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Abstract

A stochastic algorithm is proposed, finding some elements from the set of intrinsic p-mean(s)
associated to a probability measure ν on a compact Riemannian manifold and to p P r1,8q. It is
fed sequentially with independent random variables pYnqnPN distributed according to ν, which is
often the only available knowledge of ν. Furthermore the algorithm is easy to implement, because
it evolves like a Brownian motion between the random times when it jumps in direction of one
of the Yn, n P N. Its principle is based on simulated annealing and homogenization, so that
temperature and approximations schemes must be tuned up (plus a regularizing scheme if ν does
not admit a Hölderian density). The analysis of the convergence is restricted to the case where the
state space is a circle. In its principle, the proof relies on the investigation of the evolution of a
time-inhomogeneous L2 functional and on the corresponding spectral gap estimates due to Holley,
Kusuoka and Stroock. But it requires new estimates on the discrepancies between the unknown
instantaneous invariant measures and some convenient Gibbs measures.
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1 Introduction

The purpose of this paper is to present a stochastic algorithm finding some of the geometric p-means
of probability measures defined on compact Riemannian manifolds, for p P r1,8q. Its convergence
is analyzed in the restricted case of the circle, as a first step toward a more general result which is
conjectured to be true.

1.1 The general notion of p-means

The concepts of mean and median are well-understood for real valued random variables. They can
be extended to random variables taking values in metric spaces in the following way. Let be given
ν a probability measure on a metric space M , whose distance is denoted d. For p ě 1, consider
the continuous mapping

Up : M Q x ÞÑ
ż
dppx, yq νpdyq. (1)

A global minimum of Up is called a p-mean of ν, at least if this function is not identically equal to
`8 (equivalently, if all its values are finite, as it can be easily deduced from the triangle inequality).
The set of p-means will be designated by Mp, it is non-empty as soon as Up goes to infinity at
infinity (in the Alexandroff sense), but in general it is not reduced to a singleton. The notion of
intrinsic mean and median correspond respectively to p “ 2 and p “ 1. If M is R endowed with
its absolute value, one recovers the usual mean and distance.

These extensions are justified by the increasing number of available graph or manifold valued
data samples in various scientific fields. Examples of manifold valued data samples are given by
sets of parameters for families of laws endowed with Fisher information metric, by Lie groups
(rotations, displacements) in control theory, by symmetric spaces in imaging or signal processing.

For some applications (see for instance Pennec [26]), it may be important to find Mp or at
least some of its elements. In practice the knowledge of ν is often given by a finite sequence
Y ≔ pYnqnPt1,2,...,Nu of independent random variables, identically distributed according to ν. Since
N P N is in general large enough, we will consider the limit situation where we have at our disposal
an infinite sequence Y ≔ pYnqnPN. One is then looking for algorithms using this data and enabling
to find some elements of Mp. In this paper we will be mainly interested in the case where M is
the circle, even if the proposed stochastic algorithm can be considered more generally for compact
Riemannian manifolds.

Algorithms for finding p-means or minimax centers have been investigated in [20], [27], [12],
[13], [6], [28], [7], [1], [2], [8], [5]. When possible a gradient descent algorithm is used. When the
gradient of the functional to minimize is difficult or impossible to compute, a Robbins Monro type
algorithm is prefered. Either the functional to minimize has only one local minimum which is also
global, or ([7]) a local minimum is seeked. The case of Karcher means in the circle is treated in [10]
and [16]. In this special situation the global minimum of the functional can be found by explicit
formula.

For generalized means on compact manifolds the situation is different since the functional (1)
to minimize may have many local minima, and no explicit formula for a global minimum can be
expected.

1.2 The case of the circle

In this subsection we consider the case where M is the circle T ≔ R{p2πZq endowed with its
natural angular distance d. As above, let Y ≔ pYnqnPN be a sequence of independent random
variables distributed according to a fixed probability measure ν on T. Let p P r1,`8q be fixed, we
present now a stochastic algorithm finding some elements of Mp by using this data. It is based
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on simulated annealing and homogenization procedures. Thus we will need respectively an inverse
temperature evolution β : R` Ñ R` and an inverse speed up evolution α : R` Ñ R

˚
`, where

R
˚
` stands for the set of positive real numbers. Typically, they are respectively non-decreasing

and non-increasing and we have limtÑ`8 βt “ `8 and limtÑ`8 αt “ 0, but we are looking for
more precise conditions so that the stochastic algorithm we describe below finds Mp (namely, some
elements from this set).
Let N ≔ pNtqtě0 be a standard Poisson process: it starts at 0 at time 0 and has jumps of length 1
whose interarrival times are independent and distributed according to exponential random variables
of parameter 1. The process N is assumed to be independent from the sequence Y . We define the

speeded-up process N pαq
≔ pN pαq

t qtě0 via

@ t ě 0, N
pαq
t ≔ Nşt

0

1

αs
ds
. (2)

Consider the time-inhomogeneous Markov processX ≔ pXtqtě0 which evolves inM in the following
heuristic way: if T ą 0 is a jump time of N pαq, then X jumps at the same time, from XT´ to
XT which is obtained by following the shortest geodesic leading from XT´ to Y

N
pαq
T

at speed 1

during the time pp{2qβTαT dp´1pXT´ , YNpαq
T

q Almost surely, the above shortest geodesic is unique

and there is no problem with its choice. Indeed, by the end of the description below, XT´ will be
independent of Y

N
pαq
T

and the law of XT´ will be absolutely continuous with respect to the Lebesgue

measure λ on T renormalized into a probability measure. It ensures that almost surely, Y
N

pαq
T

is

not the opposite point of XT´ on T. The schemes α and β will satisfy limtÑ`8 αtβt “ 0, so that
for sufficiently large jump-times T , XT will be between XT´ and Y

N
pαq
T

on the above geodesic and

quite close to XT´.
To proceed with the construction, we require that between consecutive jump times (and between
time 0 and the first jump time), X evolves as a Brownian motion on T and independently of Y
and N . Very informally, the evolution of the algorithm X can be summarized by the equation

@ t ě 0, dXt “ dBt ` pp{2qαtβtdp´1pXT´ , YNpαq
T

qσpXt´, YNpαq
t

q dN pαq
t ,

where pBtqtě0 is a Brownian motion on T and where σpXt´, YNpαq
t

q is 1 (respectively ´1) if the

shortest way from Xt´ to Y
N

pαq
t

goes in the anti-clock wise (resp. the clock-wise) direction, in the

usual representation of R{p2πZq in C. In the above equation, pY
N

pαq
t

qtě0 should be interpreted

as a fast auxiliary process. The law of X is then entirely determined by the initial distribution
m0 “ LpX0q. More generally at any time t ě 0, denote by mt the law of Xt.

The first main result of this paper states that at least if ν is sufficiently regular, the above
algorithm X finds in probability at large times the set Mp of p-means:

Theorem 1 Assume that ν admits a density with respect to λ and that this density is Hölder
continuous with exponent a P p0, 1s. Then there exist two constants ap ą 0, depending on p ě 1
and a, and bp ě 0, depending on p, such that for any scheme of the form

@ t ě 0,

#
αt ≔ p1 ` tq´ 1

ap

βt ≔ b´1 lnp1 ` tq
, (3)

where b ą bp, we have for any neighborhood N of Mp and for any m0,

lim
tÑ`8

PrXt P N s “ 1. (4)

Thus to find an element of Mp with an important probability, one should pick up the value of Xt

for sufficiently large times t.
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The constant ap is the simplest to define, since it is given by

appq ≔
"
a , if p “ 1 or p ě 2
minpa, p ´ 1q , if p P p1, 2q. (5)

The constant bp ě 0 comes from the theory of simulated annealing (see for instance Holley, Kusuoka
and Stroock [15]), which will be recalled in next section. For the moment being, we just describe the
constant bp, in the setting of a compact Riemannian manifold M , since there is no extra difficulty
and we will need it later on to express a conjecture extending Theorem 1. For any x, y P M , let Cx,y
be the set of continuous paths C ≔ pCptqq0ďtď1 going from Cp0q “ x to Cp1q “ y. The elevation
UppCq of such a path C relatively to Up is defined by

UppCq ≔ max
tPr0,1s

UppCptqq

and the minimal elevation Uppx, yq between x and y is given by

Uppx, yq ≔ min
CPCx,y

UppCq.

Then we consider

bpUpq ≔ max
x,yPM

Uppx, yq ´ Uppxq ´ Uppyq ` min
M

Up. (6)

This constant can also be seen as the largest depth of a well not containing a fixed global minimum
of Up. Namely, if x0 P Mp, then it is not difficult to see that

bpUpq “ max
yPM

Uppx0, yq ´ Uppyq, (7)

independently of the choice of x0 P Mp (cf. Holley, Kusuoka and Stroock [15]).
Let us now describe a stochastic algorithm, derived from the previous one, which enables one

to find some of the p-means of any probability measure ν on T.
For any x P T and κ ą 0, consider the probability measure Kx,κ whose density with respect to

the Lebesgue measure λpdyq is proportional to p1 ´ κ }y ´ x}q`. Assume next that we are given
an evolution κ : R` Q t ÞÑ κt P R

˚
` and consider the process Z ≔ pZtqtě0 evolving similarly to

pXtqtě0, except that at the jump times T of N pαq, the target Y
N

pαq
T

is replaced by a point WT

sampled from KY
N

pαq
T

,κT , independently from the other variables.

Theorem 2 Let ν be an arbitrary probability measure on M “ T. For p “ 2, consider the schemes

@ t ě 0,

$
&
%

αt ≔ p1 ` tq´c

βt ≔ b´1 lnp1 ` tq
κt ≔ p1 ` tqk

,

with b ą bpU2q, k ą 0 and c ě 2k ` 1. Then, for any neighborhood N of M2 and for any initial
distribution LpZ0q, we get

lim
tÑ`8

PrZt P N s “ 1,

where P stands for the underlying probability.

More generally, for any given p ě 1, it is possible to find similar schemes (where c depends
furthermore on p ě 1) enabling to find the set of p-means Mp (see Remark 36). Even if ν satisfies
the condition of Theorem 1, it could be more advantageous to consider the alternative algorithm
Z instead of X when the exponent a in (3) is too small.
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Remark 3 The schemes α, β and κ presented above are simple examples of admissible evolutions,
they could be replaced for instance by

@ t ě 0,

$
&
%

αt ≔ C1pr1 ` tq´c

βt ≔ b´1 lnpr2 ` tq
κt “ C2pr3 ` tqk

,

where C1, C2 ą 0, r1, r3 ą 0, r2 ě 1 and still under the conditions b ą bpUpq, k ą 0 and c ě 2k` 1.
It is possible to deduce more general conditions insuring the validity of the convergence results of
Theorems 1 and 2 (see e.g. Proposition 27 below).

