutions to the martingale problems associated to the inhomogeneous family of generators pL αt,βt q tě0 (see for instance the book of Ethier and Kurtz [START_REF] Stewart | Markov processes[END_REF]) are all the same and are described in a probabilistic way as the trajectory laws of the processes X presented in the introduction. Indeed, this is a consequence of the absolute continuity of the heat kernel at any positive time (for arguments in the same spirit, see the appendix). So to simplify notations, we only consider the case where kppx, yq, ´q " 0 for any x, y P T, this brought us back to the definition [START_REF] Groisser | On the convergence of some Procrustean averaging algorithms[END_REF], where pγpx, y, tqq tPR stands for pγ `px, y, tqq tPR , for any x, y P T.

As it was mentioned for usual simulated annealing algorithms in the previous section, a traditional approach to prove Theorem 1 would try to evaluate at any time t ě 0, how far is LpX t q from the instantaneous invariant probability µ αt,βt , namely that associated to L αt,βt . Unfortunately for any α ą 0 and β ě 0, we have few informations about the invariant probability µ α,β of L α,β , even its existence cannot be deduced directly from the compactness of T, because the functions L α,β rf s are not necessarily continuous for f P C 2 pTq. Indeed it will be more convenient to use the Gibbs distribution µ β defined in [START_REF] Stewart | Markov processes[END_REF] for β ě 0, where U is replaced by U p . It has the advantage to be explicit and easy to work with, in particular it is clear that for large β ě 0, µ β concentrates around M p , the set of p-means of ν.

The remaining part of this section is mainly devoted to a quantification of what separates µ β from being an invariant probability of L α,β , for α ą 0 and β ě 0. It will become clear in the next section that a practical way to measure this discrepancy is through the evaluation of µ β rpL α,β r1sq 2 s, where L α,β is the dual operator of L α,β in L 2 pµ β q and where 1 is the constant function taking the value 1. Indeed, it can be seen that L α,β r1s " 0 in L 2 pµ β q if and only if µ β is invariant for L α,β . We will also take advantage of the computations made in this direction to provide some estimates on related quantities which will be helpful later on.

Since the situation of the usual mean p " 2 is important and is simpler than the other cases, we first treat it in detail in the following subsection. Next we will investigate the differences appearing in the situation of the median. The third subsection will deal with the cases 1 ă p ă 2, whose computations are technical and not very enlightening. We will only give some indications about the remaining situation p P p2, 8q, which is less involved. Some other preliminaries about the regularity of the time marginal laws of the considered algorithms will be treated in the appendix. They are of a more qualitative nature and will mainly serve to justify some computations of the next sections, in some sense they are less relevant than the estimates and proofs of Propositions 10, 14, 18 and 20 below, which are really at the heart of our developments.

Estimate of L α,β r1s in the case p " 2

Before being more precise about the definition of L α,β , we need an elementary result, where we will use the following notations: for y P T and δ ě 0, Bpy, δq stands for the open ball centered at y of radius δ and for any s P R, T y,s is the operator acting on measurable functions f defined on T via

@ x P T, T y,s f pxq ≔ f pγpx, y, sdpx, yqqq. ( 17 
)
Lemma 7 For any y P T, any s P r0, 1q and any measurable and bounded functions f, g, we have ż This lemma has for consequence the next result, where D is the subspace of L 2 pλq consisting of functions whose second derivative in the distribution sense belongs to L 2 pλq (or equivalently to L 2 pµ β q for any β ě 0). Lemma 8 For α ą 0 and β ě 0 such that αβ P r0, 1q, the domain of the maximal extension of L α,β on L 2 pµ β q is D. Furthermore the domain D ˚of its dual operator L α,β in L 2 pµ β q is the space tf P L 2 pµ β q : expp´βU 2 qf P Du and we have for any

f P D ˚, L α,β f " 1 2 exppβU 2 qB 2 rexpp´βU 2 qf s
`exppβU 2 q αp1 ´αβq ż 1 Bpy,p1´αβqπq T y,´αβ{p1´αβq rexpp´βU 2 qf s νpdyq ´f α .

In particular, if ν admits a continuous density, then D ˚" D and the above formula holds for any f P D.

Proof

With the previous definitions, we can write for any α ą 0 and β ě 0,

L α,β " 1 2 B 2 `1 α ż T y,αβ νpdyq ´I α ,
where I is the identity operator. Note furthermore that the identity operator is bounded from L 2 pλq to L 2 pµ β q and conversely. Thus to get the first assertion, it is sufficient to show that ş T y,αβ νpdyq is bounded from L 2 pλq to itself, or even only that }T y,αβ } L 2 pλqý is uniformly bounded in y P T. To see that this is true, consider a bounded and measurable function f and assume that αβ P r0, 1q. Since pT y,αβ f q 2 " T y,αβ f 2 , we can apply Lemma 7 with s " αβ, g " 1 and f replaced by f 2 to get that ż pT y,αβ f q 2 dλ "

1 1 ´αβ ż Bpy,p1´sqπq f 2 T y,´αβ{p1´αβq 1 dλ " 1 1 ´αβ ż Bpy,p1´sqπq f 2 dλ ď 1 1 ´αβ ż f 2 dλ.
Next to see that for any f, g

P C 2 pTq, ż gL α,β f dµ β " ż f L α,β g dµ β , (18) 
where L α,β is the operator defined in the statement of the lemma, we note that, on one hand,

ż gB 2 f dµ β " Z ´1 β ż expp´βU 2 qgB 2 f dλ " ż f exppβU 2 qB 2 rexpp´βU 2 qgs dµ β
and on the other hand, for any y P T,

ż gT y,αβ f dµ β " Z ´1 β ż expp´βU 2 qgT y,αβ f dλ,
so that we can use again Lemma 7. After an additional integration with respect to νpdyq, [START_REF] Hwang | Laplace's method revisited: weak convergence of probability measures[END_REF] follows without difficulty. To conclude, it is sufficient to see that for any f P L 2 pµ β q, L α,β f P L 2 pµ β q (where L α,β f is first interpreted as a distribution) if and only if expp´βU 2 qf P D. This is done by adapting the arguments given in the first part of the proof, in particular we get that

› › › › exppβU 2 q αp1 ´αβq ż 1 Bpy,p1´αβqπq T y,´αβ{p1´αβq rexpp´βU 2 q ¨s νpdyq › › › › 2 L 2 pλqý ď expp2βoscpU 2 qq α 2 p1 ´αβq .
Remark 9 By working in a similar spirit, the previous lemma, except for the expression of L α,β , is valid for any α ą 0 and β ě 0 such that αβ " 1. The case αβ " 1 can be different: it follows from

L α,1{α " 1 2 B 2 `1 α pν ´Iq,
that if ν does not admit a density with respect to λ which belongs to L 2 pλq, then the domain of definition of L α,1{α is D ˚X tf P L 2 pµ β q : µ β rf s " 0u, subspace which is not dense in L 2 pλq and worse for our purposes, which does not contain 1. Anyway, this degenerate situation is not very interesting for us, because the evolutions pα t q tě0 and pβ t q tě0 we consider satisfy α t β t P p0, 1q for t large enough. Furthermore we will consider probability measures ν admitting a continuous density, in particular belonging to L 2 pλq. In this case, L α,1{α and L α,1{α admit D for natural domain, as in fact L α,β and L α,β for any β ě 0. For any α ą 0 and β ě 0 such that αβ P r0, 1q, denote η " αβ{p1 ´αβq. As seen from the previous lemma, a consequence of the assumption that U 2 is C 2 is that for any x P T,

L α,β 1pxq " 1 2 exppβU 2 pxqqB 2 expp´βU 2 pxqq ´1 α `exppβU 2 pxqq αp1 ´αβq ż 1 Bpy,p1´αβqπq pxqT y,´η rexpp´βU 2 qspxq νpdyq " β 2 2 pU 1 2 pxqq 2 ´β 2 U 2 2 pxq ´1 α `1 αp1 ´αβq ż Bpx,p1´αβqπq exppβrU 2 pxq ´U2 pγpx, y, ´ηdpx, yqqqsq νpdyq. ( 19 
)
It appears that L α,β 1 is defined and continuous if ν has a continuous density (with respect to λ). The next result evaluates the uniform norm of this function under a little stronger regularity assumption. Despite it may seem quite plain, we would like to emphasize that the use of an estimate of L α,β 1 to replace the invariant measure of L α,β by the more tractable µ β is a key to all the results presented in the introduction.

Proposition 10 Assume that ν admits a density with respect to λ which is Hölder continuous, i.e. there exists a P p0, 1s and A ą 0 such that @ x, y P T, |νpyq ´νpxq| ď Ad a px, yq.

Then there exists a constant CpAq ą 0, only depending on A, such that for any β ě 1 and α P p0, 1{p2β 2 qq, we have

› › L α,β 1 › › 8 ď CpAq max `αβ 4 , α a β 1`a ˘.

Proof

In view of the expression of L α,β 1pxq given before the statement of the proposition, we want to estimate for any fixed x P T, the quantity ż Bpx,p1´αβqπq exppβrU 2 pxq ´U2 pγpx, y, ´ηdpx, yqqqsq νpdyq

" ż x`p1´αβqπ x´p1´αβqπ
exppβrU 2 pxq ´U2 px ´ηpy ´xqqsq νpdyq.

Lemma 6 and the continuity of the density ν ensure that U 2 P C 2 pTq. Furthermore, since this density takes the value 1 somewhere on T, we get that

› › U 2 2 › › 8 ď 2Aπ a ď 2πA. (21) 
Since U 1 2 vanishes somewhere on T, we can deduce from this bound that }U 1 2 } 8 ď 4π 2 A, but for A ą 1{p2πq, it is better to use [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF], which gives directly }U 1 2 } 8 ď 2π. Expanding the function U 2 around x, we see that for any y P px ´p1 ´αβqπ, x `p1 ´αβqπq and η P p0, 1s (this is satisfied because the assumptions on α and β ensure that αβ P p0, 1{2q), we can find z P px ´p1 ´αβqπ, x `p1 ´αβqπq such that βrU 2 pxq ´U2 px ´ηpy ´xqqs " βηU 1 2 pxqpy ´xq ´βη 2 U 2 2 pzq py ´xq 2 2 .

The last term can be written under the form O A pα 2 β 3 q, where for any ǫ ą 0, O A pǫq designates a quantity which is bounded by KpAqǫ, where KpAq is a constant depending only on A (as usual O has a similar meaning, but with a universal constant). Note that we also have βηU 1 2 pxqpy ´xq " Opαβ 2 q. Observing that for any r, s P R, we can find u, v P p0, 1q such that exppr `sq " p1 `r r2 exppurq{2qp1 `s exppvsqq and in conjunction with the assumption αβ 2 ď 1{2, we can write that exppβrU 2 pxq ´U2 px ´ηpy ´xqqsq " 1 `βηU 1 2 pxqpy ´xq `OA pα 2 β 4 q.

Integrating this expression, we get that ż Bpx,p1´αβqπq exppβrU 2 pxq ´U2 pγpx, y, ´ηqqsq νpdyq " νrBpx, p1 ´αβqπqs `βηU 1 2 pxq

ż x`p1´αβqπ x´p1´αβqπ y ´x νpdyq `OA pα 2 β 4 q .
Recalling that ν has no atom, the first term is equal to 1 ´νpBpx 1 , αβπq. Taking into account [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF], we have U 1 2 pxq " ´2 ş x`π x´π y ´x νpdyq, so that the second term is equal to

βηU 1 2 pxq ż x`π x´π y ´x νpdyq ´βηU 1 2 pxq ż x 1 `αβπ x 1 ´αβπ y ´x νpdyq " ´βη 2 pU 1 2 pxqq 2 `OA pα 2 β 3 q
(in the last term of the l.h.s., y ´x is to be interpreted as its representative in p´π, πs modulo 2π).

We can now return to [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] and recalling the expression for U 2 2 given in Lemma 6, we obtain that for any x P T,

L α,β 1pxq " β 2 2 pU 1 2 pxqq 2 ´βp1 ´νpx 1 qq ´1 α `1 αp1 ´αβq ˆ1 ´νpBpx 1 , αβπq ´βη 2 pU 1 2 pxqq 2 `OA pα 2 β 4 q " 1 αp1 ´αβq ´β ´1 α `β2 2 
ˆ1 ´1 p1 ´αβq 2 ˙pU 1 2 pxqq 2 `β ˆνpx 1 q ´νpBpx 1 , αβπq αβp1 ´αβq ȮA pαβ 4 q " β ˆνpx 1 q ´νpBpx 1 , αβπq αβp1 ´αβq ˙`O A pαβ 4 q " β 1 ´αβ ˆνpx 1 q ´νpBpx 1 , αβπq αβ ˙´αβ 2 1 ´αβ νpx 1 q `OA pαβ 4 q " β 1 ´αβ 1 2παβ ż x 1 `αβπ x 1 ´αβπ νpx 1 q ´νpyq dy `OA pαβ 4 q.
The justification of the Hölder continuity comes above all from the evaluation of the latter integral: ˇˇˇˇż

x 1 `αβπ x 1 ´αβπ νpx 1 q ´νpyq dy ˇˇˇˇď A ż x 1 `αβπ x 1 ´αβπ ˇˇx 1 ´yˇˇa dy " 2A pαβπq 1`a 1 `a ď 2Apαβπq 1`a .
The bound announced in the lemma follows at once.