˝

How to choose in practice the exponents c and k satisfying c ě 2k ` 1 in Theorem 2? We note
that the larger c, the faster α goes to zero and the faster the algorithm Z is using the data pYnqnPN.
In compensation, k can be chosen larger, which means that ν is closer to its approximation by its
transport through the kernel K¨,κtp¨q (defined before the statement of Theorem 2, for more details
see Section 5), namely the convergence will be more precise. This is quite natural, since more
data have been required at some fixed time. So in practice a trade-off has to be made between the
number of i.i.d. variables distributed according to ν one has at his disposal and the quality of the
approximation of Mp.

1.3 Numerical illustration

The algorithm X (and similarly for Z) is not so difficult to implement. Let us identify T with
p´π, πs and construct Xt for some fixed t ą 0. Assume we are given pYnqnPN, pαsqsPr0,ts, pβsqsPr0,ts

and X0 as in the introduction. We need furthermore two independent sequences pτnqnPN and
pVnqnPN, consisting of i.i.d. random variables, respectively distributed according to the exponential
law of parameter 1 and to the Gaussian law with mean 0 and variance 1. We begin by constructing
the finite sequence pTnqnPJ0,NK corresponding to the jump times of N pαq: let T0 ≔ 0 and next

by iteration, if Tn was defined, we take Tn`1 such that
şTn`1

Tn
1{αs ds “ τn`1. This is done until

TN ą t, with N P N, then we change the definition of TN by imposing TN “ t. Next we consider
the sequence p qXn, pXnqnPJ0,NK constructed through the following iteration (where the variables are

reduced modulo 2π): starting from qX0 ≔
pX0 ≔ X0, if pXn was defined, with n P J0, N ´ 1K, we

consider

qXn`1 ≔
pXn `

a
Tn`1 ´ TnVn`1. (8)

Next we define

pXn`1 ≔
qXn`1 ` pp{2qαTn`1

βTn`1
|Wn`1|p´2 Vn`1, (9)

where Wn`1 is the representative of Yn`1 ´ qXn`1 in p´π, πs modulo 2π. Then qXN has the same
law as Xt.

Theorems 1 and 2 provide theoretical results at very large times, but in practice, one has to
work with a finite horizon t, for which the best corresponding scheme β may not be of the form of
those given in these theorems (see the lectures of Catoni [9] for the classical simulated annealing
algorithm). Thus the previous theorems should only be seen as indications of what could be tried
in practice. Let us illustrate that by some numerical simulations. On the circle, still identified
with p´π, πs, consider the probability distribution ν “ pδ0 ` δπq{2. A priori we should resort to
Theorem 2, but let us just “apply” Theorem 1 with a “ 1, namely with the scheme

@ t ě 0, αt ≔
1

1 ` t
.
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For p “ 1 the function U1 is constant, meaning that the set of medians M1 is the whole circle. For
p ą 1, the function Up admits two global minima, Mp “ t´π{2, π{2u, and two global maxima, 0
and π. It is easy to see that bpUpq “ πpp1 ´ 21´pq, so that we can take for instance

@ t ě 0, βt ≔
2

πpp1 ´ 21´pq lnp1 ` tq,

(for p “ 1, the factor in front of the logarithm can be chosen freely, one could even choose
the scheme β to be constant). With the above notations, let pYnqnPN, pτnqnPN and pVnqnPN be
independent sequences consisting of i.i.d. random variables, respectively distributed according to
the uniform law on t0, πu, to the exponential law of parameter 1 and to the Gaussian law with
mean 0 and variance 1. Let t ą 0 be fixed. The finite sequence pTnqnPJ0,NK is constructed through
the recurrence T0 “ 100 and

@ n P J0, N ´ 1K, Tn`1 ≔

a
pTn ` 1q2 ` τn`1 ´ 1

until TN ą t. Starting from qX0 ≔
pX0 ≔ 0, we consider the sequence p qXn, pXnqnPJ0,NK defined via

(8) and (9). The following histograms of the distribution of qXN correspond to p “ 1.1 and p “ 2
and t “ 200 and t “ 400 and they are obtained with 100 samples of the procedure described above.

Figure 1: p “ 2 and t “ 200 Figure 2: p “ 2 and t “ 400

Figure 3: p “ 1.1 and t “ 200 Figure 4: p “ 1.1 and t “ 400

It appears that as time goes on, there is a tendency to concentrate on the set of means t´π{2, π{2u,
but that this is more difficult to achieve for small p ą 1, due to the fact that in the limit case
p “ 1, one is trying to sample according to the uniform distribution on p´π, πs.

The next picture is plotting a typical trajectory (observed at the jump times), with p “ 2,
t “ 400 and for which the simulation gave N “ 150366 (close to 4002 ´ 1002). It should be
emphasized that if instead of using 100 samples in a Monte-Carlo procedure as above, one rather
resorts to the empirical measure generated by one trajectory, one would get similar histograms.
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Figure 5: A trajectory for p “ 2 and t “ 400

1.4 The conjecture for Riemannian manifolds

The description of the algorithm given in Subsection 1.2 can be extended to any compact Rieman-
nian manifold M endowed with its distance d. For general books on Riemannian geometry, we
refer to [14].

As above, let Y ≔ pYnqnPN be a sequence of independent random variables distributed according
to a fixed probability measure ν on M . Let p P r1,`8q be fixed. We also need an inverse temper-
ature evolution β : R` Ñ R` and an inverse speed up evolution α : R` Ñ R

˚
`, which typically

will be non-decreasing and non-increasing and satisfying limtÑ`8 βt “ `8 and limtÑ`8 αt “ 0.

We consider again the speeded-up process N pαq
≔ pN pαq

t qtě0 via

@ t ě 0, N
pαq
t ≔ Nşt

0

1

αs
ds
.

where N ≔ pNtqtě0 be a standard Poisson process independent from Y . The time-inhomogeneous
Markov process X ≔ pXtqtě0 evolves in M in the following heuristic way: if T ą 0 is a jump time
of N pαq, then X jumps at the same time, from XT´ to

XT ≔ expXT´
ppp{2qβTαTdp´2pXT´ , YNpαq

T

qÝÝÝÝÝÝÑ
XT´YNpαq

T

q.

By definition the latter point is obtained by following during a time s ≔ pp{2qβTαTdp´2pXT´ , YNpαq
T

q
the shortest geodesic leading from XT´ to Y

N
pαq
T

at time 1 (and thus may not really correspond to

an image of the exponential mapping if s is not small enough). The schemes α and β will satisfy
limtÑ`8 αtβt “ 0, so that for sufficiently large jump-times T , XT will be between XT´ and Y

N
pαq
T

on the above geodesic and quite close to XT´. Almost surely, the above shortest geodesics are
unique and there is no problem with their choices in the previous construction. Indeed, by the end
of the description below, XT´ will be independent of Y

N
pαq
T

and the law of XT´ will be absolutely

continuous with respect to the Riemannian probability λ, namely the volume measure standardized
to total volume one. It ensures that almost surely, Y

N
pαq
T

is not in the cut-locus of XT´ (which is

negligible with respect to λ) so that there is only one shortest geodesic from XT´ to Y
N

pαq
T

. To
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proceed with the construction, we require that between consecutive jump times (and between time
0 and the first jump time), X evolves as a Brownian motion, relatively to the Riemannian structure
of M (see for instance the book of Ikeda and Watanabe [19]) and independently of Y and N . Very
informally, the evolution of the algorithm X can be summarized by the equation (in the tangent
bundle TM)

@ t ě 0, dXt “ dBt ` pp{2qαtβtdp´2pXT´ , YNpαq
T

qÝÝÝÝÝÝÑ
Xt´YNpαq

t

dN
pαq
t ,

where pBtqtě0 would be a Brownian motion on M and where pY
N

pαq
t

qtě0 should be interpreted

as a fast auxiliary process. The law of X is then entirely determined by the initial distribution
m0 “ LpX0q. We believe that the above algorithm X finds in probability at large times the set
Mp of p-means, at least if ν is sufficiently regular, as in the case where M “ T:

Conjecture 4 Assume that ν admits a density with respect to λ and that this density is Hölder
continuous with exponent a P p0, 1s. Then there exist two constants ap ą 0, depending on p ě 1
and a, and bp ě 0, depending on p andM , such that for any scheme of the form given in (3), where
b ą bp, we have for any neighborhood N of Mp and for any m0,

lim
tÑ`8

PrXt P N s “ 1.

˝

So as in Subsection 1.2, to find an element of Mp with an important probability, one should pick
up the value of Xt for sufficiently large times t.

The constant bp ě 0 should still coincide with the one defined in (7).

Let us now extend the stochastic algorithm Z, which should enable one to find some of the
p-means of any probability measure ν on the compact Riemannian manifold M .

For any x P M and κ ą 0, consider, on the tangent space TxM , the probability measure rKx,κ

whose density with respect to the Lebesgue measure dv is proportional to p1 ´ κ }v}q` (where the
Lebesgue measure and the norm are relative to the Euclidean structure on TxM). Denote Kx,κ

the image by the exponential mapping at x of rKx,κ. Assume next that we are given an evolution
κ : R` Q t ÞÑ κt P R

˚
` and consider the process Z ≔ pZtqtě0 evolving similarly to pXtqtě0,

except that at the jump times T of N pαq, the target Y
N

pαq
T

is replaced by a point WT sampled from

KY
N

pαq
T

,κT , independently from the other variables. We believe that a variant of Theorem 2 should

hold more generally on compact Riemannian manifolds M . But it seems that the geometry of
M should play a role, especially through the behavior of the volume of small enlargements of the
cut-locus of points.

Notice that a major difficulty for implementing an algorithm in a high dimensional manifold
simulating the processXt is to compute the logarithm map ÝÑxy “ exp´1

x pyq. Moreover this logarithm
can be very instable around the cutlocus of x. In [4] it is proposed to replace it by the gradient of
some cost function and then to follow the flow of this gradient.

1.5 Discussion

The purpose of this paper is to propose a stochastic algorithm finding p-means by a sequential
use of samples from the underlying probability measure on a Riemannian manifold M , even if the
formal proof of its convergence is only shown for the circle, the first non-trivial example.

When ν is an empirical measure přN
l“1

δxlq{N , where the xl, l P J1, NK, are points on the
circle, Charlier [10], Hotz and Huckemann [16] and McKilliam, Quinn and Clarkson [21] proposed
algorithms finding the 2-mean with complexities of order N lnpNq and N for the latter work.
Empirical measures can in practice be used to approximate more general probability measures on
the circle, but it seems this is not a very efficient method, since for each new point added to the
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empirical measure, the whole algorithm finding the corresponding mean has to be started again
from scratch. Up to our knowledge, the process of Theorem 1 is the only algorithm finding p-
means for any p ě 1 and for any probability measure ν admitting Hölderian densities, even in the
restricted situation of the circle.

Another strong motivation for this paper is the treatment of the jumps of the algorithms X
and Z, situation which is not covered by the techniques of [25] (to the contrary of the jumps of
the auxilliary process, which can be more easily dealt with).

In [4] we extend the ideas of the present paper to the situation were dppx, yq in (1) is replaced by a
quantity κpx, yq depending smoothly on the parameters x and y belonging to a compact Riemannian
manifold M . Via convolutions with the underlying heat kernel, it leads to an algorithm enabling
to deal with mappings κ which are only assumed to be continuous. But due to this regularization
procedure, the corresponding algorithm is less straightforward to put in practice than the one
presented here. Of course the direct implementability has a price, since it needs precise informations
about a crucial object, L˚

α,βr1s. It will be defined in Section 3 and its investigation has to be divided
in several cases depending on the value of p. This is hidden in [4], because we were more interested
there in the generalization to general compact manifolds than in practicality considerations.

More technical discussions of the results are partially scattered over the manuscript, when it
seems more appropriate to introduce them, see for instance Remarks 28, 29, 35 and 36.

The paper is constructed on the following plan. In next section we recall some results about
simulated annealing which give the heuristics for the above convergence. Another alternative
algorithm is presented, in the same spirit as X and Z, but without jumps. In Section 3 we
discuss about the regularity of the function Up, in terms of that of ν. It enables to see how close
is the instantaneous invariant measure associated to the algorithm at large times t ě 0 to the
Gibbs measures associated to the potential Up and to the inverse temperature β´1

t . The proof
of Theorem 1 is given in Section 4. The fifth section is devoted to the extension presented in
Theorem 2 and the appendix deals with technicalities relative to the temporal marginal laws of
the algorithms.

2 Principles underlying the proof

Here some results about the classical simulated annealing are reviewed. The algorithm X described
in the introduction will then appear as a natural modification. This will also give us the opportunity
to present another intermediate algorithm.

2.1 Simulated annealing

Consider againM a compact Riemannian manifold and denote x¨, ¨y, ∇, △ and λ the corresponding
scalar product, gradient, Laplacian operator and probability measure. Let U be a given smooth
function on M to which we associate the constant bpUq ě 0 defined similarly as in (6). We denote
by M the set of global minima of U .

A corresponding simulated annealing algorithm θ ≔ pθtqtě0 associated to a measurable inverse
temperature scheme β : R` Ñ R` is defined through the evolution equation

@ t ě 0, dθt “ dBt ´ βt

2
∇Upθtq dt.

It is a shorthand meaning that θ is a time-inhomogeneous Markov process whose generator at any
time t ě 0 is Lβt, where

@ β ě 0, Lβ ¨ ≔ 1

2
p△ ¨ ´β x∇U,∇¨yq. (10)

Holley, Kusuoka and Stroock [15] have proven the following result
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Theorem 5 For any fixed T ě 1, consider the inverse temperature scheme

@ t ě 0, βt “ b´1 lnpT ` tq,

with b ą bpUq. Then for any neighborhood N of M and for any initial distribution Lpθ0q, we have

lim
tÑ`8

Prθt P N s “ 1.

A crucial ingredient of the proof of this convergence are the Gibbs measures associated to the
potential U . They are defined as the probability measures µβ given for any β ě 0 by

µβpdxq ≔ expp´βUpxqq
Zβ

λpdxq, (11)

where Zβ ≔
ş
expp´βUpxqqλpdxq is the normalizing factor.

Indeed, Holley, Kusuoka and Stroock [15] show that Lpθtq and µβt become closer and closer as
t ě 0 goes to infinity, for instance in the sense of total variation:

lim
tÑ`8

}Lpθtq ´ µβt}tv “ 0. (12)

Theorem 5 is then an immediate consequence of the fact that for any neighborhood N of M,

lim
βÑ`8

µβrN s “ 1.

The constant bpUq is critical for the behaviour (12), in the sense that if we take

@ t ě 0, βt “ b´1 lnpT ` tq,

with T ě 1 and b ă bpUq, then there exist initial distributions Lpθ0q such that (12) is not true.
But in general (see for instance [24]), the constant bpUq is not critical for Theorem 5, the

corresponding critical constant being, with the notations of the introduction,

b1pUq ≔ min
x0PM

max
yPM

Upx0, yq ´ Upyq ď bpUq

(compare with (7), where U replaces Up and where a global minimum x0 P M is fixed). Note that
it may happen that b1pUq “ bpUq, for instance if M has only one connected component.

Another remark about Theorem 5 is that the convergence in probability of θt for large t ě 0
toward M cannot be improved into an almost sure convergence. Denote by A the connected
component of tx P M : Upxq ď minM U ` bu which contains M (the condition b ą bpUq ensures
that M is contained in only one connected component of the above set). Then almost surely, A
is the limiting set of the trajectory pθtqtě0 (see [23], where the corresponding result is proven for
a finite state space but whose proof could be extended to the setting of Theorem 5). We believe
that all these remarks should also hold in the context of Conjecture 4 and Theorem 1.

2.2 Heuristic of the proof

Let us now heuristically put forward why a result such as Conjecture 4 should be true, in relation
with Theorem 5. For simplicity of the exposition, assume that ν is absolutely continuous with
respect to λ. For almost every x, y P M , there exists a unique minimal geodesic with speed 1
leading from x to y. Denote it by pγpx, y, tqqtPR, so that γpx, y, 0q “ x and γpx, y, dpx, yqq “ y. The
process pXtqtě0 underlying Theorem 5 is Markovian and its inhomogeneous family of generators is
pLαt,βtqtě0, where for any α ą 0 and β ě 0, Lα,β acts on functions f from C2pMq via

@ x P M, Lα,βrf spxq ≔ 1

2
△fpxq ` 1

α

ż
fpγpx, y, pp{2qβαdp´1px, yqqq ´ fpxq νpdyq (13)
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(to simplify notations, we will try to avoid writing down explicitly the dependence on p ě 1). The
r.h.s. is well-defined, due to the fact that ν ! λ which implies that the cut-locus of x is negligible
with respect to ν. Furthermore Fubini’s theorem enables to see that the function Lα,βrf s is at
least measurable. Next remark that as α goes to 0`, we have for any f P C1pMq, any x P M and
any y P M which is not in the cut-locus of x,

@ β ě 0, lim
αÑ0`

fpγpx, y, pp{2qβαdp´1px, yqqq ´ fpxq
α

“ 1

2
βpdp´1px, yq x∇fpxq, 9γpx, y, 0qy ,

so that for any f P C2pMq and x P M ,

@ β ě 0, lim
αÑ0`

Lα,βrf spxq “ 1

2
△fpxq ` β

2
p

ż
dp´1px, yq x∇fpxq, 9γpx, y, 0qy νpdyq.

Recall that the potential U “ Up we are now interested in is given by (1) and that for almost every
px, yq P M2,

∇xd
ppx, yq “ ´pdd´1px, yq 9γpx, y, 0q

(problems occur for points x in the cut-locus of y and, if p “ 1, for x “ y), thus

∇Uppxq “ ´p
ż
dp´1px, yq 9γpx, y, 0q νpdyq. (14)

It follows that or any f P C2pMq and x P M ,

@ β ě 0, lim
αÑ0`

Lα,βrf spxq “ Lβrf spxq.

Since limtÑ`8 αt “ 0, it appears that at least for large times, pXtqtě0 and pθtqtě0 should behave
in a similar way. The validity of Theorem 5 for any T ě 1 and any initial distribution Lpθ0q then
suggests that Conjecture 4 should hold. But this rough explanation is not sufficient to understand
the choice of the scheme pαtqtě0, which will require more rigorous computations relatively to
the corresponding homogenization property. The heuristics for Theorem 2 are similar, since the
underlying algorithm pZtqtě0 is Markovian and its inhomogeneous family of generators pLαt,βt,κtqtě0

satisfies

@ f P C2pMq, lim
tÑ`8

}Lαt,βt,κtrf s ´ Lβtrf s}8 “ 0.

For any α ą 0, β ě 0 and κ ą 0, the generator Lα,β,κ acts on functions f P C2pMq via

@ x P M, Lα,β,κrf spxq ≔ 1

2
△fpxq ` 1

α

ż
fpγpx, z, pp{2qβαdp´1px, zqqq ´ fpxqKy,κpdzqνpdyq.

The previous observations suggest another possible algorithm to find the mean of a probability
measure ν on M . Consider the M ˆ M -valued inhomogeneous Markov process p rXt, YNpαq

t `1
qtě0

where pN pαq
t qtě0 was defined in (2) and where

@ t ě 0, d rXt “ dBt ` pp{2qβtdp´1p rXt, YNpαq
t `1

q 9γp rXt, YNpαq
t `1

, 0q dt. (15)

Again, up to appropriate choices of the schemes pαtqtě0 and pβtqtě0, it can be expected that for
any neighborhood N of M and for any initial distribution Lp rX0q,

lim
tÑ`8

Pr rXt P N s “ 1.

Indeed, this can be obtained by following the line of arguments presented in [25], see [3].
But the main drawback of the algorithm p rXtqtě0 is that theoretically, it is asking for the

computation of the unit vector 9γp rXt, YNpαq
t `1

, 0q and of the distance dp rXt, YNpαq
t `1

q, at any time

t ě 0. From a practical point of view, its complexity will be bad in comparison with that of the
algorithm X ≔ pXtqtě0, which is not so difficult to implement, as it was seen in Subsection 1.3.
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2.3 Outline of the proof

Since the Gibbs measure µβ defined in (11), with U replaced by Up, concentrates on Mp for large
β, it will be sufficient to show that the law mt of Xt becomes closer and closer to µβt for large t.
To measure this closeness, we use the L

2-discrepancy of mt with respect to µβt defined by

@ t ą 0, It ≔

ż ˆ
mt

µβt
´ 1

˙
2

dµβt .

(alternatively, it would be interesting to see if the considerations that follow could be extended to
the case where this quantity is replaced by the more natural relative entropy of mt with respect to
µβt). To show that this quantity goes to zero as t becomes large, we study its temporal evolution,
by differentiating it. The fact that µβt is not the instantaneous invariant measure (namely the
probability measure left invariant by the generator at time t), leads to supplementary term with
respect to what one usually gets by applying this approach (see for instance [22]). This term
measures in some sense the distance between µβt and the instantaneous invariant measure at
time t (which itself is not explicitly known). A large part of the paper is devoted to estimate
this supplementary term, the final result being presented in Proposition 22. In Proposition 23,
we deduce a bound on the evolution of the quantity It. To conclude in Proposition 27 that the
obtained ordinary differential inequality is sufficient to conclude that limtÑ`8 It “ 0, we need an
estimate of the spectral gap of the operator presented in (10) for large β. For that we resort to a
result due to Holley, Kusuoka and Stroock [15] recalled in Proposition 26.

Let us emphasize that the resort to the object L˚
α,βr1s defined and investigated in Section 3 to

estimate the discrepancy between a well-know measure and an instantaneous invariant measure,
which is more difficult to apprehend, should be of much broader use than the one presented here.
Indeed, the function L˚

α,βr1s is constructed by using directly only two objects which are supposed
to be known: the generator and the convenient measure we choose to replace the instantaneous
invariant measure, because L˚

α,β is just the dual operator of Lα,β in L
2rµβs and 1 is the constant

function taking the value 1.