To finish this subsection, let us present a related but more straightforward preliminary bound.

Lemma 11 There exists a constant k ą 0 such that for any s ą 0 and β ě 1 with βs ď 1{2, we have, for any y P T and f P C 1 pTq, ż

Bpy,p1´sqπq pT ẙ,s rg y spxq ´gy pxqq 2 µ β pdxq ď ks 2 β 2 ˆż pBf q

2 dµ β `ż f 2 dµ β ˙, (23) 
where T ẙ,s is the adjoint operator of T y,s in L 2 pµ β q and where for any fixed y P T, @ x P Tzty 1 u, g y pxq ≔ f pxqdpx, yq 9 γpx, y, 0q

(neglecting the cut-locus point y 1 of y).

Proof

Since the problem is clearly invariant by translation of y P T, we can work with a fixed value of y, the most convenient to simplify the notations being y " 0 P R{p2πZq. Then the function g " g 0 is given by gpxq " ´xf pxq for x P p´π, πq. Due to the above assumptions, s P p0, 1{2q and we are in position to use Lemma 7 to see that for s P p0, 1{2q and for a.e. x P p´p1 ´sqπ, p1 ´sqπq, T s rgspxq " 1 1 ´s exppβU 2 pxqqT ´η rexpp´βU 2 qgspxq, with η ≔ s{p1 ´sq and where we simplified notations by replacing T 0,s and T 0,´η by T s and T ´η. This observation induces us to introduce on p´p1 ´sqπ, p1 ´sqπq the decomposition T s rgs ´g " T s rgs ´1 1 ´s T ´ηrgs `1 1 ´s pT ´η rgs ´gq `s 1 ´s g,

leading to ż pT s rgspxq ´gpxqq 2 µ β pdxq ď 3 p1 ´sq 2 J 1 `3 p1 ´sq 2 J 2 `3s 2 p1 ´sq 2 J 3 , (24) 
where

J 1 ≔ ż p1´sqπ ´p1´sqπ pexppβrU 2 pxq ´U2 pp1 `ηqxqsq ´1q 2 pT ´ηrgsq 2 µ β pdxq J 2 ≔ ż p1´sqπ ´p1´sqπ pT ´ηrgs ´gq 2 dµ β J 3 ≔ ż p1´sqπ ´p1´sqπ g 2 dµ β
.

The simplest term to treat is J 3 : we just bound it above by ş g 2 dµ β . Recalling that g ď π 2 f 2 , we end up with a bound which goes in the direction of [START_REF] Miclo | Remarques sur l'ergodicité des algorithmes de recuit simulé sur un graphe[END_REF], due to the factor 3s 2 {p1 ´sq 2 in [START_REF] Miclo | Une étude des algorithmes de recuit simulé sous-admissibles[END_REF] and the fact that β ě 1.

Next we estimate the term J 1 . Via the change of variable z ≔ p1 `ηqx, Lemma 7 enables to write it down under the form p1 ´sq ż T pexppβrU 2 pp1 ´sqzq ´U2 pzqsq ´1q 2 g 2 pzq exppβrU 2 pzq ´U2 pp1 ´sqzqs µ β pdzq " 4p1 ´sq ż T sinh 2 pβrU 2 pp1 ´sqzq ´U2 pzqs{2qg 2 pzq µ β pdzq.

Since βs ď 1{2, we are assured of the bounds

|βrU 2 pp1 ´sqzq ´U2 pzqs| ď β › › U 1 2 › › 8 πs ď 4π 2 βs ď 2π 2 (25) 
and we deduce that

J 1 ď 16π 4 cosh 2 pπ 2 qβ 2 s 2 ş g 2 dµ β .
Again this bound is going in the direction of [START_REF] Miclo | Remarques sur l'ergodicité des algorithmes de recuit simulé sur un graphe[END_REF].

We are thus left with the task of finding a bound on J 2 and this is where the Dirichlet type quantity ş pf 1 q 2 dµ β will be needed. Of course, its origin is to be found in the fundamental theorem of calculus, which enables to write for any x P p1 ´sqπq,

T ´ηrgspxq ´gpxq " ´η ż 1 0 g 1 pp1 `ηvqxqx dv.
It follows that

J 2 ď π 2 η 2 ż p1´sqπ ´p1´sqπ µ β pdxq ż 1 0 dv `g1 pp1 `ηvqxq ˘2 . ( 26 
)
Recalling the definition of g, we have for any z P p´π, πq,

pg 1 pzqq 2 ď 2pπ 2 pf 1 pzqq 2 `f 2 pzqq,
where we used again that }U 1 2 } 8 ď 2π and that β ě 1. Next we deduce from a computation similar to [START_REF] Miclo | Recuit simulé partiel[END_REF] and from η ď 2s that µ β pxq µ β pp1 `ηvqxq ď expp4π 2 q, so it appears that there exists a universal constant k 1 ą 0 such that ż p1´sqπ ´p1´sqπ

µ β pdxq ż 1 0 dv `g1 pp1 `ηvqxq ˘2 ď k 1 ż 1 0 dv ż p1´sqπ ´p1´sqπ λpdxq T ´ηv rhspxq,
where

@ x P T, hpxq ≔ rpf 1 pxqq 2 `f 2 pxqsµ β pxq.
The proof of Lemma 7 shows that for any fixed v P r0, 1s, ż p1´sqπ ´p1´sqπ

T ´ηv rhspxq λpdxq ď 1 1 `vη ż T hpxq λpdxq ď ż T hpxq λpdxq " ż T pf 1 q 2 dµ β `żT f 2 dµ β .
Coming back to [START_REF] Pennec | Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements[END_REF] and recalling that η " s{p1 ´sq, we obtain that

J 2 ď k 2 s 2 ˆżT pf 1 q 2 dµ β `żT f 2 dµ β ˙,
for another universal constant k 2 ą 0. This ends the proof of (23).

3.2 Estimate of L α,β r1s in the case p " 1

When we are interested in finding medians, the definition (17) must be modified into

@ x P T, T y,s f pxq ≔ f pγpx, y, sqq. (27) 
Similarly to what we have done in Lemma 7, we begin by computing the adjoint T : y,s of T y,s in L 2 pλq, for any fixed y P T and s P R `small enough.

Lemma 12 Assume that s P r0, π{2q. Then for any bounded and measurable function g, we have, for almost every x P T (identified with its representative in py ´π, y `πq), T : y,s rgspxq " 1 py´π`s,y´sq pxqgpx ´sq `1py´s,y`sq pxqpgpx ´sq `gpx `sqq `1py`s,y`π´sq pxqgpx `sq.

Proof

By definition, we have, for any bounded and measurable functions f, g, The symmetrical computation on py ´π, yq leads to the announced result.

It is not difficult to adapt the proof of Lemma 8, to get, with the same notations, Lemma 13 For α ą 0 and β ě 0 such that αβ P r0, πq, the domain of the maximal extension of L α,β on L 2 pµ β q is D. Furthermore the domain of its dual operator L α,β in L 2 pµ β q is D ˚and we have for any

f P D ˚, L α,β f " 1 2 exppβU 1 qB 2 rexpp´βU 1 qf s `1 α ż T ẙ, αβ 2 rf s νpdyq ´f α ,
where

T ẙ, αβ 2 rf s " exppβU 1 qT : y, αβ 2 rexpp´βU 1 qf s.
In particular, if ν admits a continuous density, then D ˚" D and the above formula holds for any f P D.

To be able to consider L α,β 1, we have thus to assume that ν admits a continuous density, so that 1 P D ˚" D. Furthermore we obtain then that for almost every x P T,

L α,β 1pxq " β 2 2 pU 1 1 pxqq 2 ´β 2 U 2 1 pxq `1 α ˆż T ẙ, αβ 2 r1spxq νpdyq ´1˙.
By expanding the various terms of the r.h.s., we are to show the equivalent of Proposition 10:

Proposition 14 Assume that ν admits a density with respect to λ satisfying [START_REF] Le | Estimation of Riemannian barycentres[END_REF]. Then there exists a constant CpAq ą 0, only depending on A, such that for any β ě 1 and α P p0, πβ ´2q, we have

› › L α,β 1 › › 8 ď CpAq max `αβ 4 , α a β 1`a ˘.
Proof From ( 14) and Lemma 6, we deduce respectively that for all x P T, U By considering the Taylor's expansion with remainder at the first order of the mapping s Þ Ñ exppβrU 1 pxq ´U1 px ´sqsq at s " 0 and by taking into account [START_REF] Yang | Riemannian median and its estimation[END_REF], we get for any x P T and s P p0, π{p2βqq,

|I 2 px, sq| ď 2 }ν} 8 2π exppβ › › U 1 1 › › 8 sqβ › › U 1 1 › › 8 s ď }ν} 8 π exppβsqβs ď 2 1 `πA π exppπ{2qβs.
The term I 3 px, sq is bounded in a similar manner, rather expanding at the second order the previous mapping and using (29) to see that }U 2 1 } 8 ď A.

We finish this subsection with the a variant of Lemma 11:

Lemma 15 There exists a universal constant k ą 0, such that for any s ą 0 and β ě 1 with βs ď 1, we have, for any f P C 1 pTq, ż

Bpy,π´sq pT ẙ,s rr g y spxq ´gy pxqq 2 µ β pdxq ď ks 2 β 2 ˆż pBf q

2 dµ β `ż f 2 dµ β ˙,
where T ẙ,s is the adjoint operator of T y,s in L 2 pµ β q and where for any fixed y P T,

@ x P Tzty 1 u, # g y pxq ≔ f pxq 9 γpx, y, 0q
r g y pxq ≔ 1 py´π,y´sq\py`s,y`πq pxqg y pxq .

Proof

As remarked at the beginning of the proof of Lemma 11, it is sufficient to deal with the case y " 0. To simplify the notations, we remove y " 0 from the indices, in particular we consider the mappings g and r g defined by gpxq " ´signpxqf pxq and r gpxq " 1 p´π,´sq\ps,πq pxqgpxq. Taking into account that r g vanishes on p´s, sq, we deduce from Lemmas 12 and 13 that for a.e. 

To study the variations of this function, by symmetry, it is sufficient to consider its restriction to py, y `πq. We need the following definitions, all of them depending on y P T, s ě 0 and p P p1, 2q:

u `≔ y `pp ´1q 1 2´p s 1 2´p r u `≔ y `s 1 2´p v `≔ y ´´pp ´1q p´1 2´p ´pp ´1q 1 2´p ¯s 1 2´p w `≔ y `π ´πp´1 s.
Let σppq be the largest positive real number in p0, 1{2q such that for s P p0, σppqq, we have u `ă y `π, v `ą y ´π and w `´y ą y ´v`. One checks that for s P p0, σppqq, the function z is decreasing on py, u `q and increasing on pu `, y `πq. Furthermore v `" zpu `q, w `" zpy `πq and r u `is the unique point in pu `, y `πq such that zpr u `q " y. Let us also introduce p u `the unique point in pr u `, y `πq such that and zpp u `q " ´v`. All these definitions, as well as the symmetric notions with respect to py, yq, where the indices `are replaced by ´, are summarized in the following picture: Thus for s P p0, σppqq, we can consider ϕ `: rv `, ys Ñ ry, u `s and ψ `: rv `, w `s Ñ ru `, y `πs the inverses of z, respectively restricted to ry, u `s and ru `, y `πs. The mappings ϕ ´and ψ áre defined in a symmetrical manner on ry, v ´s and rw ´, v ´s. These quantities were necessary to compute the adjoint T : y,s of T y,s in L 2 pλq, for any fixed y P T and s ą 0 small enough:

u + u - u + ũ- ~û+ û - v - w + w - v + x z(x)
Lemma 16 Assume that s P p0, σppqq. Then for any bounded and measurable function g, we have, for almost every x P T (identified with its representative in py ´π, y `πq), T : y,s rgspxq " 1 pw ´,v `qpxqψ 1 ´pxqgpψ ´pxqq `1pv ´,w `qpxqψ 1 `pxqgpψ `pxqq `1pv `,yq pxqrψ 1 ´pxqgpψ ´pxqq `ψ1 `pxqgpψ `pxqq `ˇϕ 1 `pxq ˇˇgpϕ `pxqqs `1py,v ´qpxqrψ 1 ´pxqgpψ ´pxqq `ψ1 `pxqgpψ `pxqq `ˇϕ 1 ´pxq ˇˇgpϕ ´pxqqs.

Proof

The above formula is based on straightforward applications of the change of variable formula. For instance one can write for any bounded and measurable functions f, g defined on py ´π, y `πq, ż py,u `q gpxqf pT y,s pxqq dx " ż pv `,yq f pzqgpϕ `pzqq ˇˇϕ 1 `pzq ˇˇdz.

Since we are more interested in adjoint operators in L 2 pµ β q, let us define for any fixed y P T, s P p0, σppqq and any bounded and measurable function f defined on py ´π, y `πq, T ẙ,s rf s ≔ exppβU p qT : y,s rexpp´βU p qf s.