3 Regularity issues

From this section on, we restrict ourselves to the case of the circle. Here we investigate the
regularity of the potential Up introduced in (1) and use the obtained information to evaluate how
far are the instantaneous invariant measures of the algorithm X from the corresponding Gibbs
measures, as well as some other preliminary bounds.

For any x P T, we denote x1 the unique point in the cut-locus of x, namely the opposite point
x1 “ x ` π. Recall that for y P Tztx1u, pγpx, y, tqqtPR denotes the unique minimal geodesic with
speed 1 going from x to y and that δx stands for the Dirac mass at x.

Lemma 6 For any probability measure ν on T, we have for the potential Up defined in (1), in the
distribution sense, for x P T,

U2
p pxq “

"
ppp´ 1q

ş
T
dp´2py, xq ´ 2pπp´1δy1 pxq νpdyq , if p ą 1

2
ş
pδypxq ´ δy1 pxqq νpdyq , if p “ 1

.

In particular if ν admits a continuous density with respect to λ, still denoted ν, then we have that
Up P C2pTq and

@ x P T, U2
p pxq “

"
ppp´ 1q

ş
T
dp´2py, xq νpdyq ´ pπp´2νpx1q , if p ą 1

pνpxq ´ νpx1qq{π , if p “ 1
.

12



Proof

We begin by considering the case where p ą 1. Furthermore, we first investigate the situation
where ν “ δy for some fixed y P T. Then Uppxq “ dppx, yq for any x P T and we have seen in (14)
that

@ x ­“ y1, U 1
ppxq “ ´pdp´1px, yq 9γpx, y, 0q.

By continuity of Up, this equality holds in the sense of distributions on the whole set T. To compute
U2
p , consider a test function ϕ P C8pTq:

ż

T

ϕ1pxqU 1
ppxq dx “ p

ż y`π

y

ϕ1pxqpx ´ yqp´1 dx ´ p

ż y

y´π
ϕ1pxqpy ´ xqp´1 dx

“ prϕpxqpx ´ yqp´1sy`π
y ´ ppp´ 1q

ż y`π

y

ϕpxqpx ´ yqp´2 dx

´prϕpxqpy ´ xqp´1syy´π ´ ppp ´ 1q
ż y

y´π
ϕpxqpy ´ xqp´2 dx

“ 2pπp´1ϕpy1q ´ ppp´ 1q
ż

T

ϕpxqdp´2py, xq dx.

So we get that for x P T,

U2
p pxq “ ppp´ 1qdp´2py, xq ´ 2pπp´1δy1 pxq.

If p “ 1, starting again from

@ x ­“ y1, U 1
1pxq “ ´ 9γpx, y, 0q, (16)

we rather get for any test function ϕ P C8pTq:
ż

T

ϕ1pxqU 1
1pxq dx “

ż y`π

y

ϕ1pxq dx ´
ż y

y´π
ϕ1pxq dx

“ 2pϕpy1q ´ ϕpyqq,

so that

U2
1 “ 2pδy ´ δy1 q.

The general case of a probability measure ν follows by integration with respect to νpdyq.
The second announced result follows from the observation that if ν admits a density with respect
to λ, we can write for any x P T,

ż
δy1 pxq νpdyq “

ż
δx1pyqνpyq dy

2π

“ νpx1q
2π

.

�

In particular, it appears that the potential Up belongs to C8pTq, if the density ν is smooth.

Let us come back to the case of a general probability measure ν on T. For any α ą 0 and β ě 0,
we are interested into the generator Lα,β defined in (13). Rigorously speaking, this definition is only
valid if ν is absolutely continuous. Otherwise the r.h.s. of (13) is not well-defined for x P T belonging
to the union of the cut-locus of the atoms of ν. To get around this little inconvenience, one can
consider for x P T, pγ`px, x` π, tqqtPR and pγ´px, x` π, tqqtPR, the unique minimal geodesics with
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speed 1 leading from x to x ` π respectively in the anti-clockwise (namely increasing in the cover
R of T) and clockwise direction. If y P Tztx1u, we take as before pγ`px, y, tqqtPR ≔ pγpx, y, tqqtPR ≕
pγ´px, y, tqqtPR. Next let k be a Markov kernel from T

2 to t´,`u and modify the definition (13)
by imposing that for any f P C2pTq,

@ x P T, Lα,βrf spxq ≔ 1

2
B2fpxq ` 1

α

ż
fpγspx, y, pp{2qβαdp´1px, yqqq ´ fpxq kppx, yq, dsqνpdyq,

where B stands for the natural derivative on T. Then the function Lα,βrf s is at least measurable.
But these considerations are not very relevant, since for any given measurable evolutions R` Q
t ÞÑ αt P R

˚
` and R` Q t ÞÑ βt P R`, the solutions to the martingale problems associated to the

inhomogeneous family of generators pLαt,βtqtě0 (see for instance the book of Ethier and Kurtz [11])
are all the same and are described in a probabilistic way as the trajectory laws of the processes X
presented in the introduction. Indeed, this is a consequence of the absolute continuity of the heat
kernel at any positive time (for arguments in the same spirit, see the appendix). So to simplify
notations, we only consider the case where kppx, yq,´q “ 0 for any x, y P T, this brought us back
to the definition (13), where pγpx, y, tqqtPR stands for pγ`px, y, tqqtPR, for any x, y P T.

As it was mentioned for usual simulated annealing algorithms in the previous section, a tradi-
tional approach to prove Theorem 1 would try to evaluate at any time t ě 0, how far is LpXtq from
the instantaneous invariant probability µαt,βt, namely that associated to Lαt,βt. Unfortunately for
any α ą 0 and β ě 0, we have few informations about the invariant probability µα,β of Lα,β, even
its existence cannot be deduced directly from the compactness of T, because the functions Lα,βrf s
are not necessarily continuous for f P C2pTq. Indeed it will be more convenient to use the Gibbs
distribution µβ defined in (11) for β ě 0, where U is replaced by Up. It has the advantage to be
explicit and easy to work with, in particular it is clear that for large β ě 0, µβ concentrates around
Mp, the set of p-means of ν.

The remaining part of this section is mainly devoted to a quantification of what separates µβ
from being an invariant probability of Lα,β, for α ą 0 and β ě 0. It will become clear in the next
section that a practical way to measure this discrepancy is through the evaluation of µβrpL˚

α,βr1sq2s,
where L˚

α,β is the dual operator of Lα,β in L
2pµβq and where 1 is the constant function taking the

value 1. Indeed, it can be seen that L˚
α,βr1s “ 0 in L

2pµβq if and only if µβ is invariant for Lα,β.
We will also take advantage of the computations made in this direction to provide some estimates
on related quantities which will be helpful later on.

Since the situation of the usual mean p “ 2 is important and is simpler than the other cases, we
first treat it in detail in the following subsection. Next we will investigate the differences appearing
in the situation of the median. The third subsection will deal with the cases 1 ă p ă 2, whose
computations are technical and not very enlightening. We will only give some indications about
the remaining situation p P p2,8q, which is less involved.

Some other preliminaries about the regularity of the time marginal laws of the considered
algorithms will be treated in the appendix. They are of a more qualitative nature and will mainly
serve to justify some computations of the next sections, in some sense they are less relevant than
the estimates and proofs of Propositions 10, 14, 18 and 20 below, which are really at the heart of
our developments.

3.1 Estimate of L˚
α,βr1s in the case p “ 2

Before being more precise about the definition of L˚
α,β, we need an elementary result, where we

will use the following notations: for y P T and δ ě 0, Bpy, δq stands for the open ball centered at
y of radius δ and for any s P R, Ty,s is the operator acting on measurable functions f defined on
T via

@ x P T, Ty,sfpxq ≔ fpγpx, y, sdpx, yqqq. (17)
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Lemma 7 For any y P T, any s P r0, 1q and any measurable and bounded functions f, g, we have

ż

T

gTy,sf dλ “ 1

1 ´ s

ż

Bpy,p1´sqπq
fTy,´s{p1´sqg dλ.

Proof

By definition, we have

2π

ż

T

gTy,sf dλ “
ż y`π

y´π
gpxqfpx ` spy ´ xqq dx.

In the r.h.s. consider the change of variables z ≔ sy ` p1 ´ sqx to get that it is equal to

1

1 ´ s

ż y`p1´sqπ

y´p1´sqπ
g

ˆ
z ´ sy

1 ´ s

˙
fpzq dz “ 2π

1 ´ s

ż

Bpy,p1´sqπq
fTy,´s{p1´sqf dλ,

which corresponds to the announced result.
�

This lemma has for consequence the next result, where D is the subspace of L2pλq consisting
of functions whose second derivative in the distribution sense belongs to L

2pλq (or equivalently to
L
2pµβq for any β ě 0).

Lemma 8 For α ą 0 and β ě 0 such that αβ P r0, 1q, the domain of the maximal extension of
Lα,β on L

2pµβq is D. Furthermore the domain D˚ of its dual operator L˚
α,β in L

2pµβq is the space

tf P L
2pµβq : expp´βU2qf P Du and we have for any f P D˚,

L˚
α,βf “ 1

2
exppβU2qB2rexpp´βU2qf s

` exppβU2q
αp1 ´ αβq

ż
1Bpy,p1´αβqπqTy,´αβ{p1´αβqrexpp´βU2qf s νpdyq ´ f

α
.

In particular, if ν admits a continuous density, then D˚ “ D and the above formula holds for any
f P D.

Proof

With the previous definitions, we can write for any α ą 0 and β ě 0,

Lα,β “ 1

2
B2 ` 1

α

ż
Ty,αβ νpdyq ´ I

α
,

where I is the identity operator. Note furthermore that the identity operator is bounded from L
2pλq

to L
2pµβq and conversely. Thus to get the first assertion, it is sufficient to show that

ş
Ty,αβ νpdyq

is bounded from L
2pλq to itself, or even only that }Ty,αβ}

L2pλqý
is uniformly bounded in y P T. To

see that this is true, consider a bounded and measurable function f and assume that αβ P r0, 1q.
Since pTy,αβfq2 “ Ty,αβf

2, we can apply Lemma 7 with s “ αβ, g “ 1 and f replaced by f2 to get
that

ż
pTy,αβfq2 dλ “ 1

1 ´ αβ

ż

Bpy,p1´sqπq
f2Ty,´αβ{p1´αβq1 dλ

“ 1

1 ´ αβ

ż

Bpy,p1´sqπq
f2 dλ

ď 1

1 ´ αβ

ż
f2 dλ.
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Next to see that for any f, g P C2pTq,
ż
gLα,βf dµβ “

ż
fL˚

α,βg dµβ, (18)

where L˚
α,β is the operator defined in the statement of the lemma, we note that, on one hand,

ż
gB2f dµβ “ Z´1

β

ż
expp´βU2qgB2f dλ

“
ż
f exppβU2qB2rexpp´βU2qgs dµβ

and on the other hand, for any y P T,
ż
gTy,αβf dµβ “ Z´1

β

ż
expp´βU2qgTy,αβf dλ,

so that we can use again Lemma 7. After an additional integration with respect to νpdyq, (18)
follows without difficulty. To conclude, it is sufficient to see that for any f P L

2pµβq, L˚
α,βf P L

2pµβq
(where L˚

α,βf is first interpreted as a distribution) if and only if expp´βU2qf P D. This is done by
adapting the arguments given in the first part of the proof, in particular we get that

››››
exppβU2q
αp1 ´ αβq

ż
1Bpy,p1´αβqπqTy,´αβ{p1´αβqrexpp´βU2q ¨ s νpdyq

››››
2

L2pλqý

ď expp2βoscpU2qq
α2p1 ´ αβq .

�

Remark 9 By working in a similar spirit, the previous lemma, except for the expression of L˚
α,β,

is valid for any α ą 0 and β ě 0 such that αβ ­“ 1. The case αβ “ 1 can be different: it follows
from

Lα,1{α “ 1

2
B2 ` 1

α
pν ´ Iq,

that if ν does not admit a density with respect to λ which belongs to L
2pλq, then the domain of

definition of L˚
α,1{α is D˚ X tf P L

2pµβq : µβrf s “ 0u, subspace which is not dense in L
2pλq and

worse for our purposes, which does not contain 1. Anyway, this degenerate situation is not very
interesting for us, because the evolutions pαtqtě0 and pβtqtě0 we consider satisfy αtβt P p0, 1q for t
large enough. Furthermore we will consider probability measures ν admitting a continuous density,
in particular belonging to L

2pλq. In this case, Lα,1{α and L˚
α,1{α admit D for natural domain, as

in fact Lα,β and L˚
α,β for any β ě 0.

˝

For any α ą 0 and β ě 0 such that αβ P r0, 1q, denote η “ αβ{p1´αβq. As seen from the previous
lemma, a consequence of the assumption that U2 is C2 is that for any x P T,

L˚
α,β1pxq “ 1

2
exppβU2pxqqB2 expp´βU2pxqq ´ 1

α

`exppβU2pxqq
αp1 ´ αβq

ż
1Bpy,p1´αβqπqpxqTy,´ηrexpp´βU2qspxq νpdyq

“ β2

2
pU 1

2pxqq2 ´ β

2
U2
2 pxq ´ 1

α

` 1

αp1 ´ αβq

ż

Bpx,p1´αβqπq
exppβrU2pxq ´ U2pγpx, y,´ηdpx, yqqqsq νpdyq. (19)

It appears that L˚
α,β1 is defined and continuous if ν has a continuous density (with respect to

λ). The next result evaluates the uniform norm of this function under a little stronger regularity
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assumption. Despite it may seem quite plain, we would like to emphasize that the use of an
estimate of L˚

α,β1 to replace the invariant measure of Lα,β by the more tractable µβ is a key to all
the results presented in the introduction.

Proposition 10 Assume that ν admits a density with respect to λ which is Hölder continuous,
i.e. there exists a P p0, 1s and A ą 0 such that

@ x, y P T, |νpyq ´ νpxq| ď Adapx, yq. (20)

Then there exists a constant CpAq ą 0, only depending on A, such that for any β ě 1 and
α P p0, 1{p2β2qq, we have

››L˚
α,β1

››
8

ď CpAqmax
`
αβ4, αaβ1`a

˘
.

Proof

In view of the expression of L˚
α,β1pxq given before the statement of the proposition, we want to

estimate for any fixed x P T, the quantity

ż

Bpx,p1´αβqπq
exppβrU2pxq ´ U2pγpx, y,´ηdpx, yqqqsq νpdyq

“
ż x`p1´αβqπ

x´p1´αβqπ
exppβrU2pxq ´ U2px´ ηpy ´ xqqsq νpdyq.

Lemma 6 and the continuity of the density ν ensure that U2 P C2pTq. Furthermore, since this
density takes the value 1 somewhere on T, we get that

››U2
2

››
8

ď 2Aπa ď 2πA. (21)

Since U 1
2
vanishes somewhere on T, we can deduce from this bound that }U 1

2
}8 ď 4π2A, but for

A ą 1{p2πq, it is better to use (14), which gives directly }U 1
2
}8 ď 2π.

Expanding the function U2 around x, we see that for any y P px ´ p1 ´ αβqπ, x ` p1 ´ αβqπq and
η P p0, 1s (this is satisfied because the assumptions on α and β ensure that αβ P p0, 1{2q), we can
find z P px ´ p1 ´ αβqπ, x ` p1 ´ αβqπq such that

βrU2pxq ´ U2px´ ηpy ´ xqqs “ βηU 1
2pxqpy ´ xq ´ βη2U2

2 pzqpy ´ xq2
2

.

The last term can be written under the form OApα2β3q, where for any ǫ ą 0, OApǫq designates a
quantity which is bounded by KpAqǫ, where KpAq is a constant depending only on A (as usual O
has a similar meaning, but with a universal constant). Note that we also have βηU 1

2
pxqpy ´ xq “

Opαβ2q. Observing that for any r, s P R, we can find u, v P p0, 1q such that exppr ` sq “ p1 ` r `
r2 exppurq{2qp1` s exppvsqq and in conjunction with the assumption αβ2 ď 1{2, we can write that

exppβrU2pxq ´ U2px ´ ηpy ´ xqqsq “ 1 ` βηU 1
2pxqpy ´ xq ` OApα2β4q. (22)

Integrating this expression, we get that

ż

Bpx,p1´αβqπq
exppβrU2pxq ´ U2pγpx, y,´ηqqsq νpdyq

“ νrBpx, p1 ´ αβqπqs ` βηU 1
2pxq

ż x`p1´αβqπ

x´p1´αβqπ
y ´ x νpdyq ` OApα2β4q

.
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Recalling that ν has no atom, the first term is equal to 1 ´ νpBpx1, αβπq. Taking into account
(14), we have U 1

2
pxq “ ´2

şx`π
x´π y ´ x νpdyq, so that the second term is equal to

βηU 1
2pxq

ż x`π

x´π
y ´ x νpdyq ´ βηU 1

2pxq
ż x1`αβπ

x1´αβπ
y ´ x νpdyq

“ ´βη

2
pU 1

2pxqq2 ` OApα2β3q

(in the last term of the l.h.s., y´x is to be interpreted as its representative in p´π, πs modulo 2π).
We can now return to (19) and recalling the expression for U2

2
given in Lemma 6, we obtain that

for any x P T,

L˚
α,β1pxq “ β2

2
pU 1

2pxqq2 ´ βp1 ´ νpx1qq ´ 1

α

` 1

αp1 ´ αβq

ˆ
1 ´ νpBpx1, αβπq ´ βη

2
pU 1

2pxqq2 ` OApα2β4q
˙

“ 1

αp1 ´ αβq ´ β ´ 1

α
` β2

2

ˆ
1 ´ 1

p1 ´ αβq2
˙

pU 1
2pxqq2 ` β

ˆ
νpx1q ´ νpBpx1, αβπq

αβp1 ´ αβq

˙

`OApαβ4q

“ β

ˆ
νpx1q ´ νpBpx1, αβπq

αβp1 ´ αβq

˙
` OApαβ4q

“ β

1 ´ αβ

ˆ
νpx1q ´ νpBpx1, αβπq

αβ

˙
´ αβ2

1 ´ αβ
νpx1q ` OApαβ4q

“ β

1 ´ αβ

1

2παβ

ż x1`αβπ

x1´αβπ
νpx1q ´ νpyq dy ` OApαβ4q.

The justification of the Hölder continuity comes above all from the evaluation of the latter integral:

ˇ̌
ˇ̌
ˇ

ż x1`αβπ

x1´αβπ
νpx1q ´ νpyq dy

ˇ̌
ˇ̌
ˇ ď A

ż x1`αβπ

x1´αβπ

ˇ̌
x1 ´ y

ˇ̌a
dy

“ 2A
pαβπq1`a

1 ` a

ď 2Apαβπq1`a.

The bound announced in the lemma follows at once.
�

To finish this subsection, let us present a related but more straightforward preliminary bound.

Lemma 11 There exists a constant k ą 0 such that for any s ą 0 and β ě 1 with βs ď 1{2, we
have, for any y P T and f P C1pTq,

ż

Bpy,p1´sqπq
pT ˚
y,srgyspxq ´ gypxqq2 µβpdxq ď ks2β2

ˆż
pBfq2 dµβ `

ż
f2 dµβ

˙
, (23)

where T ˚
y,s is the adjoint operator of Ty,s in L

2pµβq and where for any fixed y P T,

@ x P Tzty1u, gypxq ≔ fpxqdpx, yq 9γpx, y, 0q

(neglecting the cut-locus point y1 of y).
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Proof

Since the problem is clearly invariant by translation of y P T, we can work with a fixed value of y,
the most convenient to simplify the notations being y “ 0 P R{p2πZq. Then the function g ” g0 is
given by gpxq “ ´xfpxq for x P p´π, πq.
Due to the above assumptions, s P p0, 1{2q and we are in position to use Lemma 7 to see that for
s P p0, 1{2q and for a.e. x P p´p1 ´ sqπ, p1 ´ sqπq,

T ˚
s rgspxq “ 1

1 ´ s
exppβU2pxqqT´ηrexpp´βU2qgspxq,

with η ≔ s{p1 ´ sq and where we simplified notations by replacing T ˚
0,s and T0,´η by T ˚

s and T´η.
This observation induces us to introduce on p´p1 ´ sqπ, p1 ´ sqπq the decomposition

T ˚
s rgs ´ g “ T ˚

s rgs ´ 1

1 ´ s
T´ηrgs ` 1

1 ´ s
pT´ηrgs ´ gq ` s

1 ´ s
g,

leading to

ż
pT ˚
s rgspxq ´ gpxqq2 µβpdxq ď 3

p1 ´ sq2J1 ` 3

p1 ´ sq2J2 ` 3s2

p1 ´ sq2J3, (24)

where

J1 ≔

ż p1´sqπ

´p1´sqπ
pexppβrU2pxq ´ U2pp1 ` ηqxqsq ´ 1q2pT´ηrgsq2 µβpdxq

J2 ≔

ż p1´sqπ

´p1´sqπ
pT´ηrgs ´ gq2 dµβ

J3 ≔

ż p1´sqπ

´p1´sqπ
g2 dµβ

.

The simplest term to treat is J3: we just bound it above by
ş
g2 dµβ . Recalling that g ď π2f2,

we end up with a bound which goes in the direction of (23), due to the factor 3s2{p1 ´ sq2 in (24)
and the fact that β ě 1.

Next we estimate the term J1. Via the change of variable z ≔ p1 ` ηqx, Lemma 7 enables to
write it down under the form

p1 ´ sq
ż

T

pexppβrU2pp1 ´ sqzq ´ U2pzqsq ´ 1q2g2pzq exppβrU2pzq ´ U2pp1 ´ sqzqsµβpdzq

“ 4p1 ´ sq
ż

T

sinh2pβrU2pp1 ´ sqzq ´ U2pzqs{2qg2pzqµβpdzq.