(32)

Then we get the equivalent of Lemmas 8 and 13:

Lemma 17 For α ą 0 and β ą 0 such that s ≔ pαβ{2 P p0, σppqq, the domain of the maximal extension of L α,β on L 2 pµ β q is D. Furthermore the domain of its dual operator L α,β in L 2 pµ β q is D ˚and we have for any

f P D ˚, L α,β f " 1 2 exppβU p qB 2 rexpp´βU p qf s `1 α ż T ẙ,s rf s νpdyq ´f α .
In particular, if ν admits a continuous density, then D ˚" D and the above formula holds for any f P D.

Once again, the assumption that ν admits a continuous density enables us to consider L α,β 1, which is given, under the conditions of the previous lemma, for almost every x P T, by

L α,β 1pxq " β 2 2 pU 1 p pxqq 2 ´β 2 U 2 p pxq `1 α ˆż T ẙ, pαβ 2 r1spxq νpdyq ´1˙. (33) 
We deduce:

Proposition 18 Assume that ν admits a density with respect to λ satisfying [START_REF] Le | Estimation of Riemannian barycentres[END_REF]. Then there exists a constant CpA, pq ą 0, only depending on A ą 0 and p P p1, 2q, such that for any β ě 1 and α P p0, σppq{β 2 q, we have

› › L α,β 1 › › 8 ď CpA, pq max `αβ 4 , α p´1 β 1`p , α a β 1`a ˘.

Proof

We first keep in mind that from [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF] and Lemma 6, we have for all x P T, U where s ≔ pαβ{2 P p0, σppq{βq Ă p0, σppqq, and to bound what remains by a quantity of the form C 1 pA, pqpβ 2 s `βs p´1 `sa q, for another constant C 1 pA, pq ą 0, only depending on A ą 0 and p P p1, 2q. We decompose the domain of integration of νpdyq into six essential parts (with the convention that ´π ď y ´x ă π and remember that the points w ´, v `, v ´and w `depend on y): J 1 ≔ ty P T : y ´π ă x ă w ´u J 2 ≔ ty P T : w ´ă x ă v `u J 3 ≔ ty P T : v `ă x ă yu J 4 ≔ ty P T : y ă x ă v ´u J 5 ≔ ty P T : v ´ă x ă w `u J 6 ≔ ty P T : w `ă x ă y `πu.

The cases of J 1 and J 6 are the simplest to treat. For instance for J 6 , we write that

p s ż J 6 T ẙ,s r1spxq ´1 νpdyq " ´p s ż x 1 `πp´1 s x 1 1 νpdyq " ´p s ż x 1 `πp´1 s x 1 νpyq dy 2π " ´pπ p´2 2 νpx 1 q ´p 2πs ż x 1 `πp´1 s x 1
νpyq ´νpx 1 q dy.

A similar computation for J 1 and the use of assumption [START_REF] Le | Estimation of Riemannian barycentres[END_REF] lead to the bound ˇˇˇp

s ż J 1 \J 6 T ẙ,s r1spxq ´1 νpdyq `pπ p´2 νpx 1 q ˇˇˇď Ap π p1`aqpp´1q´1 1 `a s a ď 2πAs a . (36) 
The most important parts correspond to J 2 and J 5 . E.g. considering J 5 , which can be written down as the segment px ´, x `q, with x ´≔ x ´π `πp´1 s x `≔ x ´´pp ´1q p´1 2´p ´pp ´1q 

To do so, we will expand the terms ψ 1 `pxq and exppβrU p pxq ´Up pψ `pxqqsq as functions of the (hidden) parameter s ą 0. Fix y P J 5 and recall that it amounts to x P pv ´, w `q. Due to (31) and to the definition of ψ `, we have for such x, ψ 1 `pxq " 1 1 ´spp ´1qpψ `pxq ´yq p´2 .

(39)

Let us begin by working heuristically, to outline why the quantities (37) and (38) should be close. From the above expression, we get

ψ 1 `pxq » 1 `spp ´1qpψ `pxq ´yq p´2 .
By definition of ψ `, we have

x ´y " ψ `pxq ´y ´spψ `pxq ´yq p´1 " pψ `pxq ´yqp1 ´spψ `pxq ´yq p´2 q, (40) so that x ´y » ψ `pxq ´y and

ψ 1 `pxq » 1 `spp ´1qpx ´yq p´2 .
On the other hand, exppβrU p pxq ´Up pψ `pxqqsq » 1 `βrU p pxq ´Up pψ `pxqqs

» 1 `βU 1 p pxqpx ´ψ`p xqq " 1 ´sβU 1 p pxqpψ `pxq ´yq p´1 » 1 ´sβU 1 p pxqpx ´yq p´1 .
Putting together these approximations, we end up with ψ 1 `pxq exppβrU p pxq ´Up pψ `pxqqsq ´1 » srpp ´1qpx ´yq p´2 ´βU 1 p pxqpx ´yq p´1 s, suggesting the proximity of (37) and (38), after integration with respect to νpdyq on px ´, x `q.

To justify and quantify these computations, we start by remarking that ψ `pxq ´y is bounded below by p u `´y, itself bounded below by r u `´y " s 1 2´p . But this lower bound will not be sufficient in (40), so let us improve it a little. By definition of p u `, we have v ´´y " p u ´y ´spp u ´yq p´1 , so that p u `´y " k p s

1 2´p
where k p is the unique solution larger than 1 of the equation

k p ´kp´1 p " pp ´1q p´1 2´p ´pp ´1q 1 2´p . ( 41 
)
It follows that for any y P J 5 ,

1 ď 1 1 ´spψ `pxq ´yq p´2 ď 1 1 ´spp u `´yq p´2 " p u `´y v ´´y " K p , (42) 
where the latter quantity only depends on p P p1, 2q and is given by

K p ≔ k p pp ´1q p´1 2´p ´pp ´1q 1 2´p
.

In particular, coming back to (39) and taking into account (40), we get that for y P J 1 5 , ˇˇψ 1 `pxq ´1 ´spp ´1qpψ `pxq ´yq p´2 ˇˇ" pspp ´1qpψ `pxq ´yq p´2 q 2 1 ´spp ´1qpψ `pxq ´yq p´2 ď pp ´1q 2 s 2 pψ `pxq ´yq 2pp´2q 1 ´spψ `pxq ´yq p´2

" pp ´1q 2 s 2 px ´yq 2pp´2q p1 ´spψ `pxq ´yq p´2 q 1`2pp´2q ď pp ´1q 2 K p2p´3q p s 2 px ´yq 2pp´2q .

To complete this estimate, we note that in a similar way, still for y P J 5 , ˇˇpψ `pxq ´yq p´2 ´px ´yq p´2 ˇˇ" px ´yq p´2 ˇˇ1 ´p1 ´spψ `pxq ´yq p´2 q 2´p ˇď px ´yq p´2 ˇˇ1 ´p1 ´spψ `pxq ´yq p´2 q ˇ" spx ´yq p´2 pψ `pxq ´yq p´2 " spx ´yq 2pp´2q p1 ´spψ `pxq ´yq p´2 q 2´p ď spx ´yq 2pp´2q , so that in the end, ˇˇψ 1 `pxq ´1 ´spp ´1qpx ´yq p´2 ˇˇď rpp ´1q 

y 2pp´2q dy ď κ 1 p $ ' & ' % 1 , if p ą 3{2 lnpp1 `σppqq{sq , if p " 3{2 s 2p´3 2´p , if p ă 3{2 . ( 47 
)
Since 1 `2p´3 2´p ą p ´1, β ě 1 and s P p0, σppqq, we can find another constant K 1 pp, Aq ą 0 such that the r.h.s. of (45) can be replaced by K 1 pp, Aqpβs p´1 `β2 sq. It is now easy to see that such an expression, up to a new change of the factor K 1 pp, Aq, bounds the difference between (37) and (38). Indeed, just use that

ż π´π p´1 s κps 1 2´p y 2p´3 dy ď π ż π´π p´1 s κps 1 2´p
y 2pp´2q dy and resort to (47). There is no more difficulty in checking that the cost of replacing x ´and x `respectively by x ´π and x in (38) is also bounded by K 2 pp, Aqpβs p{p2´pq `spp´1q{p2´pq q ď 2K 2 pp, Aqβs p´1 , for an appropriate choice of the factor K 2 pp, Aq depending on p P p1, 2q and A ą 0.

Symmetrical computations for J 2 and remembering (36) lead to the existence of a constant K 3 pp, Aq ą 0, depending only on p P p1, 2q and A ą 0, such that for β ě 1 and s P p0, σppq{βq, we have ˇˇˇβ pU 1 p pxqq 2 ´U 2 p pxq `p s ˆżJ 1 \J 2 \J 5 \J 6 T ẙ,s r1spxq νpdyq ´1˙ˇˇˇˇď K 3 pp, Aqps a `βs p´1 `β2 sq.

It remains to treat the segments J 3 and J 4 and again by symmetry, let us deal with J 4 only: it is sufficient to exhibit a constant K p4q pp, Aq ą 0, depending on p P p1, 2q and A ą 0, such that for β ě 1 and s P p0, σppq{βq, p s ˇˇˇż

J 4 T ẙ,s r1spxq ´1 νpdyq ˇˇˇď K p4q pp, Aqs p´1 2´p
(since the r.h.s. is itself bounded by K p4q pp, Aqpσppqq pp´1q 2 2´p s p´1 ), or equivalently ˇˇˇż

J 4 T ẙ,s r1spxq ´1 νpdyq ˇˇˇď K p4q pp, Aq p s 1 2´p . ( 48 
)
The constant part is immediate to bound: ż

J 4 1 νpdyq ď }ν} 8 2π ż J 4 1 dy ď 1 `πA 2π ż x x´κps 1{p2´pq 1 dy " p1 `πAqκ p 2π s 1 2´p
.

For the other part, we first remark that for y P J 4 , we have

y ă x ă y `κp s 1 2´p y `s 1 2´p ă ψ `pxq ă y `kp s 1 2´p
y ´pp ´1q In particular, we can find another constant κ 3 p ą 0, such that under the conditions that β ě 1 and βs P p0, σppqq, exp pβ max p|U p pxq ´Up pψ `pxqq| , |U p pxq ´Up pψ ´pxqq| , |U p pxq ´Up pϕ ´pxqq|qq ď κ 3 p .

Thus, denoting ψ one of the functions ψ `, ϕ ´or ψ ´, and remembering the bound }ν} 8 ď 1 `πA, it is sufficient to exhibit another constant κ p4q p ą 0 such that ż

J 4 ˇˇψ 1 pxq ˇˇdy ď κ p4q p s 1 2´p . ( 49 
)
Let us consider the case ψ " ψ `, the other functions admit a similar treatment. We begin by making the dependence of ψ `pxq more explicit by writing it ψ `px, yq. From the definition of this quantity (see the first line of (40)) and from (39), we get B y ψ `px, yq " ´spp ´1qpψ `px, yq ´yq p´2 1 ´spp ´1qpψ `px, yq ´yq p´2

" ´spp ´1qpψ `px, yq ´yq p´2 B x ψ `px, yq, so that the l.h.s. of (49) can be rewritten q ´x is a positive solution to the equation

ζ " spζ `κp s 1 2´p q p´1 . It follows that ζ " k 1 p s 1 2´p
where k 1 p is the unique positive solution of k 1 p " pk 1 p `κp q p´1 . Thus ( 49) is proven and we can conclude to the validity of (48).

To finish this subsection, here is a version of Lemma 15 for p P p1, 2q, which is a little weaker, since we need a preliminary integration with respect to νpyq: Lemma 19 Under the assumption [START_REF] Le | Estimation of Riemannian barycentres[END_REF], there exists a universal constant kpp, Aq ą 0, depending only on p P p1, 2q and A ą 0, such that for any s ą 0 and β ě 1 with βs ď σppq, we have, for any f P C 1 pTq, ż T νpdyq ż Bpy,π´π p´1 sq pT ẙ,s rr g y spxq ´gy pxqq 2 µ β pdxq ď kpp, Aqps 2pp´1q `β2 s 2 q ˆż pBf q 2 dµ β `ż

f 2 dµ β ˙, (50) 
where T ẙ,s is the adjoint operator of T y,s in L 2 pµ β q and where for any fixed y P T,

@ x P Tzty 1 u, $ & % g y pxq ≔ f pxqd p´1 px, yq 9 γpx, y, 0q r g y pxq ≔ 1 py´π,y´s 1 2´p q\py`s 1 2´p
,y`πq pxqg y pxq .

Proof

We begin by fixing y P T and by remembering the notations of the proof of Proposition 18 (see Figure 6). Due to fact that r g y vanishes on pr u ´, r u `q " py ´s 1 2´p , y `s 1 2´p q, we deduce from Lemma 16 and (32) that for a.e. x P py ´π `πp´1 s, y `π ´πp´1 sq, T ẙ,s rr g y spxq " ψ 1 ε pxq exppβrU p pxq ´Up pψ ε pxqqsqr g y pψ ε pxqq, where ε P t´, `u stands for the sign of x ´y with the conventions of the proof of Proposition We begin by dealing with J 1 pyq, or rather with just half of it, by symmetry and to avoid the consideration of ε: ż y`π´π p´1 s y pexppβrU p pxq ´Up pψ `pxqqsq ´1q 2 pψ 1 `pxqr g y pψ `pxqqq 2 µ β pdxq.