Since βs ď 1{2, we are assured of the bounds

|βrU2pp1 ´ sqzq ´ U2pzqs| ď β
››U 1

2

››
8
πs

ď 4π2βs

ď 2π2 (25)

and we deduce that

J1 ď 16π4 cosh2pπ2qβ2s2
ş
g2 dµβ.

Again this bound is going in the direction of (23).
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We are thus left with the task of finding a bound on J2 and this is where the Dirichlet type
quantity

ş
pf 1q2 dµβ will be needed. Of course, its origin is to be found in the fundamental theorem

of calculus, which enables to write for any x P p1 ´ sqπq,

T´ηrgspxq ´ gpxq “ ´η
ż

1

0

g1pp1 ` ηvqxqx dv.

It follows that

J2 ď π2η2
ż p1´sqπ

´p1´sqπ
µβpdxq

ż
1

0

dv
`
g1pp1 ` ηvqxq

˘
2
. (26)

Recalling the definition of g, we have for any z P p´π, πq,

pg1pzqq2 ď 2pπ2pf 1pzqq2 ` f2pzqq,

where we used again that }U 1
2
}8 ď 2π and that β ě 1. Next we deduce from a computation similar

to (25) and from η ď 2s that

µβpxq
µβpp1 ` ηvqxq ď expp4π2q,

so it appears that there exists a universal constant k1 ą 0 such that

ż p1´sqπ

´p1´sqπ
µβpdxq

ż
1

0

dv
`
g1pp1 ` ηvqxq

˘2 ď k1

ż
1

0

dv

ż p1´sqπ

´p1´sqπ
λpdxqT´ηvrhspxq,

where

@ x P T, hpxq ≔ rpf 1pxqq2 ` f2pxqsµβpxq.

The proof of Lemma 7 shows that for any fixed v P r0, 1s,
ż p1´sqπ

´p1´sqπ
T´ηvrhspxqλpdxq ď 1

1 ` vη

ż

T

hpxqλpdxq

ď
ż

T

hpxqλpdxq

“
ż

T

pf 1q2 dµβ `
ż

T

f2 dµβ.

Coming back to (26) and recalling that η “ s{p1 ´ sq, we obtain that

J2 ď k2s
2

ˆż

T

pf 1q2 dµβ `
ż

T

f2 dµβ

˙
,

for another universal constant k2 ą 0. This ends the proof of (23).
�

3.2 Estimate of L˚
α,βr1s in the case p “ 1

When we are interested in finding medians, the definition (17) must be modified into

@ x P T, Ty,sfpxq ≔ fpγpx, y, sqq. (27)

Similarly to what we have done in Lemma 7, we begin by computing the adjoint T :
y,s of Ty,s in

L
2pλq, for any fixed y P T and s P R` small enough.
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Lemma 12 Assume that s P r0, π{2q. Then for any bounded and measurable function g, we have,
for almost every x P T (identified with its representative in py ´ π, y ` πq),

T :
y,srgspxq “ 1py´π`s,y´sqpxqgpx ´ sq ` 1py´s,y`sqpxqpgpx ´ sq ` gpx ` sqq

`1py`s,y`π´sqpxqgpx ` sq.

Proof

By definition, we have, for any bounded and measurable functions f, g,

2π

ż

T

gTy,sf dλ “
ż y`π

y´π
gpxqfpx ` signpy ´ xqsq dx.

Let us first consider the integral

ż y`π

y

gpxqfpx ` signpy ´ xqsq dx “
ż y`π

y

gpxqfpx ´ sq dx

“
ż y`π´s

y´s
gpx ` sqfpxq dx

“
ż y`π´s

y`s
gpx ` sqfpxq dx `

ż y`s

y´s
gpx ` sqfpxq dx.

The symmetrical computation on py ´ π, yq leads to the announced result.
�

It is not difficult to adapt the proof of Lemma 8, to get, with the same notations,

Lemma 13 For α ą 0 and β ě 0 such that αβ P r0, πq, the domain of the maximal extension of
Lα,β on L

2pµβq is D. Furthermore the domain of its dual operator L˚
α,β in L

2pµβq is D˚ and we
have for any f P D˚,

L˚
α,βf “ 1

2
exppβU1qB2rexpp´βU1qf s ` 1

α

ż
T ˚
y,

αβ

2

rf s νpdyq ´ f

α
,

where

T ˚
y,αβ

2

rf s “ exppβU1qT :

y,
αβ

2

rexpp´βU1qf s.

In particular, if ν admits a continuous density, then D˚ “ D and the above formula holds for any
f P D.

To be able to consider L˚
α,β1, we have thus to assume that ν admits a continuous density, so that

1 P D˚ “ D. Furthermore we obtain then that for almost every x P T,

L˚
α,β1pxq “ β2

2
pU 1

1pxqq2 ´ β

2
U2
1 pxq ` 1

α

ˆż
T ˚
y,

αβ

2

r1spxq νpdyq ´ 1

˙
.

By expanding the various terms of the r.h.s., we are to show the equivalent of Proposition 10:

Proposition 14 Assume that ν admits a density with respect to λ satisfying (20). Then there
exists a constant CpAq ą 0, only depending on A, such that for any β ě 1 and α P p0, πβ´2q, we
have

››L˚
α,β1

››
8

ď CpAqmax
`
αβ4, αaβ1`a

˘
.
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Proof

From (14) and Lemma 6, we deduce respectively that for all x P T,

U 1
1pxq “ ´

ż
9γpx, y, 0q νpdyq

“ νppx´ π, xqq ´ νppx, x ` πqq, (28)

U2
1 pxq “ pνpxq ´ νpx1qq{π. (29)

On the other hand, from Lemma 12 we get that for all s P r0, π{2q and for almost every x P T,

ż
T ˚
y,sr1spxq νpdyq

“ νppx ` s, x ` π ´ sqq exppβpU1pxq ´ U1px´ sqqq
`νppx´ s, x` sqqrexppβpU1pxq ´ U1px ´ sqqq ` exppβpU1pxq ´ U1px ` sqqqs
`νppx´ π ` s, x´ sqq exppβpU1pxq ´ U1px ` sqqq

“ νppx, x ` πqq exppβpU1pxq ´ U1px ´ sqqq ` νppx ´ π, xqq exppβpU1pxq ´ U1px` sqqq
`νppx´ s, xqq exppβpU1pxq ´ U1px´ sqqq ` νppx, x ` sqq exppβpU1pxq ´ U1px ` sqqq
´νppx1 ´ s, x1qq exppβpU1pxq ´ U1px ´ sqqq ´ νppx1, x1 ` sqq exppβpU1pxq ´ U1px ` sqqq.

This leads us to define s “ αβ{2 P p0, π{2q, so that we can decompose

2

β
L˚
α,β1pxq “ I1px, sq ` I2px, sq ` I3px, sq,

with

I1px, sq ≔ 1

π

ˆ
π
νppx´ s, x` sq

s
´ νpxq

˙
´ 1

π

ˆ
π
νppx1 ´ s, x1 ` sq

s
´ νpx1q

˙

I2px, sq ≔ νppx´ s, xqq ´ νppx1 ´ s, x1qq
s

rexppβpU1pxq ´ U1px´ sqqq ´ 1s

`νppx, x` sqq ´ νppx1, x1 ` sqq
s

rexppβpU1pxq ´ U1px ` sqqq ´ 1s

I3px, sq ≔ νppx, x ` πqqexppβpU1pxq ´ U1px´ sqqq ´ 1 ´ sβU 1
1
pxq

s

`νppx´ π, xqqexppβpU1pxq ´ U1px` sqqq ´ 1 ` sβU 1
1
pxq

s
.

Assumption (20) enables to evaluate I1px, sq, because we have for any x P T and s P p0, π{2q,
ˇ̌
ˇ̌πνppx´ s, x ` sq

s
´ νpxq

ˇ̌
ˇ̌ “ 1

2s

ˇ̌
ˇ̌
ˇ

ż

px´s,x`sq
νpzq ´ νpxq dz

ˇ̌
ˇ̌
ˇ

ď A

2s

ż

px´s,x`sq
|z ´ x|a dz

“ Asa

1 ` a

ď Asa.

By considering the Taylor’s expansion with remainder at the first order of the mapping s ÞÑ
exppβrU1pxq ´ U1px ´ sqsq at s “ 0 and by taking into account (28), we get for any x P T and
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s P p0, π{p2βqq,

|I2px, sq| ď 2
}ν}8

2π
exppβ

››U 1
1

››
8
sqβ

››U 1
1

››
8
s

ď }ν}8

π
exppβsqβs

ď 2
1 ` πA

π
exppπ{2qβs.

The term I3px, sq is bounded in a similar manner, rather expanding at the second order the previous
mapping and using (29) to see that }U2

1
}8 ď A.

�

We finish this subsection with the a variant of Lemma 11:

Lemma 15 There exists a universal constant k ą 0, such that for any s ą 0 and β ě 1 with
βs ď 1, we have, for any f P C1pTq,

ż

Bpy,π´sq
pT ˚
y,srrgyspxq ´ gypxqq2 µβpdxq ď ks2β2

ˆż
pBfq2 dµβ `

ż
f2 dµβ

˙
,

where T ˚
y,s is the adjoint operator of Ty,s in L

2pµβq and where for any fixed y P T,

@ x P Tzty1u,
#
gypxq ≔ fpxq 9γpx, y, 0q
rgypxq ≔ 1py´π,y´sq\py`s,y`πqpxqgypxq

.

Proof

As remarked at the beginning of the proof of Lemma 11, it is sufficient to deal with the case
y “ 0. To simplify the notations, we remove y “ 0 from the indices, in particular we consider the
mappings g and rg defined by gpxq “ ´signpxqfpxq and rgpxq “ 1p´π,´sq\ps,πqpxqgpxq.
Taking into account that rg vanishes on p´s, sq, we deduce from Lemmas 12 and 13 that for a.e.
x P p´π ` s, π ´ sq,

T ˚
s rrgspxq “ exppβU2pxqqT´srexpp´βU2qrgspxq.

This observation leads us to consider the upper bound

ż π´s

´π`s
pT ˚
s rrgspxq ´ gpxqq2 µβpdxq ď 2J1 ` 2J2,

where

J1 ≔

ż π´s

´π`s
pexppβrU2pxq ´ U2px ` signpxqsqsq ´ 1q2pT´srrgsq2 µβpdxq

J2 ≔

ż π´s

´π`s
pT´srrgs ´ gq2 dµβ

.

The arguments used in the proof of Lemma 11 to deal with J1 and J2 can now be easily adapted
(even simplified) to obtain the wanted bounds. For instance one would have noted that

J2 “
ż

0

´π`s
pgpx ´ sq ´ gpxqq2 µβpdxq `

ż π´s

0

pgpx ` sq ´ gpxqq2 µβpdxq.

�
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3.3 Estimate of L˚
α,βr1s in the cases 1 ă p ă 2

In this situation, for any fixed y P T and s ě 0, the definition (17) must be replaced by

@ x P T, Ty,sfpxq ≔ fpγpx, y, sdp´1px, yqqq. (30)

It leads us to introduce the function z defined on py ´ π, y ` πq by

zpxq ≔
"
x´ spx´ yqp´1 , if x P ry, y ` πq
x` spy ´ xqp´1 , if x P py ´ π, ys . (31)

To study the variations of this function, by symmetry, it is sufficient to consider its restriction to
py, y ` πq. We need the following definitions, all of them depending on y P T, s ě 0 and p P p1, 2q:

u` ≔ y ` pp´ 1q
1

2´p s
1

2´p

ru` ≔ y ` s
1

2´p

v` ≔ y ´
´

pp´ 1q
p´1

2´p ´ pp´ 1q
1

2´p

¯
s

1

2´p

w` ≔ y ` π ´ πp´1s.

Let σppq be the largest positive real number in p0, 1{2q such that for s P p0, σppqq, we have u` ă
y`π, v` ą y´π and w` ´y ą y´v`. One checks that for s P p0, σppqq, the function z is decreasing
on py, u`q and increasing on pu`, y ` πq. Furthermore v` “ zpu`q, w` “ zpy ` πq and ru` is the
unique point in pu`, y ` πq such that zpru`q “ y. Let us also introduce pu` the unique point in
pru`, y ` πq such that and zppu`q “ ´v`. All these definitions, as well as the symmetric notions
with respect to py, yq, where the indices ` are replaced by ´, are summarized in the following
picture:

u
+

u
−

u
+

~u
−

~

û
+

û
−

v
−

w
+

w
−

v
+

x

z(
x)

Figure 6: The function z

Thus for s P p0, σppqq, we can consider ϕ` : rv`, ys Ñ ry, u`s and ψ` : rv`, w`s Ñ ru`, y` πs
the inverses of z, respectively restricted to ry, u`s and ru`, y ` πs. The mappings ϕ´ and ψ´

are defined in a symmetrical manner on ry, v´s and rw´, v´s. These quantities were necessary to
compute the adjoint T :

y,s of Ty,s in L
2pλq, for any fixed y P T and s ą 0 small enough:
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Lemma 16 Assume that s P p0, σppqq. Then for any bounded and measurable function g, we have,
for almost every x P T (identified with its representative in py ´ π, y ` πq),

T :
y,srgspxq “ 1pw´,v`qpxqψ1

´pxqgpψ´pxqq ` 1pv´,w`qpxqψ1
`pxqgpψ`pxqq

`1pv`,yqpxqrψ1
´pxqgpψ´pxqq ` ψ1

`pxqgpψ`pxqq `
ˇ̌
ϕ1

`pxq
ˇ̌
gpϕ`pxqqs

`1py,v´qpxqrψ1
´pxqgpψ´pxqq ` ψ1

`pxqgpψ`pxqq `
ˇ̌
ϕ1

´pxq
ˇ̌
gpϕ´pxqqs.

Proof

The above formula is based on straightforward applications of the change of variable formula. For
instance one can write for any bounded and measurable functions f, g defined on py ´ π, y ` πq,

ż

py,u`q
gpxqfpTy,spxqq dx “

ż

pv`,yq
fpzqgpϕ`pzqq

ˇ̌
ϕ1

`pzq
ˇ̌
dz.

�

Since we are more interested in adjoint operators in L
2pµβq, let us define for any fixed y P T,

s P p0, σppqq and any bounded and measurable function f defined on py ´ π, y ` πq,

T ˚
y,srf s ≔ exppβUpqT :

y,srexpp´βUpqf s. (32)

Then we get the equivalent of Lemmas 8 and 13:

Lemma 17 For α ą 0 and β ą 0 such that s ≔ pαβ{2 P p0, σppqq, the domain of the maximal
extension of Lα,β on L

2pµβq is D. Furthermore the domain of its dual operator L˚
α,β in L

2pµβq is
D˚ and we have for any f P D˚,

L˚
α,βf “ 1

2
exppβUpqB2rexpp´βUpqf s ` 1

α

ż
T ˚
y,srf s νpdyq ´ f

α
.

In particular, if ν admits a continuous density, then D˚ “ D and the above formula holds for any
f P D.

Once again, the assumption that ν admits a continuous density enables us to consider L˚
α,β1, which

is given, under the conditions of the previous lemma, for almost every x P T, by

L˚
α,β1pxq “ β2

2
pU 1

ppxqq2 ´ β

2
U2
p pxq ` 1

α

ˆż
T ˚
y,

pαβ

2

r1spxq νpdyq ´ 1

˙
. (33)

We deduce:

Proposition 18 Assume that ν admits a density with respect to λ satisfying (20). Then there
exists a constant CpA, pq ą 0, only depending on A ą 0 and p P p1, 2q, such that for any β ě 1 and
α P p0, σppq{β2q, we have

››L˚
α,β1

››
8

ď CpA, pqmax
`
αβ4, αp´1β1`p, αaβ1`a

˘
.

Proof

We first keep in mind that from (14) and Lemma 6, we have for all x P T,

U 1
ppxq “ p

ˆż x

x´π
px´ yqp´1 νpdyq ´

ż x`π

x

py ´ xqp´1 νpdyq
˙
, (34)

U2
p pxq “ ppp´ 1q

ż

T

dp´2py, xq νpdyq ´ pπp´2νpx1q. (35)
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Taking into account (33), our goal is to see how the terms βpU 1
ppxqq2 and ´U2

p pxq cancel with some
parts of the integral

p

s

ż
T ˚
y,sr1spxq ´ 1 νpdyq,

where s ≔ pαβ{2 P p0, σppq{βq Ă p0, σppqq, and to bound what remains by a quantity of the form
C 1pA, pqpβ2s ` βsp´1 ` saq, for another constant C 1pA, pq ą 0, only depending on A ą 0 and
p P p1, 2q.

We decompose the domain of integration of νpdyq into six essential parts (with the convention
that ´π ď y ´ x ă π and remember that the points w´, v`, v´ and w` depend on y):

J1 ≔ ty P T : y ´ π ă x ă w´u
J2 ≔ ty P T : w´ ă x ă v`u
J3 ≔ ty P T : v` ă x ă yu
J4 ≔ ty P T : y ă x ă v´u
J5 ≔ ty P T : v´ ă x ă w`u
J6 ≔ ty P T : w` ă x ă y ` πu.

The cases of J1 and J6 are the simplest to treat. For instance for J6, we write that

p

s

ż

J6

T ˚
y,sr1spxq ´ 1 νpdyq “ ´p

s

ż x1`πp´1s

x1

1 νpdyq

“ ´p

s

ż x1`πp´1s

x1

νpyq dy
2π

“ ´pπp´2

2
νpx1q ´ p

2πs

ż x1`πp´1s

x1

νpyq ´ νpx1q dy.

A similar computation for J1 and the use of assumption (20) lead to the bound

ˇ̌
ˇ̌p
s

ż

J1\J6

T ˚
y,sr1spxq ´ 1 νpdyq ` pπp´2νpx1q

ˇ̌
ˇ̌ ď Ap

πp1`aqpp´1q´1

1 ` a
sa

ď 2πAsa. (36)

The most important parts correspond to J2 and J5. E.g. considering J5, which can be written
down as the segment px´, x`q, with

x´ ≔ x ´ π ` πp´1s

x` ≔ x ´
´

pp´ 1q
p´1

2´p ´ pp´ 1q
1

2´p

¯
s

1

2´p ,

we have to evaluate the integral

p

s

ż x`

x´

ψ1
`pxq exppβrUppxq ´ Uppψ`pxqqsq ´ 1 νpdyq (37)

(y is present in the integrand through ψ`pxq and ψ1
`pxq). Indeed, in view of (34) and (35), we

would like to compare it to

´βU 1
ppxq

ż x`

x´

px´ yqp´1 νpdyq ` ppp´ 1q
ż x`

x´

px´ yqp´2 νpdyq. (38)
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To do so, we will expand the terms ψ1
`pxq and exppβrUppxq ´ Uppψ`pxqqsq as functions of the

(hidden) parameter s ą 0. Fix y P J5 and recall that it amounts to x P pv´, w`q. Due to (31) and
to the definition of ψ`, we have for such x,

ψ1
`pxq “ 1

1 ´ spp´ 1qpψ`pxq ´ yqp´2
. (39)

Let us begin by working heuristically, to outline why the quantities (37) and (38) should be
close. From the above expression, we get

ψ1
`pxq » 1 ` spp´ 1qpψ`pxq ´ yqp´2.

By definition of ψ`, we have

x´ y “ ψ`pxq ´ y ´ spψ`pxq ´ yqp´1

“ pψ`pxq ´ yqp1 ´ spψ`pxq ´ yqp´2q, (40)

so that x´ y » ψ`pxq ´ y and

ψ1
`pxq » 1 ` spp´ 1qpx ´ yqp´2.

On the other hand,

exppβrUppxq ´ Uppψ`pxqqsq » 1 ` βrUppxq ´ Uppψ`pxqqs
» 1 ` βU 1

ppxqpx ´ ψ`pxqq
“ 1 ´ sβU 1

ppxqpψ`pxq ´ yqp´1

» 1 ´ sβU 1
ppxqpx ´ yqp´1.

Putting together these approximations, we end up with

ψ1
`pxq exppβrUppxq ´ Uppψ`pxqqsq ´ 1 » srpp´ 1qpx ´ yqp´2 ´ βU 1

ppxqpx ´ yqp´1s,

suggesting the proximity of (37) and (38), after integration with respect to νpdyq on px´, x`q.
To justify and quantify these computations, we start by remarking that ψ`pxq ´ y is bounded

below by pu` ´y, itself bounded below by ru` ´y “ s
1

2´p . But this lower bound will not be sufficient
in (40), so let us improve it a little. By definition of pu`, we have

v´ ´ y “ pu ´ y ´ sppu´ yqp´1,

so that pu` ´ y “ kps
1

2´p where kp is the unique solution larger than 1 of the equation

kp ´ kp´1

p “ pp´ 1q
p´1

2´p ´ pp´ 1q
1

2´p . (41)

It follows that for any y P J5,

1 ď 1

1 ´ spψ`pxq ´ yqp´2
ď 1

1 ´ sppu` ´ yqp´2

“ pu` ´ y

v´ ´ y

“ Kp, (42)

where the latter quantity only depends on p P p1, 2q and is given by

Kp ≔
kp

pp´ 1q
p´1

2´p ´ pp´ 1q
1

2´p

.
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In particular, coming back to (39) and taking into account (40), we get that for y P J 1
5
,

ˇ̌
ψ1

`pxq ´ 1 ´ spp´ 1qpψ`pxq ´ yqp´2
ˇ̌

“ pspp ´ 1qpψ`pxq ´ yqp´2q2
1 ´ spp´ 1qpψ`pxq ´ yqp´2

ď pp ´ 1q2s2 pψ`pxq ´ yq2pp´2q

1 ´ spψ`pxq ´ yqp´2

“ pp ´ 1q2s2 px ´ yq2pp´2q

p1 ´ spψ`pxq ´ yqp´2q1`2pp´2q

ď pp ´ 1q2Kp2p´3q`
p s2px ´ yq2pp´2q.