Let us recall that x " ψ `pxq ´spψ `pxq ´yq p´1 and that ψ `pxq ´y ě s

1 2´p
. From (39) we deduce that for x P py, y `π ´πp´1 sq, 1 ď ψ `pxq ď 1{p2 ´pq. Thus it is sufficient to bound ż y`π´π p´1 s y pexppβrU p pxq ´Up pψ `pxqqsq ´1q 2 pr g y pψ `pxqqq 2 µ β pdxq.

Furthermore, for x P py, y `π ´πp´1 sq, we have

|x ´ψ`p xq| ď sπ p´1 , (51) 
so under the assumption that sβ P p0, 1{2q, we can bound pexppβrU p pxq ´Up pψ `pxqqsq ´1q 2 by a term of the form kβ 2 s 2 for a universal constant k ą 0. It remains to use r g 2 y pxq ď π 2 f 2 pxq to get an upper bound going in the direction of (50).

We now come to J 2 pyq and again only to half of it:

ż y`π´π p´1 s y pψ 1
`pxqq 2 pr g y pψ `pxqq ´gy pxqq 2 µ β pdxq.

Due to the upper bound on ψ `seen just above, it is sufficient to deal with ż y`π´π p´1 s y pr g y pψ `pxqq ´gy pxqq 2 µ β pdxq.

But for x P py, y `π ´πp´1 sq, we have ψ `pxq P py `s 1 2´p , y `πq, so that r g y pψ `pxqq " g y pψ `pxqq and the above expression is equal to ż y`π´π p´1 s y pg y pψ `pxqq ´gy pxqq 2 µ β pdxq.

Coming back to the definition of g y , it appears that for x P py, y `π ´πp´1 sq, both ψ `pxq and x belong to the same hemicircle obtain by cutting T at y and y 1 , so pg y pψ `pxqq ´gy pxqq 2 " pd p´1 py, ψ `pxqqf pψ `pxqq ´dp´1 py, xqf pxqq 2 ď 2d 2pp´1q py, ψ `pxqqpf pψ `pxqq ´f pxqq 2 `2f 2 pxqpd p´1 py, ψ `pxqq ´dp´1 py, xqq 2 ď 2π 2pp´1q pf pψ `pxqq ´f pxqq 2 `2π 2pp´1q 2 s 2pp´1q f 2 pxq, where we have used (44) to majorize the last term. From (51), we deduce that pf pψ `pxqq ´f pxqq 2 ď 2sπ p´1 ż x`sπ p´1 x´sπ p´1 pf 1 pzqq 2 dz.

As usual, the assumption 0 ă sβ ď 1{2 enables to find a universal constant k ą 0 such that for any z P px ´sπ p´1 , x `sπ p´1 q, we have µ β pxq ď kµ β pzq. From the above computations it follows there exists another universal constant k 1 ą 0 such that for any y P T,

J 2 pyq ď k 1 ˆs2pp´1q ż f 2 dµ β `s2 ż pf 1 q 2 dµ β ď k 1 s 2pp´1q ˆż f 2 dµ β `ż pf 1 q 2 dµ β ˙.
Finally we come to J 3 pyq, which will need to be integrated with respect to νpdyq. From (39), we first get that 

J
1 y 2p2´pq dy ď k 2 p $ ' & ' % 1 , if p ą 3{2 lnp1{sq , if p " 3{2 s 2p´3 2´p
, if p ă 3{2 , for s P p0, 1{2q and for an appropriate constant k 2 p ą 0 depending only on p P p1, 2q. It is not difficult to check that as s Ñ 0 `, we have

s 2pp´1q " $ ' & ' % s 2 , if p ą 3{2 s 2 lnp1{sq , if p " 3{2 s 2 s 2p´3 2´p , if p ă 3{2 .
It follows that for any p P p1, 2q, we can find a constant k 1 pp, Aq ą 0, depending only on p P p1, 2q and A ą 0, such that ż

T J 3 pyq νpdyq ď k 1 pp, Aqs 2pp´1q ż T f 2 pxq µ β pdxq.
This ends the proof of the estimate (50).

3.4 Estimate of L α,β r1s in the cases p ą 2

This situation is simpler than the one treated in the previous subsection and is similar to the case p " 2, because for y P T fixed and s ě 0 small enough, the mapping z defined in (31) is injective when p ą 2. Again for any fixed y P T and s ě 0, the definition [START_REF] Hsu | Estimates of derivatives of the heat kernel on a compact Riemannian manifold[END_REF] has to be replaced by (30), namely,

@ x P T, T y,s f pxq ≔ f pzpxqq. (52) 
With the previous subsections in mind, the computations are quite straightforward, so we will just outline them.

The first task is to determine the adjoint T : y,s of T y,s in L 2 pλq. An immediate change of variable gives that for any s P p0, σq, for any bounded and measurable function g, we have, for almost every x P T (identified with its representative in py ´π, y `πq),

T :
y,s rgspxq " 1 py,zpyqq pxqψ 1 pxqgpψpxqq, where σ ≔ π 2´p {pp ´1q and ψ : pzpy ´πq, zpy `πqq Ñ py ´π, y `πq is the inverse mapping of z (with the slight abuses of notation: zpy ´πq ≔ x ´π `πp´1 s, zpy `πq ≔ x `π ´πp´1 s). The adjoint T ẙ,s of T y,s in L 2 pµ β q is still given by (32). As in the previous subsections, this operator is bounded in L 2 pµ β q. It follows, if ν admits a continuous density with respect to λ and at least for α ą 0 and β ě 0 such that s ≔ pp{2qαβ P r0, σq, that the adjoint L α,β of L α,β in L 2 pµ β q is defined on D. In particular we can consider L α,β 1, which is given, for almost every x P T, by

L α,β 1pxq " β 2 2 pU 1 p pxqq 2 ´β 2 U 2 p pxq `pβ 2s ˆż T ẙ,s r1spxq νpdyq ´1˙. (53) 
From this formula we deduce:

Proposition 20 Assume that ν admits a density with respect to λ satisfying [START_REF] Le | Estimation of Riemannian barycentres[END_REF]. Then there exists a constant CpA, pq ą 0, only depending on A ą 0 and p ą 2, such that for any β ě 1 and α P p0, σ{ppβ 2 qq, we have

› › L α,β 1 › › 8 ď CpA, pq max `αβ 4 , α a β 1`a ˘.

Proof

The arguments are similar to those of the case J 5 in the proof of Proposition 18, but are less involved, because the omnipresent term 1 ´spp ´1qpψpxq ´yq p´2 is now easy to bound: for any s P r0, σ{2s, we have for any y P T and x P pzpy ´πq, zpy `πqq,

1 2 ď 1 ´pp ´1q |ψpxq ´y| p´2 s ď 1.
In particular we have under these conditions,

ψ 1 pxq " 1 1 ´pp ´1q |ψpxq ´y| p´2 s P r1, 2s.
Following the arguments of the previous subsection, one finds a constant Kpp, Aq, depending only on p ą 2 and A ą 0, such that for any β ě 1, s P r0, σ{p2βqs and x P pzpy ´πq, zpy `πqq, ˇˇψ 1

`pxq ´1 ´pp ´1q |ψ `pxq ´y| p´2 s ˇˇď Kpp, Aqs 2 ˇˇexppβrU p pxq ´Up pψ `pxqqsq ´1 `βsignpx ´yqU 1 p pxq |x ´y| p´1 s ˇˇď Kpp, Aqβ 2 s 2 .

This bound enables us to approximate T α,β 1pxq ´1 up to a term O p,A pβ 2 s 2 q (recall that this designates a quantity which is bounded by an expression of the form K 1 pp, Aqβ 2 s 2 for a constant K 1 pp, Aq ą 0 depending on p ą 2 and A ą 0), by ´pp ´1q |ψ `pxq ´y| p´2 ´βsignpx ´yqU 1 p pxq |x ´y| p´1 s ¯s.

Next we consider J ≔ ty P T : x P pzpy ´πq, zpy `πqqu " Tzrx 1 ´sπ p´1 , x 1 `sπ p´1 s,

in order to decompose

pβ 2s ż T T ẙ,s r1spxq ´1 νpdyq " pβ 2s ż J T ẙ,s r1spxq ´1 νpdyq ´pβ 2s νprx 1 ´sπ p´1 , x 1 `sπ p´1 sq. ( 55 
)
According to the previous estimate, up to a term O p,A pβ 3 s 2 q the first integral is equal to

ppp ´1qβ 2 ż J d p´2 py, xq νpdyq ´pβ 2 2 U 1 p pxq ż J signpx ´yqd p´1 px, yq νpdyq.
In view of (54), up to an additional term O p,A pβ 2 sq, we can replace J in the above integrals by T.

Thus putting together ( 53) and ( 55) with ( 34) and (35) (which are also valid here), it remains to estimate

pβ 2 ˇˇˇπ p´2 νpx 1 q ´1 s νrx 1 ´sπ p´1 , x 1 `sπ p´1 s ˇˇǎ
nd this is easily done through the assumption [START_REF] Le | Estimation of Riemannian barycentres[END_REF].

We finish this subsection with the equivalent of Lemma 11:

Lemma 21 For p ą 2, there exists a constant kppq ą 0, depending only on p ą 2, such that for any s P p0, σq, with σ ≔ π 2´p {pp´1q, and β ě 1 with βs ď 1, we have, for any y P T and f P C 1 pTq, ż

Bpy,π´sπ p´1 q pT ẙ,s rg y spxq ´gy pxqq 2 µ β pdxq ď kppqs 2 β 2 ˆż pBf q

2 dµ β `ż f 2 dµ β ˙,
where T ẙ,s is the adjoint operator of T y,s in L 2 pµ β q and where for any fixed y P T, @ x P Tzty 1 u, g y pxq ≔ f pxqd p´1 px, yq 9 γpx, y, 0q.

Proof

We only sketch the arguments, which are just an adaptation of those of the proof of Lemma 11. Again it is sufficient to deal with the case y " 0, which is removed from the notations, and consequently with the function gpxq " ´signpxq |x| p´1 f pxq. As seen previously in this subsection, we have for s P p0, σq and x P p´π, πq, T s rgspxq " 1 p´π`sπ p´1 ,π´sπ p´1 q pxq exppβrU p pxq ´Up pψpxqqsqψ 1 pxqgpψpxqq, where ψ is the inverse mapping of p´π, πq Q x Þ Ñ x ´signpxq |x| p´1 . Recall that for x P p´π sπ p´1 , π ´sπ p´1 q,

ψ 1 pxq " 1 1 ´pp ´1q |ψpxq| p´2 s P r1, 2s. (56) 
Considering the decomposition T s rgspxq ´gpxq " pexppβrU p pxq ´Up pψpxqqsq ´1qψ 1 pxqgpψpxqq `ψ1 pxqpgpψpxqq ´gpxqq `pψ 1 pxq ´1qgpxq, we are led, after integration with respect to 1 p´π`sπ p´1 ,π´sπ p´1 q pxq µ β pdxq, to computations similar to those of Subsections 3.1 and 3.3, and indeed simpler than in the latter one, due to the boundedness property described in (56).

Let us summarize the Propositions 10, 14, 18 and 20 of the previous subsections into the statement:

Proposition 22 Assume that ( 20) is satisfied and for p ě 1, consider the constant appq ą 0 defined in [START_REF] Arnaudon | Medians and means in Finsler geometry[END_REF]. Then there exists two constants σppq P p0, 1{2q and CpA, pq ą 0, depending only on the quantities inside the parentheses, such that for any α ą 0 and β ą 1 such that αβ ă σppq, we have b µ β rpL α,β 1q 2 s ď CpA, pqα appq β 4 .

Despite this bound is very rough, since we have replaced an essential norm by a L 2 norm, it will be sufficient in the next section, when α appq β 4 is small, as a measure of the discrepancy between µ β and the invariant measure for L α,β .

Proof of convergence

This is the main part of the paper: we are going to prove Theorem 1 by the investigation of the evolution of a L 2 type functional.

On T consider the algorithm X ≔ pX t q tě0 described in the introduction. We require that the underlying probability measure ν admits a density with respect to λ which is Hölder continuous: a P p0, 1s and A ą 0 are constants such that (20) is satisfied. For the time being, the schemes α : R `Ñ R ˚and β : R `Ñ R `are assumed to be respectively continuous and continuously differentiable. Only later on, in Proposition 27, will we present the conditions insuring the wanted convergence (4). On the initial distribution m 0 , the last ingredient necessary to specify the law of X, no hypothesis is made. We also denote m t the law of X t , for any t ą 0. From the lemmas given in the appendix, we have that m t admits a C 1 density with respect to λ, which is equally written m t . As it was mentioned in the previous section, we want to compare these temporal marginal laws with the corresponding instantaneous Gibbs measures, which were defined in [START_REF] Stewart | Markov processes[END_REF] with respect to the potential U p given in [START_REF] Afsari | On the convergence of gradient descent for finding the Riemannian center of mass[END_REF]. A convenient way to quantify this discrepancy is to consider the variance of the density of m t with respect to µ βt under the probability measure µ βt :

@ t ą 0, I t ≔ ż ˆmt µ βt ´1˙2 dµ βt . (57) 
Our goal here is to derive a differential inequality satisfied by this quantity, which implies its convergence to zero under appropriate conditions on the schemes α and β. More precisely, our purpose it to obtain:

Proposition 23 There exists two constants c 1 pp, Aq, c 2 pp, Aq ą 0, depending on p ě 1 and A ą 0, and a constant ςppq P p0, 1{2q, depending on p ě 1, such that for any t ą 0 with β t ě 1 and 0 ă α t β 2 t ď ςppq, we have

I 1 t ď ´c1 pp, Aqpβ ´3 t expp´bpU p qβ t q ´αr appq t β 3 t ´ˇβ 1 t ˇˇqI t `c2 pp, Aqpα appq t β 4 t `ˇβ 1 t ˇˇq a I t ,
where bpU p q was defined in [START_REF] Bȃdoiu | Smaller core-sets for balls[END_REF], appq in Proposition 22 and

r appq ≔ " 1 , if p " 1 or p ě 3{2 2pp ´1q , if p P p1, 3{2q
.

At least formally, there is no difficulty to differentiate the quantity I t with respect to the time t ą 0. But we postpone the rigorous justification of the following computations to the end of the appendix, where the regularity of the temporal marginal laws is discussed in detail. Thus we get at any time t ą 0,

I 1 t " 2 ż ˆmt µ βt ´1˙B t m t µ βt dµ βt ´2 ż ˆmt µ βt ´1˙m t µ βt B t lnpµ βt q dµ βt `ż ˆmt µ βt ´1˙2 B t lnpµ βt q dµ βt " 2 ż ˆmt µ βt ´1˙B t m t dλ ´ż ˆmt µ βt ´1˙2 B t lnpµ βt q dµ βt ´2 ż ˆmt µ βt ´1˙B t lnpµ βt q dµ βt ď 2 ż ˆmt µ βt ´1˙B t m t dλ `}B t lnpµ βt q} 8 ˜ż ˆmt µ βt ´1˙2 dµ βt `2 ż ˇˇˇm t µ βt ´1ˇˇˇˇd µ βt ḑ 2 ż ˆmt µ βt ´1˙B t m t dλ `}B t lnpµ βt q} 8 ´It `2a I t ¯,
where we used the Cauchy-Schwarz inequality. The last term is easy to deal with:

Lemma 24 For any t ě 0, we have

}B t lnpµ βt q} 8 ď π p ˇˇβ 1 t ˇˇ.

Proof

Since for any t ě 0 we have @ x P T, lnpµ βt q " ´βt U p pxq ´ln ˆż expp´β t U p pyqq λpdyq ˙, it appears that @ x P T, B t lnpµ βt q " β 1 t ż U p pyq ´Up pxq µ βt pdyq, so that }B t lnpµ βt q} 8 ď oscpU p q ˇˇβ 1 t ˇˇ.

The bound oscpU p q ď π p is an immediate consequence of the definition (1) of U p and of the fact that the (intrinsic) diameter of T is π.

Denote for any t ą 0, f t ≔ m t {µ βt . If this function was to be C 

Proof

For any α ą 0 and β ě 0, we begin by decomposing the generator L α,β into

L α,β " L β `Rα,β , (58) 
where L β ≔ pB 2 ´βU 1 p Bq{2 was defined in [START_REF] Charlier | Necessary and sufficient condition for the existence of a Fréchet mean on the circle[END_REF] (recall that U 1 p is well-defined, since ν has no atom) and where R α,β is the remaining operator. An immediate integration by parts leads to ż L β rf ´1s pf ´1q dµ β " ´1 2

ż pBpf ´1qq 2 dµ β " ´1 2 
ż pBf q 2 dµ β .
Thus our main task is to find constants c 3 pp, Aq ą 0 and r σppq P p0, 1{2q such that for any α ą 0 and β ě 1 with αβ 2 ď r σppq, we have, for any f P C 2 pTq, ˇˇˇż R α,β rf ´1s pf ´1q dµ β ˇˇˇď c 3 pp, Aqα r appq β 3 ˆż pBf q 2 dµ β `ż pf ´1q 

(with e.g. the convention that g y py 1 q ≔ 0). Let us also fix the variable u P r0, 1s for a while. We begin by considering the case where p ě 2. By definition of T ẙ,su (discussed in Section 3), we have ż pT y,su rf 1 spxq ´f 1 pxqqg y pxq µ β pdxq " ż f 1 pxqpT ẙ,su rg y spxq ´gy pxqq µ β pdxq (61)

" I 1 py, uq `I2 py, uq,

where for any y P T, I 1 py, uq ≔ ż Bpy,π´suπ p´1 q f 1 pxqpT ẙ,su rg y spxq ´gy pxqq µ β pdxq

I 2 py, uq ≔ ´żBpy 1 ,suπ p´1 q f 1 pxqg y pxq µ β pdxq (62) 
(recall from Subsections 3.1 and 3.4 that for any measurable function g, T ẙ,s rgs vanishes on Bpy 1 , suπ p´1 q). The first integral is treated through the Cauchy-Schwarz inequality,

|I 1 py, uq| ď d ż pf 1 q 2 dµ β d ż
Bpy,π´suπ p´1 q pT ẙ,su rg y s ´gy q 2 µ β and Lemmas 11 and 21, at least if sβ ą 0 is smaller than a certain constant r σppq P p0, {12q. It follows that for a universal constant k ą 0, we have ż Tˆr0,1s

|I 1 py, uq| νpdyqdu ď ks 2 β 2 ˆż pBf q 2 dµ β `ż pf ´1q 2 dµ β

˙ż 1 0 u 2 du " k 2 s 2 β 2 ˆż pBf q 2 dµ β `ż f 2 dµ β ď k 4 sβ ˆż pBf q 2 dµ β `ż f 2 dµ β ˙,
bound going in the direction of (59).

Next we turn to the integral I 2 py, uq. We cannot deal with it uniformly over y P T but we get a convenient bound by integrating it with respect to νpdyq. Recalling that under the assumption [START_REF] Le | Estimation of Riemannian barycentres[END_REF] The integration of the last r.h.s. with respect to dx is bounded above by 2 2 ´p ż ps

1 2´p q p´1 s 0 dx " 2 2 ´p s 1 2´p .
Thus we have found a constant kppq ą 0 depending on p P r1, 2q such that (65) is bounded above by kppqs 1 2´p under our conditions on s ą 0 and β ě 1. In conjunction with (64) and definition (66), it enables to conclude to the existence of a constant kpp, Aq ą 0, depending on p P r1, 2q and A ą 0, such that ż |I 3 py, uq| 1 r0,1s puq νpyqdu ď kpp, Aqs

1 2´p d ż pf ´1q 2 dµ β d ż pf 1 q 2 dµ β .
Putting together all these estimates and taking into account that β ě 1, 0 ă sβ ď r σppq and s 2pp´1q ě s 1{p2´pq , it appears that ˇˇˇˇż Tˆr0,1s for another constant k 1 pp, Aq ą 0, depending on p P r1, 2q and A ą 0. This finishes the proof of (59).

To conclude the proof of Proposition 23, we must be able to compare, for any β ě 0 and any f P C 1 pTq, the energy µ β rpBf q 2 s and the variance Varpf, µ β q. This task was already done by Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF], let us recall their result:

Proposition 26 Let U p be a C 1 function on a compact Riemannian manifold M of dimension m ě 1. Let bpU p q ě 0 be the associated constant as in [START_REF] Bȃdoiu | Smaller core-sets for balls[END_REF]. For any β ě 0, consider the Gibbs measure µ β given in [START_REF] Stewart | Markov processes[END_REF]. Then there exists a constant C M ą 0, depending only on M , such that the following Poincaré inequalities are satisfied:

@ β ě 0, @ f P C 1 pM q, Varpf, µ β q ď C M r1 _ pβ › › U 1 p › › 8 qs 5m´2 exppbpU p qβqµ β r|∇f | 2 s.
We can now come back to the study of the evolution of the quantity I t " Varpf t , µ βt q, for t ą 0. Indeed applying Lemma 25 and Proposition 26 with α " α t , β " β t and f " f t , we get at any time t ą 0 such that β t ě 1 and α t β I t " 0.

Proof

The differential equation of Proposition 23 can be rewritten under the form

F 1 t ď ´ηt F t `ǫt , (67) 
where for any t ą 0,

F t ≔ a I t η t ≔ c 1 pp, Aqpβ ´3 t expp´bpU p qβ t q ´αr appq t β 3 t ´ˇβ 1 t ˇˇq{2 ǫ t ≔ c 2 pp, Aqpα appq t β 4 t `ˇβ 1 t ˇˇq{2.
The assumptions of the above proposition imply that for t ě 0 large enough, β t ě 1 and α t β 2 t ď ςppq, where ςppq P p0, 1{2q is as in Proposition 23. This ensures that there exists T ą 0 such that (67) is satisfied for any t ě T (and also F T ă `8). We deduce that for any t ě T ,

F t ď F T exp ˆ´ż t T η s ds ˙`ż t T ǫ s exp ˆ´ż t s η u du ˙ds. (68) 
It appears that lim tÑ`8 F t " 0 as soon as ż `8

T η s ds " `8 lim tÑ`8 ǫ t {η t " 0.

The above assumptions were chosen to ensure these properties.

In particular, remarking that appq ď r appq for any p ě 1, the schemes given in (3) satisfy the hypotheses of the previous proposition, so that under the conditions of Theorem µ β pN q " 1, for any neighborhood N of M p , property which is immediate from the definition (11) of the Gibbs measures µ β for β ě 0. This finishes the proof of Theorem 1.

Remark 28 Under mild conditions, the results of Hwang [START_REF] Hwang | Laplace's method revisited: weak convergence of probability measures[END_REF] enable to go further, because he identifies the weak limit µ 8 of the Gibbs measures µ β as β goes to `8. Thus, if one knows, as above, that lim tÑ`8 }m t ´µβt } tv " 0, then one gets that m t also weakly converges toward µ 8 for large times t ą 0. The weight given by µ 8 to a point x P M p is inversely related to the value of b U 2 p pxq and in this respect Lemma 6 is useful (still assuming that ν admits a continuous density).

First note that for any x P M p , we have U 2 p pxq ě 0, since x is a global minima of U p , and by consequence νpx 1 q ď 1. Next assume that we have for any x P M p , νpx 1 q ă 1. It follows that M p is discrete and by consequence finite, since T is compact. This property was already noted by Hotz and Huckemann [START_REF] Hotz | Intrinsic Means on the Circle: Uniqueness, Locus and Asymptotics[END_REF], among other features of intrinsic means on the circle. Then we deduce from Hwang [START_REF] Hwang | Laplace's method revisited: weak convergence of probability measures[END_REF] that

µ 8 " 1 Z ÿ xPMp 1 a 1 ´νpx 1 q δ x ,
where Z ≔ ř xPMp p1 ´νpx 1 qq ´1{2 is the normalizing factor. In this situation LpX t q concentrates for large times t ą 0 on all the p-means of ν. Thus to find all of them with an important probability, one should sample independently several trajectories of X, e.g. starting from a fixed point X 0 P T.

Remark 29 Similarly to the approach presented for instance in [START_REF] Miclo | Recuit simulé sans potentiel sur une variété riemannienne compacte[END_REF][START_REF] Miclo | Recuit simulé partiel[END_REF], we could have studied the evolution of pE t q tą0 , which are the relative entropies of the time marginal laws with respect to the corresponding instantaneous Gibbs measures, namely

@ t ą 0, E t ≔ ż ln ˆmt µ βt ˙dm t .
To get a differential inequality satisfied by these functionals, the spectral gap estimate of Holley, Kusuoka and Stroock [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF] recalled in Proposition 26 must be replaced by the corresponding logarithmic Sobolev constant estimate, which is proven in the same article [START_REF] Holley | Asymptotics of the spectral gap with applications to the theory of simulated annealing[END_REF]. 5

Extension to all probability measures ν

Our main task here is to adapt the computations of the two previous sections in order to prove Theorem 2. As in the statement of this result, it is better for simplicity of the exposition to restrict ourselves to the important and illustrative case p " 2, the general situation will be alluded to in the last remark of this section.

We begin by remarking that the algorithm Z described in the introduction evolves similarly to the process X, if we allow the probability measure ν to depend on time. More precisely, for any κ ą 0, consider the probability measure ν κ given by

@ z P M, ν κ pdzq ≔ ż νpdyqK y,κ pdzq, (69) 
where the kernel on M , py, dzq Þ Ñ K y,κ pdzq was defined before the statement of Theorem 2. For α ą 0, β ě 0 and κ ą 0, let us denote by L α,β,κ the generator defined in [START_REF] Groisser | On the convergence of some Procrustean averaging algorithms[END_REF], where ν is replaced by ν κ . Then the law of Z is solution of the time-inhomogeneous martingale problem associated to the family of generators pL αt,βt,κt q tě0 . This observation leads us to introduce the potentials @ κ ą 0, @ x P M, U 2,κ pxq ≔ ż d 2 px, yq ν κ pdyq, as well as the associated Gibbs measures:

@ β ě 0, @ κ ą 0, µ β,κ pdxq ≔ Z ´1 β,κ expp´βU 2,κ pxqq λpdxq,
where Z β,κ is the renormalization constant. Denote by m t the law of Z t for any t ě 0. The proof of Theorem 2 is then similar to that of Theorem 1 and relies on the investigation of the evolution of @ t ą 0,

I t ≔ ż ˆmt µ βt,κt ´1˙2 dµ βt,κt , (70) 
which play the role of the quantities defined in (57).

While the above program was presented for a general compact Riemannian manifold M , we again restrict ourselves to the situation M " T. We first need some estimates on the probability measures ν κ , for κ ą 0:

Lemma 30 For any κ ą 0, ν κ admits a density with respect to λ, still denoted ν κ . Furthermore we have, for any κ ą 1{π,

}ν κ } 8 ď 2πκ }Bν κ } 8 ď 2πκ 2 ,
where Bν κ stands for the weak derivative (so that the last norm }¨} 8 is the essential supremum norm with respect to λ).

Proof

When M " T, for any κ ą 0, the kernel K ¨,κ p¨q corresponds to the rolling around T of the kernel defined on R by py, dzq Þ Ñ κp1 ´κ |z ´y|q `dz. In particular for any y P T, K y,κ p¨q is absolutely continuous with respect to λ and (69) shows that the same is true for ν κ . If furthermore κ ą 1{π, from this definition we can write for any z P T, This proves the second bound.

ν κ pdzq " κ ˜ż z`1{κ
An immediate consequence of the last bound is that for any x P T, the map p1{π, `8q Q κ Þ Ñ U 2,κ pxq is weakly differentiable and for almost every κ ą 1{π, |B κ U 2,κ pxq| ď 2π 4 κ 2 . But one can do better: Lemma 31 For any x P T and any κ ą 1{π, we have

|B κ U 2,κ pxq| ď 3π 3 κ .

Proof

It is better to come back to the definition of ν κ , to get, for x P T and κ ą 1{π (where B κ stands for weak derivative): The improvement of the estimate of the previous lemma with respect to the one given before its statement is important for us, since it enables to obtain that if pβ t q tě0 and pκ t q tě0 are C 1 schemes, then we have

B κ U
@ t ě 0, }B t lnpµ βt,κt q} 8 ď π 2 ˇˇβ 1 t ˇˇ`3π 3 β t ˇˇplnpκ t qq 1 ˇˇ. (71) 
This bound replaces that of Lemma 24 in the present context. Note that for the schemes we have in mind and up to mild logarithmic corrections, we recover a bound of order 1{p1 `tq for }B t lnpµ βt,κt q} 8 , which is compatible with our purposes.

In the same spirit, even if this cannot be deduced directly from Lemma 31, we have

Lemma 32 As κ goes to infinity, U 2,κ converges uniformly toward U 2 . In particular, if bp¨q is the functional defined in ( 6), then we have lim κÑ`8 bpU 2,κ q " bpU 2 q.

Proof Since }BU 2,κ } 8 ď 2π, for any κ ą 0, it appears that pU 2,κ q κą0 is an equicontinuous family of mappings. It is besides clear that ν κ weakly converges toward ν as κ goes to infinity, so that U 2,κ pxq converges toward U 2 pxq for any fixed x P T. Compactness of T and Arzelà-Ascoli theorem then enable to conclude to the uniform of U 2,κ toward U 2 as κ goes to infinity. The second assertion of the lemma is an immediate consequence of this convergence.

Consider for the evolution of the inverse temperature the scheme @ t ě 0, β t ≔ b ´1 lnp1 `tq, where b ą bpU 2 q and denote ρ ≔ p1 `bpU 2 q{bq{2 ă 1. Assume that the scheme pκ t q tě0 is such that lim tÑ`8 κ t " `8. Then from the above lemma and Proposition 26 (recall that }BU 2,κ } 8 ď 2π, for any κ ą 0), there exists a time T ą 0 such that for any t ě T , @ f P C 1 pTq, 2 p1 `tq ρ Varpf, µ βt,κt q ď µ βt,κt rpBf q 2 s.

(72) Like (71), this crucial estimate for the investigation of the evolution of the quantities (70) still does not explain the requirement that k P p0, 1{2q in Theorem 2. Its justification comes from the next result, which replaces Proposition 10 in the present situation.

Proposition 33 For α ą 0, β ě 0 and κ ą 0, let L α,β,κ be the adjoint operator of L α,β,κ in L 2 pµ β,κ q. There exists a constant C 1 ą 0 such that for any β ě 1, κ ě 1 and α P p0, p2βq ´1 pβ 3 pβ `κqq ´1{2 q, we have

› › L α,β,κ 1 › › 8 ď C 1 αβ 2 pβ 2 `κ2 q.
Proof It is sufficient to replace U 2 by U 2,κ in the proofs of Section 3, in particular note that [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] Keeping following the computations of the same proof, we end up with L α,β,κ 1pxq " β 1 ´αβ

1 2παβ ż x 1 `αβπ
x 1 ´αβπ ν κ px 1 q ´νκ pyq dy `Opαβ 3 pβ `κqq.

To estimate the last integral, we resort to the second part of Lemma 30: we get ˇˇˇˇż

x 1 `αβπ

x 1 ´αβπ ν κ px 1 q ´νκ pyq dy ˇˇˇˇď 2πκ 2 ż x 1 `αβπ

x 1 ´αβπ ˇˇx 1 ´yˇˇd y " 2πκ 2 pαβπq 2 .
This leads to the announced bound.

Similar arguments transform Lemma 25 into:

Lemma 34 There exists a constant C 2 ą 0, such that for any α ą 0, β ě 1 and κ ě 1 with αβ 2 ď 1{2, we have, for any f P C 2 pTq, ż L α,β,κ rf ´1s pf ´1q dµ β ď ´ˆ1 2 ´C2 αβ 2 pβ `κq ˙ż pBf q 2 dµ β `C2 αβ 2 pβ `κq ż pf ´1q 2 dµ β .

Proof

The modifications with respect to the proof of Lemma 25 are very limited: one just needs to take into account the bounds › › U 1 p,κ › › 8 ď 2π and }ν κ } 8 ď 2πκ for κ ě 1. Indeed, there are two main changes: ' in (58), where the remaining operator has to be defined by R α,β,κ ≔ L α,β,κ ´1 2 pB 2 ´βU 1 p,κ Bq, ' in (63), the factor 1 `Aπ must be replaced by 2πκ, by virtue of the first estimate of Lemma 30. It leads to the supplementary term αβ 2 κ in the bound of the above lemma.

All the ingredients are collected together to get a differential inequality satisfied by pI t q ě0 . More precisely, under the requirement that (72) is true for t ě T ą 0, as well as β t ě 1, κ t ě 1 and α t β 2 t ? κ t ď 1{2, we get that there exists a constant C 3 ą 0 such that @ t ě T, I I t " 0.

The proof of Theorem 2 finishes by the arguments given at the end of Section 4.

Remark 35 As it was mentioned at the end of the introduction, if one does not want to waste rapidly the sample pY n q nPN (especially if it is not infinite ...), one should take the exponent c the smallest possible. From our assumptions, we necessarily have c ą 1. But the limit case c " 1 can be attained: the above proof shows that the convergence of Theorem 2 is also valid for the schemes

@ t ě 0, $ & % α t ≔ p1 `tq ´1 β t ≔ b ´1 lnp1 `tq κ t ≔ lnp2 `tq .
The drawback is that ν is not rapidly approached by ν κt as t goes to infinity and this may slow down the convergence of the algorithm toward N . Indeed, from the previous computations, it appears that the law of Z t is rather close to the set of global minima of U 2,κt . Remark 36 The cases p " 1 and p ě 2 can be treated in the same manner, but for p P p1, 2q, one must follow the dependence on A of the constants in the proof of Lemma 19. In the end it only leads to supplementary factors of κ, so that Theorem 2 is satisfied with a sufficiently large constant c, depending on p ě 1 and on the exponent k entering in the definition of the scheme pκ t q tě0 . But before going further in the direction of this generalization, it would be more rewarding to first check if the dependence on p of a p in Theorem 1 is just technical or really necessary. A

Regularity of temporal marginal laws

Our goal is to see that at positive times, the marginal laws of the considered algorithms are absolutely continuous and that if furthermore ν ! λ, then the corresponding densities belong to C 1 pTq. We will also check that this is sufficient to justify the computations made in Section 4.

Let X be the process described in the introduction, for simplicity on T, but the following arguments could be extended to general connected and compact Riemannian manifolds. We are going to use the probabilistic construction of X to obtain regularity results on m t , which as usual (where the l.h.s. stands for the density of m t with respect to 2πλ). Unfortunately the usual conditions don't apply here, so it is better to consider the approximation of the density m t by m ǫ,t , where for ǫ P p0, tq, @ x P T, m t,ǫ pxq ≔ ż r0,t´ǫsˆT ξ t pds, dzq p t´s pz, xq.

There is no difficulty in differentiating this expression under the sign sum and in the end it appears to be smooth in x. So to get the announced result, it is sufficient to see that B x m ǫ,t pxq converges to the r.h.s. of (75), uniformly in x P T as ǫ goes to 0 `. Let us prove the stronger convergence lim The assumptions that inf sPr0,ts α s β s ą 0 and that ν admits a bounded density imply that the latter is equally true for ξ t ps, ¨q, the regular conditional law of X Tt knowing that T t " s, for any s ą 0. We can even find C 2 ptq ą 0 such that ξ t ps, dzq ď C 2 ptq dz, uniformly over s P p0, ts (but a priori C 2 ptq may depend on t ą 0 through inf sPr0,ts α s β s ). In the proof of Lemma 37, we have already noticed that there exists C 3 ptq ą 0 such that ξ t pds, Tq ď C 3 ptq ds, for s " 0. It follows that for ǫ P p0, tq, ż We conclude by remarking that by the dominated convergence theorem, the latter term goes to zero with ǫ.

Remark 39 More generally, but still under the assumption that ν admits a bounded density, the density m t is C 1 at some time t ą 0, if we can find ǫ P p0, tq such that inf sPrt´ǫ,ts α s ą 0 and inf sPrt´ǫ,ts β s ą 0. This comes from the above proof or can be deduced directly from Lemma 38 and the Markov property of X. The same arguments cannot be used to prove that for t ą 0, the density of m t belongs to C 2 pTq. A priori, this is annoying, since in Section 4, to study the evolution of the quantity I t defined in (57), we had to differentiate it with respect to t ą 0 and the computations were justified only if the densities m t were C 2 . The classical way go around this apparent difficulty is to use a mollifier.

Let ρ be a smooth nonnegative function on R whose support is included in r´1, 1s and satisfying ş R ρpyq dy " 1. For any δ P p0, 1q, define @ t ě 0, @ x P T, m is the density of LpX t q when LpX 0 q " m pδq 0 , as a consequence of the linearity of the underlying evolution equation (i.e. @ t ě 0, B t m t " m t L αt,βt , in the sense of distributions). Thus the computations of Section 4 are justified if we replace there pm t q tą0 by pm pδq t q tą0 , for any fixed δ P p0, 1q. In particular the inequality (68) is satisfied for pm pδq t q tą0 instead of pm t q tą0 . It remains to let δ go to 0 `to see that the same bound is true for the flow pm t q tą0 . This proves Theorem 1 for general initial distributions m 0 , for instance Dirac masses. In fact, one could pass to the limit δ Ñ 0 `before (68), for instance already in Proposition 23, to see that it is also valid.
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T ϕ 1 pxqU 1 p pxq dx " p ż y`π y ϕ 1 pxqpx ´yq p´1 dx ´p ż y y´π ϕ 1 ϕpxqpx ´yq p´2 dx ´prϕpxqpy ´xq p´1 s y y´π ´ppp ´1q ż y y´π ϕpxqpy ´xq p´2 dx "

 1dx pxqpy ´xq p´1 dx " prϕpxqpx ´yq p´1 s y`2pπ p´1 ϕpy 1 q ´ppp ´1q ż T ϕpxqd p´2 py, xq dx.

T

  gT y,s f dλ " 1 1 ´s ż Bpy,p1´sqπq f T y,´s{p1´sq g dλ. Proof By definition, we have 2π ż T gT y,s f dλ " ż y`π y´π gpxqf px `spy ´xqq dx.In the r.h.s. consider the change of variables z ≔ sy `p1 ´sqx to get that it is equal to 1 f T y,´s{p1´sq f dλ, which corresponds to the announced result.

T

  gT y,s f dλ " ż y`π y´π gpxqf px `signpy ´xqsq dx. Let us first consider the integral ż y`π y gpxqf px `signpy ´xqsq dx " ż y`π y gpxqf px ´sq dx " ż y`π´s y´s gpx `sqf pxq dx " ż y`π´s y`s gpx `sqf pxq dx `ż y`s y´s gpx `sqf pxq dx.
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  z´1{κ p1 ´κdpy, zqq `νpdyq ¸dz, namely, almost everywhere with respect to λpdzq, ν κ pzq " 2πκ ż z`1{κ z´1{κ p1 ´κdpy, zqq `νpdyq ď 2πκ ż z`1{κ z´1{κ νpdyq ď 2πκ. Next for almost every x, y P T, we have |ν κ pxq ´νκ pyq| ď 2πκ ż T |p1 ´κdpx, zqq `´p1 ´κdpy, zqq `| νpdzq ď 2πκ ż T |1 ´κdpx, zq ´1 `κdpy, zq| νpdzq ď 2πκ 2 ż T |dpx, zq ´dpy, zq| νpdzq ď 2πκ 2 dpx, yq.

  ξ t pds, dzq |B x p t´s pz, xq| " 0.

  rt´ǫ,tsˆTξ t pds, dzq |B x p t´s pz, xq| ď C 0 C 1 ptqC 2 ptqC 3 ptq żThis bound no longer depends on x and to compute the latter integral, consider the change of variable u " z 2 {s, z being fixed:

pδq t pxq ≔ 1 δ ż R

 ż m t px `yqρ ´y δ ¯dy (where functions on T are naturally identified with 2π-periodic functions on R). These functions are smooth and what is even more important for Section 4, the mapping R ˚ˆT Q pt, xq Þ Ñ B 2 x m pδq t pxq is continuous. Furthermore, the m pδq t are densities of probability measures on T. More precisely, for any t ě 0, m pδq t

  On the other hand, fromLemma 12 we get that for all s P r0, π{2q and for almost every x P T, ż T ẙ,s r1spxq νpdyq " νppx `s, x `π ´sqq exppβpU 1 pxq ´U1 px ´sqqq `νppx ´s, x `sqqrexppβpU 1 pxq ´U1 px ´sqqq `exppβpU 1 pxq ´U1 px `sqqqs `νppx ´π `s, x ´sqq exppβpU 1 pxq ´U1 px `sqqq " νppx, x `πqq exppβpU 1 pxq ´U1 px ´sqqq `νppx ´π, xqq exppβpU 1 pxq ´U1 px `sqqq `νppx ´s, xqq exppβpU 1 pxq ´U1 px ´sqqq `νppx, x `sqq exppβpU 1 pxq ´U1 px `sqqq ´νppx 1 ´s, x 1 qq exppβpU 1 pxq ´U1 px ´sqqq ´νppx 1 , x 1 `sqq exppβpU 1 pxq ´U1 px `sqqq.Assumption (20) enables to evaluate I 1 px, sq, because we have for any x P T and s P p0, π{2q,

	1 1 pxq " ´ż 9 γpx, y, 0q νpdyq
		" νppx ´π, xqq ´νppx, x `πqq,	(28)
	U 2 1 pxq " pνpxq ´νpx 1 qq{π.	(29)
	`νppx ´π, xqq	1 pxq exppβpU 1 pxq ´U1 px `sqqq ´1 `sβU 1 s 1 pxq s	.
	ˇˇˇπ νppx ´s, x `sq s	´νpxq ˇˇˇ" 1 2s A 2s	ˇˇˇˇż ż px´s,x`sq px´s,x`sq |z ´x| a dz νpzq ´νpxq dz	ˇˇˇď
			As a 1 `a ď As a . "

This leads us to define s " αβ{2 P p0, π{2q, so that we can decompose 2 β L α,β 1pxq " I 1 px, sq `I2 px, sq `I3 px, sq, with I 1 px, sq ≔ 1 π ˆπ νppx ´s, x `sq s ´νpxq ˙´1 π ˆπ νppx 1 ´s, x 1 `sq s ´νpx 1 q İ2 px, sq ≔ νppx ´s, xqq ´νppx 1 ´s, x 1 qq s rexppβpU 1 pxq ´U1 px ´sqqq ´1s `νppx, x `sqq ´νppx 1 , x 1 `sqq s rexppβpU 1 pxq ´U1 px `sqqq ´1s I 3 px, sq ≔ νppx, x `πqq exppβpU 1 pxq ´U1 px ´sqqq ´1 ´sβU 1

  x P p´π `s, π ´sq, T s rr gspxq " exppβU 2 pxqqT ´srexpp´βU 2 qr gspxq.pT s rr gspxq ´gpxqq 2 µ β pdxq ď 2J 1 `2J 2 , pexppβrU 2 pxq ´U2 px `signpxqsqsq ´1q 2 pT ´srr gsq 2 µ β pdxqThe arguments used in the proof of Lemma 11 to deal with J 1 and J 2 can now be easily adapted (even simplified) to obtain the wanted bounds. For instance one would have noted that In this situation, for any fixed y P T and s ě 0, the definition (17) must be replaced by @ x P T, T y,s f pxq ≔ f pγpx, y, sd p´1 px, yqqq.(30)It leads us to introduce the function z defined on py ´π, y `πq by

		zpxq ≔	"	x ´spx ´yq p´1 , if x P ry, y `πq x `spy ´xq p´1 , if x P py ´π, ys	.
	This observation leads us to consider the upper bound
		ż π´s	
		´π`s	
	where			
		ż π´s		
	J 1 ≔			
		´π`s ż π´s		
	J 2 ≔ .	´π`s	pT ´srr gs ´gq 2 dµ β
		ż 0		
	J 2 "	´π`s		

pgpx ´sq ´gpxqq 2 µ β pdxq `ż π´s 0 pgpx `sq ´gpxqq 2 µ β pdxq.

3.3 Estimate of L α,β r1s in the cases 1 ă p ă 2

  It follows, recalling our assumption βs ď σppq, that |exppβrU p pxq ´Up pψ `pxqqsq ´1 ´βrU p pxq ´Up pψ `pxqqs| ď β 2 rU p pxq ´Up pψ `pxqqs 2 2 expp2π 2 βsq ď 2π 4 β 2 expp2π 2 σppqqs 2 . pxq ´Up pψ `pxqq `sU 1 p pxqpψ `pxq ´yq p´1 ˇˇď 2π 3 s 2 . K p βs p `2π 3 βp1 `πA `π expp2π 2 σppqqβqs 2 .

	p ď pπ p´1 spψ `pxq ´yq p´1 › › 8 |x ´ψ`p xq| ď pπ 2pp´1q s ď 2π 2 s. p pxqpx ´ψ`p xqq ˇˇď ˇˇU p pxq ´Up pψ `pxqq ´U 1 In addition we have, › › U 2 p › › 8 2 px ´ψ`p xqq 2 . In view of (35) and taking into account that ş U 2 p dλ " 0, we have › › U 2 p › › 8 ď 2ppp ´1q }ν} 8 ż π 0 u p´2 du 2π " 2pπ p´1 p1 `πAq. So we get, @ u, v ě 0, @ p P p1, 2q, ˇˇu p´1 ´vp´1 ˇˇď |u ´v| p´1 , it appears that ˇˇpψ `pxq ´yq p´1 ´px ´yq p´1 ˇˇď |ψ `pxq ´x| p´1 " |ψ `pxq ´y| pp´1q 2 s p´1 ď π pp´1q 2 s p´1 , so we can deduce that ˇˇexppβrU p pxq ´Up pψ `pxqqsq ´1 `βsU 1 p pxqpx ´yq p´1 ˇď (44) pπ p From the latter bound and (43), we obtain a constant Kpp, Aq ą 0 depending only on p P p1, 2q and A ą 0, such that p s ˇˇˇˇż x x´ψ 1 `pxq exppβrU p pxq ´Up pψ `pxqqsq ´p1 `spp ´1q px ´yq 2´p qp1 ´βsU 1 p pxqpx ´yq p´1 q νpdyq ˇˇˇď Kpp, Aq ˜βs p´1 `β2 s `s ż x x´p x ´yq 2pp´2q νpdyq ¸. (45) This leads us to upper bound ż x x´p x ´yq 2pp´2q νpdyq ď }ν} 8 2π ż x x´p x ´yq 2pp´2q dy ď 1 `Aπ 2π ż π´π p´1 s κps 1 2´p y 2pp´2q dy, with κ p ≔ pp ´1q p´1 2´p ´pp ´1q 1 2´p . (46) An immediate computation gives, for p P p1, 2q, a constant κ 1 p ą 0 such that for any s P p0, σppqq, ż π´π p´1 s 1 ˇˇU Finally, using the inequality κps 2´p

2 K p2p´3q p `p ´1ss 2 px ´yq 2pp´2q . (43) We now come to the term exppβrU p pxq ´Up pψ `pxqqsq. First we remark that |U p pxq ´Up pψ `pxqq| ď › › U 1 p pxq ´Up pψ `pxqq ´U 1 p pxqpx ´ψ`p xqq ˇˇď 2πp1 `πAqpx ´ψ`p xqq 2 ď 2πp1 `πAqs 2 pψ `pxq ´yq 2pp´1q ď 2π 3 p1 `πAqs 2 , namely ˇˇU p

  P p1, 2q, such that for s P p0, σppqq, max p|U p pxq ´Up pψ `pxqq| , |U p pxq ´Up pψ ´pxqq| , |U p pxq ´Up pϕ ´pxqq|q ď κ 2 p s

	1	1		
	2´p s y ´s 1 2´p 2´p	ă ϕ ´pxq ă y ă ψ ´pxq ă y ´pp ´1q	1 2´p s	1 2´p
	(recall that p u `" y `kp s depending only on p 1 1 2´p with k p defined in (41)). It follows that we can find a constant κ 2 p ą 0,
					2´p
					ď κ 2 p pσppqq	p´1 2´p s.

  the last integral is equal to ˇˇψ `px, xq ´ψ`p x, x ´κp s `, we have ψ `px, xq " x and it appears that the quantity ζ ≔ ψ `px, x ´κp s

	1 spp ´1q Checking that J 4 " px ´κp s ż J 4 ˇˇpψ `px, yq ´yq 2´p B y ψ `px, yq ˇˇdy ď ď 1 2´p , xq, 1 1 spp ´1q ż J 4 pk p s 1 2´p q 2´p |B y ψ `px, yq| dy ż k 2´p p J 4 |B y ψ `px, yq| dy. pp ´1q 2´p q ˇˇ. By definition of ψ 1 2´p

  Bpy,π´π p´1 sq pexppβrU p pxq ´Up pψ ε pxqqsq ´1q 2 pψ 1 ε pxqr g y pψ ε pxqqq 2 µ β pdxq J 2 pyq ≔ ż Bpy,π´π p´1 sq pψ 1 ε pxqq 2 pr g y pψ ε pxqq ´gy pxqq 2 µ β pdxq

		ż	
	J 3 pyq ≔	Bpy,π´π p´1 sq	pψ 1 ε pxq ´1q 2 g 2 y pxq µ β pdxq.

18. Thus we are led to the decomposition ż Bpy,π´π p´1 sq pT ẙ,s rr g y spxq ´gy pxqq 2 µ β pdxq ď 3J 1 pyq `3J 2 pyq `3J 3 pyq, where J 1 pyq ≔ ż

  d 2pp´2q pψ ε pxq, yq dy.

		3 pyq " ď ď	ż Bpy,π´π p´1 sq ż pp ´1q 2 p2 ´pq 2 s 2 Bpy,π´π p´1 sq ˆspp ´1qd p´2 pψ ε pxq, yq 1 ´spp ´1qd p´2 pψ ε pxq, yq d 2pp´2q pψ ε pxq, yqg 2 ˙2 g 2 y pxq µ β pdxq y pxq µ β pdxq ż π 2pp´1q pp ´1q 2 s 2 p2 ´pq 2 Bpy,π´π p´1 sq
	T	J 3 pyq νpdyq ď ď	1 `πA 2π 1 `πA 2π	π 2pp´1q pp ´1q 2 p2 ´pq 2 π 2pp´1q pp ´1q 2 p2 ´pq 2	s 2 s 2	ż T ż T	ż µ β pdxq f 2 pxq dy Bpy,π´π p´1 sq ż T	d 2pp´2q pψ ε pxq, yqf 2 pxq µ β pdxq 1 1 " dpψεpxq,yqěs 2´p
	But for any fixed z P R{p2πZq, we compute that ż	ż π
		T	1 " dpz,yqěs	1 2´p	* d 2pp´2q pz, yq dy " 2	s	1 2´p

d 2pp´2q pψ ε pxq, yqf 2 pxq µ β pdxq.

Next, recalling that }ν} 8 ď 1 `πA and that dpψ ε pxq, yq ě s 1 2´p for any x P Bpy, π ´πp´1 sq, it appears that ż *

  αt,βt rf t ´1s f t dµ βt , where L αt,βt , described in the previous section, is the instantaneous generator at time t ě 0 of X. The interest of the estimate of Proposition 22 comes from the decomposition of the previous term into ż L αt,βt rf t ´1s pf t ´1q dµ βt `ż L αt,βt rf t ´1s dµ βt " ż L αt,βt rf t ´1s pf t ´1q dµ βt `ż pf t ´1qL αt,βt r1s dµ βt ď ż L αt,βt rf t ´1s pf t ´1q dµ βt `aI t b µ βt rpL αt,βt r1sq 2 s. Lemma 25 There exist a constant c 3 pp, Aq ą 0, depending on p ě 1 and A ą 0 and a constant r σppq P p0, 1{2q, such that for any α ą 0 and β ě 1 such that αβ 2 ď r σppq, we have, for any f P C 2 pTq, ż L α,β rf ´1s pf ´1q dµ β ď ´ˆ1 2 ´c3 pp, Aqα r appq β 3 ˙ż pBf q 2 dµ β `c3 pp, Aqα r appq β 3 ż pf ´1q 2 dµ β , where r appq is defined in Proposition 23.

	2 , we would get, by the L It follows that to prove Proposition 23, it remains to treat the first term in the above r.h.s. A first martingale problem satisfied by the law of X, that ż ˆmt µ βt ´1˙B t m t dλ " ż L αt,βt rf t ´1s dm t " ż step is:

  2 dµ β ˙. (59)By definition, we have for any f P C 2 pTq (but what follows is valid for f P C 1 pTq), pdxqpT y,su rf 1 spxq ´f 1 pxqqpf pxq ´1qd p´1 px, yq 9 γpx, y, 0q

	Writing s ≔ pp{2qαβ and considering again the operators introduced in (30) (now for any p ě 1), it follows that ż
	R α,β rf ´1s pf ´1q dµ β " ż 1 ż ż pβ 2 0 du νpdyq µ β " ż 1 ż ż pβ 2 0 du νpdyq µ β pdxqpT y,su rf 1 spxq ´f 1 pxqqg y pxq,		
	where for any fixed y P T, @ x P Tztyu,			g y pxq ≔ pf pxq ´1qd p´1 px, yq 9 γpx, y, 0q		
	@ x P T,	R α,β rf spxq "	1 α	ż	f pγpx, y, pp{2qαβd p´1 px, yqqq ´f pxq νpdyq	`β 2	U 1 p pxqf 1 pxq.
	To evaluate this quantity, on one hand, recall that we have for any x P T, U 1 p pxq " ´p ż		

T d p´1 px, yq 9 γpx, y, 0q νpdyq and on the other hand, write that for any x P T and y P Tztxu, f pγpx, y, pp{2qαβd p´1 px, yqqq ´f pxq " p 2 αβ ż 1 0 f 1 pγpx, y, pp{2qαβdpx, yquqqd p´1 px, yq 9 γpx, y, 0q du.

  the density of ν with respect to λ is bounded by 1 `Aπ, it appears that The Cauchy-Schwarz inequality and integration with respect to 1 r0,1s puqdu lead again to a bound contributing to (59).It is time to consider the cases where p P r1, 2q. We will rather decompose the l.h.s. of (61) into three parts. Let us extend the notation r u ˘≔ y ˘psuq 1 2´p from Subsection 3.3 to all p P r1, 2q. Next we modify the definition (60) by introducing r g y pxq ≔ 1 ry´π,r u ´s\rr u `,y`πs pxqg y pxq. Then we write ż pT y,su rf 1 spxq ´f 1 pxqqg y pxq µ β pdxq " r I 1 py, uq `I2 py, uq `I3 py, uq, Bpy,π´suπ p´1 q f 1 pxqpT ẙ,su rr g y spxq ´gy pxqq µ β pdxq I 2 py, uq ≔ ´żBpy 1 ,suπ p´1 q f 1 pxqg y pxq µ β pdxqI 3 py, uq ≔ ż rr u ´,r u `s T y,su rf 1 spxqg y pxq µ β pdxq.The treatment of r I 1 py, uq is similar to that of I 1 py, uq, with Lemmas 15 and 19 (where a preliminary integration with respect to νpdyq was necessary) replacing Lemmas 11 and 21. Concerning I 2 py, uq, it is bounded in the same manner as the corresponding quantity defined in (62). It seems that the most convenient way to deal with I 3 py, uq is to first integrate it with respect to 1 r0,1s puq νpdyqdu. Taking into account that }ν} 8 ď p1 `Aπq and using Cauchy-Schwarz inequality, ´,r u `spxqpT y,su rf 1 spxqq 2 1 r0,1s puq µ β pdxqdydu d ż 1 rr u ´,r u `spxqg 2 y pxq1 r0,1s puq µ β pdxqdydu.´,r u `spxqT y,su rpf 1 q 2 spxqµ β pxq1 r0,1s puq dydu (where as a function, µ β stands for the density of the measure µ β with respect to λ). Remember that for any measurable function h, we have T y,su rhspxq ≔ hpx`sud p´1 px, yq 9 γpx, y, 0qq. For x P rr u ´, r u `s, p´1 , we can then a universal constant k ą 0 such that for 0 ď sβ ď r σppq (for an appropriate constant r σppq P p0, 1{2q) and x P T, we have µ β pxq{µ β px `sud p´1 px, yq 9 γpx, y, 0qq ď k. This leads us to consider the function h defined by @ x P T, hpxq ≔ pf 1 pxqq 2 µ β pxq, (66) since up to a universal constant, we have to find an upper bound of ż 1 rr u ´,r u `spxqT y,su rhspxq1 r0,1s puq dxdydu ď

	where account that	› › U 1 p	› ›	r I 1 py, uq ≔ 8 ď π ż π ´π dx ż ż T " Hpvqhpvq dv, ż x`s 1 2´p x´s 1 2´p	dy	ż x`sd p´1 px,yq x´sd p´1 px,yq	hpvq	dv sd p´1 px, yq
	where for any fixed v P T, Hpvq ≔	1 s	ż	T 2	1 " dpx,yqďs	1 2´p , dpv,xqďsd p´1 px,yq *	dxdy d p´1 px, yq	.
	Let us furthermore fix x P T, 1 s ż T 1 " pdpv,xq{sq 1 p´1 ďdpx,yqďs	1 2´p	*	dy d p´1 px, yq	"	2 p2 ´pqs	˜s	s ´ˆdpv, xq	p´1 ˙2´p	¸`.
	we get												
	ż 1 rr u The last factor can be rewritten under the form |I 3 py, uq| 1 r0,1s puq νpyqdu ď ż 1 `Aπ 2π |I 3 py, uq| 1 r0,1s puq dydu ď d ż 1 `Aπ 2π
	d ż	µ β pdxq	ż	1	rx´s	1 2´p ,x`s	1 2´p s	pyqg 2 y pxq dy ď π p´1 b	g f f e	ż 1	µ β pdxqpf pxq ´1q 2 d ż	1 2´p 1 2´p ż x`s x´s	dy
														" π	2s	2´p	pf ´1q 2 dµ β .	(64)
	ż So it remains to consider the term |I 2 py, uq| νpdyq ď 1 `Aπ 2π ż ď 1 `Aπ 2π ď 1 `Aπ 2 1 rr u ´,r u `spxqpT y,su rf 1 spxqq 2 1 r0,1s puq µ β pdxqdydu ż π ´π |I 2 py, uq| dy ż T dy ż Bpy 1 ,suπ p´1 q ˇˇf 1 pxq ˇˇ|g y pxq| µ β pdxq π p´2 ż T µ β pdxq ˇˇf 1 pxq ˇˇ|f pxq ´1| ż Bpx 1 ,suπ p´1 q ż " ż 1 2π 1 rr u 3´p 1 dy " p1 `Aπqπ 2p´3 su 2´p . Taking into (63) (65)

T ˇˇf 1 ˇˇ|f ´1| dµ β .

we have dpx, yq ď psuq 1 2´p and it follows that dpx, x`sud p´1 px, yq 9 γpx, y, 0qq ď psuq

  2 t ď ςppq, ż L αt,βt rf t ´1s pf t ´1q dµ βt ď ´c4 β ´3 t expp´bpU p qβ t q ´1 ´2c 3 pp, Aqαwhere c 4 ≔ p16π 3 C T q ´1 and c 5 pp, Aq ≔ c 3 pp, Aqp1 `2c 4 q.Taking into account Lemma 24, the computations preceding Lemma 25 and Proposition 22, one can find constants c 1 pp, Aq, c 2 pp, Aq ą 0 and ςppq P p0, 1{2q such that Proposition 23 is satisfied. This result leads immediately to conditions insuring the convergence toward 0 of the quantity I t for large times t ą 0: Proposition 27 Let α : R `Ñ R ˚and β : R `Ñ R `be schemes as at the beginning of this section and assume:

					r appq t	β 3 t ¯It `c3 pp, Aqα appq r t	β 3 t I t
	ď ´pc 4 β ´3 t expp´bpU p qβ t q ´c5 pp, Aqα appq r t	β 3 t qI t ,
	ż `8 0	lim tÑ`8 p1 _ β t q ´3 expp´bpU p qβ t q dt " β t "	`8 `8
	and that for large times t ą 0, max !	α appq t	β 4 t , α appq r t	β 3 t , ˇˇβ 1

t

ˇˇ)

! expp´bpU p qβ t q (where appq ą 0 and r appq ą 0 are defined in Propositions 22 and 23). Then we are assured of lim tÑ`8

  Let us deduce (4) for any neighborhood N of the set M p of the global minima of U p . From Cauchy-Schwartz inequality we have for any t ą 0, }m t ´µβt } tv "

			1, we get
	lim tÑ`8	I t " 0.
			ż
		ď	|f t ´1| µ βt a I t .

An equivalent definition of the total variation norm states that

}m t ´µβt } tv " 2 max APT |m t pAq ´µβt pAq|

where T is the Borelian σ-algebra of T. It follows that (4) reduces to lim βÑ`8

  The first term of the r.h.s. is equal to U 2,κ pxq{κ and is bounded by }U 2,κ } 8 {κ ď π 2 {κ. In absolute value, the second term can be written under the form

	ż		ż z´1{κ			ż		ż z´1{κ
	2πκ	νpdzq	z´1{κ	λpdyq d 2 px, yqdpy, zq ď 2π 3 κ	νpdzq	z´1{κ	λpdyq |y ´z|
				"	2π 3 κ	.	
								ż y´1{κ
								νpdzq dpy, zq.
								y´1{κ

2,κ pxq " B κ ˆ2πκ ż λpdyq d 2 px, yq ż T p1 ´κdpy, zqq `νpdzq " 2π ż λpdyq d 2 px, yq ż T νpdzq p1 ´κdpy, zqq `´2πκ ż λpdyq d 2 px, yq

  still holds. From Lemma 6 and the first part of Lemma 30, it appears that[START_REF] Mckilliam | Direction estimation by minimum squared arc length[END_REF] has to be replaced by Instead of[START_REF] Miclo | Recuit simulé sans potentiel sur une variété riemannienne compacte[END_REF], we deduce that for any x, y P T and α, β and κ as in the statement of the proposition, pxqpy ´xq `Opα 2 β 3 pβ `κqq.

			@ κ ě 1,	› › U 2 2,κ	› ›	8 ď 4πκ.
	exp	ˆβ " U 2,κ pxq ´U2,κ ˆx	´αβ 1 ´αβ	py ´xq ˙˙"	1	`αβ 2 1 ´αβ	U 1 2,κ

  ≔ 1 p1 `tq ρ ´C3 pα t β 2 t pβ t `κt q `ˇβ 1 t ˇˇ`β t ˇˇplnpκ t qq 1 ˇˇq ǫ t ≔ C 3 pα t β 2 t pβ 2 t `κ2 t q `ˇβ 1 t ˇˇ`β t ˇˇplnpκ t qq 1 ˇˇq.Under the assumptions of Theorem 2 (already partially used to ensure the validity of (72) for some ρ P p0, 1q), it appears that as t goes to infinity,

	1 p1 `tq ρ ǫ t " O η t " `t ˆ1 1	ȧnd
	this is sufficient to ensure that	
	lim tÑ`8	

1 t ď ´ηt I t `ǫt a I t ,

where for any t ě T , η t
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stands for the law of X t , for any t ě 0. So for fixed t ą 0, let T t be the largest jump time of N pαq in the interval r0, ts, with the convention that T t " 0 if there is no jump time in this interval. Denote by ξ t the law of pT t , X Tt q on r0, ts ˆT. Furthermore, let P s px, dyq be the law at time s ě 0 of the Brownian motion on T, starting at x P T. From the construction given in the introduction, we have for any t ą 0, m t pdxq " ż r0,tsˆT ξ t pds, dzq P t´s pz, dxq.

(73)

An immediate consequence is:

Lemma 37 Let t ą 0 be fixed. About the measurable evolutions α : R `Ñ R ˚and β : R `Ñ R `, only assume that inf sPr0,ts α s ą 0. Then, whatever the probability measure ν entering in the definition of X, we have that m t is absolutely continuous.

Proof

By the hypothesis on α, 0 is the unique atom of ξp¨, Tq, the distribution of T t (its mass is ξ t pt0u, Tq " expp´ş t 0 1{α s dsq) and ξp¨, Tq admits a bounded density on p0, ts. Since furthermore for any s ą 0 and z P T, P s pz, ¨q is absolutely continuous, the same is true for m t due to (73).

To go further, we need to strengthen the assumption on ν.

Lemma 38 In addition to the hypotheses of the previous lemma, assume that ν admits a bounded density and that inf sPr0,ts β s ą 0. Then for any t ą 0, the density of m t belongs to C 1 pTq.

Proof

We begin by recalling a few bounds on the heat kernels P s px, dyq, for s ą 0 and x P T. We have already mentioned they admit a density, namely they can be written under the form p s px, yq dy. Since the Brownian motion on T is just the rolling up of the usual Brownian motion on R, we have for any x P T, @ y P px ´π, x `πs, p s px, yq "

From a general bound due to Hsu [START_REF] Hsu | Estimates of derivatives of the heat kernel on a compact Riemannian manifold[END_REF], we deduce that there exists a constant C 0 ą 0 such that for any s ą 0 and y P px ´π, x `πs, we have

To get an upper bound on p s px, yq " p s p0, y ´xq, consider separately in (74) the sums of n P Z σ and n P Z ´σ zt0u, where σ P t´, `u is the sign of y ´x.