To complete this estimate, we note that in a similar way, still for y P J5,
ˇ̌
pψ`pxq ´ yqp´2 ´ px ´ yqp´2

ˇ̌
“ px ´ yqp´2

ˇ̌
1 ´ p1 ´ spψ`pxq ´ yqp´2q2´p

ˇ̌

ď px ´ yqp´2
ˇ̌
1 ´ p1 ´ spψ`pxq ´ yqp´2q

ˇ̌

“ spx ´ yqp´2pψ`pxq ´ yqp´2

“ spx ´ yq2pp´2qp1 ´ spψ`pxq ´ yqp´2q2´p

ď spx ´ yq2pp´2q,

so that in the end,

ˇ̌
ψ1

`pxq ´ 1 ´ spp´ 1qpx ´ yqp´2
ˇ̌

ď rpp ´ 1q2Kp2p´3q`
p ` p´ 1ss2px ´ yq2pp´2q. (43)

We now come to the term exppβrUppxq ´ Uppψ`pxqqsq. First we remark that

|Uppxq ´ Uppψ`pxqq| ď
››U 1

p

››
8

|x´ ψ`pxq|
ď pπp´1spψ`pxq ´ yqp´1

ď pπ2pp´1qs

ď 2π2s.

It follows, recalling our assumption βs ď σppq, that

|exppβrUppxq ´ Uppψ`pxqqsq ´ 1 ´ βrUppxq ´ Uppψ`pxqqs| ď β2rUppxq ´ Uppψ`pxqqs2
2

expp2π2βsq

ď 2π4β2 expp2π2σppqqs2.

In addition we have,

ˇ̌
Uppxq ´ Uppψ`pxqq ´ U 1

ppxqpx ´ ψ`pxqq
ˇ̌

ď
››U2

p

››
8

2
px´ ψ`pxqq2.

In view of (35) and taking into account that
ş
U2
p dλ “ 0, we have

››U2
p

››
8

ď 2ppp´ 1q }ν}8

ż π

0

up´2
du

2π

“ 2pπp´1p1 ` πAq.

So we get,

ˇ̌
Uppxq ´ Uppψ`pxqq ´ U 1

ppxqpx ´ ψ`pxqq
ˇ̌

ď 2πp1 ` πAqpx ´ ψ`pxqq2

ď 2πp1 ` πAqs2pψ`pxq ´ yq2pp´1q

ď 2π3p1 ` πAqs2,
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namely

ˇ̌
Uppxq ´ Uppψ`pxqq ` sU 1

ppxqpψ`pxq ´ yqp´1
ˇ̌

ď 2π3s2.

Finally, using the inequality

@ u, v ě 0, @ p P p1, 2q,
ˇ̌
up´1 ´ vp´1

ˇ̌
ď |u´ v|p´1 ,

it appears that

ˇ̌
pψ`pxq ´ yqp´1 ´ px´ yqp´1

ˇ̌
ď |ψ`pxq ´ x|p´1

“ |ψ`pxq ´ y|pp´1q2 sp´1

ď πpp´1q2sp´1, (44)

so we can deduce that

ˇ̌
exppβrUppxq ´ Uppψ`pxqqsq ´ 1 ` βsU 1

ppxqpx ´ yqp´1
ˇ̌

ď pπpKpβs
p ` 2π3βp1 ` πA ` π expp2π2σppqqβqs2.

From the latter bound and (43), we obtain a constant Kpp,Aq ą 0 depending only on p P p1, 2q
and A ą 0, such that

p

s

ˇ̌
ˇ̌
ˇ

ż x`

x´

ψ1
`pxq exppβrUppxq ´ Uppψ`pxqqsq ´ p1 ` spp´ 1q

px ´ yq2´p
qp1 ´ βsU 1

ppxqpx ´ yqp´1q νpdyq
ˇ̌
ˇ̌
ˇ

ď Kpp,Aq
˜
βsp´1 ` β2s` s

ż x`

x´

px ´ yq2pp´2q νpdyq
¸
. (45)

This leads us to upper bound

ż x`

x´

px ´ yq2pp´2q νpdyq ď }ν}8

2π

ż x`

x´

px ´ yq2pp´2q dy

ď 1 `Aπ

2π

ż π´πp´1s

κps
1

2´p

y2pp´2q dy,

with

κp ≔ pp´ 1q
p´1

2´p ´ pp ´ 1q
1

2´p . (46)

An immediate computation gives, for p P p1, 2q, a constant κ1
p ą 0 such that for any s P p0, σppqq,

ż π´πp´1s

κps
1

2´p

y2pp´2q dy ď κ1
p

$
’&
’%

1 , if p ą 3{2
lnpp1 ` σppqq{sq , if p “ 3{2
s

2p´3

2´p , if p ă 3{2
. (47)

Since 1 ` 2p´3

2´p ą p ´ 1, β ě 1 and s P p0, σppqq, we can find another constant K 1pp,Aq ą 0 such

that the r.h.s. of (45) can be replaced by K 1pp,Aqpβsp´1 ` β2sq. It is now easy to see that such
an expression, up to a new change of the factor K 1pp,Aq, bounds the difference between (37) and
(38). Indeed, just use that

ż π´πp´1s

κps
1

2´p

y2p´3 dy ď π

ż π´πp´1s

κps
1

2´p

y2pp´2q dy
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and resort to (47).
There is no more difficulty in checking that the cost of replacing x´ and x` respectively by x´ π

and x in (38) is also bounded by K2pp,Aqpβsp{p2´pq ` spp´1q{p2´pqq ď 2K2pp,Aqβsp´1, for an
appropriate choice of the factor K2pp,Aq depending on p P p1, 2q and A ą 0.

Symmetrical computations for J2 and remembering (36) lead to the existence of a constant
K3pp,Aq ą 0, depending only on p P p1, 2q and A ą 0, such that for β ě 1 and s P p0, σppq{βq, we
have

ˇ̌
ˇ̌βpU 1

ppxqq2 ´ U2
p pxq ` p

s

ˆż

J1\J2\J5\J6

T ˚
y,sr1spxq νpdyq ´ 1

˙ˇ̌
ˇ̌ ď K3pp,Aqpsa ` βsp´1 ` β2sq.

It remains to treat the segments J3 and J4 and again by symmetry, let us deal with J4 only: it
is sufficient to exhibit a constant Kp4qpp,Aq ą 0, depending on p P p1, 2q and A ą 0, such that for
β ě 1 and s P p0, σppq{βq,

p

s

ˇ̌
ˇ̌
ż

J4

T ˚
y,sr1spxq ´ 1 νpdyq

ˇ̌
ˇ̌ ď Kp4qpp,Aqs

p´1

2´p

(since the r.h.s. is itself bounded by Kp4qpp,Aqpσppqq
pp´1q2

2´p sp´1), or equivalently
ˇ̌
ˇ̌
ż

J4

T ˚
y,sr1spxq ´ 1 νpdyq

ˇ̌
ˇ̌ ď Kp4qpp,Aq

p
s

1

2´p . (48)

The constant part is immediate to bound:
ż

J4

1 νpdyq ď }ν}8

2π

ż

J4

1 dy

ď 1 ` πA

2π

ż x

x´κps1{p2´pq

1 dy

“ p1 ` πAqκp
2π

s
1

2´p .

For the other part, we first remark that for y P J4, we have

y ă x ă y ` κps
1

2´p

y ` s
1

2´p ă ψ`pxq ă y ` kps
1

2´p

y ´ pp´ 1q
1

2´p s
1

2´p ă ϕ´pxq ă y

y ´ s
1

2´p ă ψ´pxq ă y ´ pp´ 1q
1

2´p s
1

2´p

(recall that pu` “ y`kps
1

2´p with kp defined in (41)). It follows that we can find a constant κ2
p ą 0,

depending only on p P p1, 2q, such that for s P p0, σppqq,

max p|Uppxq ´ Uppψ`pxqq| , |Uppxq ´ Uppψ´pxqq| , |Uppxq ´ Uppϕ´pxqq|q ď κ2
ps

1

2´p

ď κ2
ppσppqq

p´1

2´p s.

In particular, we can find another constant κ3
p ą 0, such that under the conditions that β ě 1 and

βs P p0, σppqq,

exp pβmax p|Uppxq ´ Uppψ`pxqq| , |Uppxq ´ Uppψ´pxqq| , |Uppxq ´ Uppϕ´pxqq|qq ď κ3
p .

Thus, denoting ψ one of the functions ψ`, ϕ´ or ψ´, and remembering the bound }ν}8 ď 1`πA,

it is sufficient to exhibit another constant κ
p4q
p ą 0 such that

ż

J4

ˇ̌
ψ1pxq

ˇ̌
dy ď κp4q

p s
1

2´p . (49)

30



Let us consider the case ψ “ ψ`, the other functions admit a similar treatment. We begin by
making the dependence of ψ`pxq more explicit by writing it ψ`px, yq. From the definition of this
quantity (see the first line of (40)) and from (39), we get

Byψ`px, yq “ ´ spp´ 1qpψ`px, yq ´ yqp´2

1 ´ spp´ 1qpψ`px, yq ´ yqp´2

“ ´spp´ 1qpψ`px, yq ´ yqp´2Bxψ`px, yq,

so that the l.h.s. of (49) can be rewritten

1

spp´ 1q

ż

J4

ˇ̌
pψ`px, yq ´ yq2´pByψ`px, yq

ˇ̌
dy ď 1

spp´ 1q

ż

J4

pkps
1

2´p q2´p |Byψ`px, yq| dy

ď k
2´p
p

pp´ 1q

ż

J4

|Byψ`px, yq| dy.

Checking that J4 “ px´κps
1

2´p , xq, the last integral is equal to
ˇ̌
ˇψ`px, xq ´ ψ`px, x ´ κps

1

2´p q
ˇ̌
ˇ. By

definition of ψ`, we have ψ`px, xq “ x and it appears that the quantity ζ ≔ ψ`px, x´κps
1

2´p q ´x

is a positive solution to the equation

ζ “ spζ ` κps
1

2´p qp´1.

It follows that ζ “ k1
ps

1

2´p where k1
p is the unique positive solution of k1

p “ pk1
p ` κpqp´1.

Thus (49) is proven and we can conclude to the validity of (48).
�

To finish this subsection, here is a version of Lemma 15 for p P p1, 2q, which is a little weaker, since
we need a preliminary integration with respect to νpyq:
Lemma 19 Under the assumption (20), there exists a universal constant kpp,Aq ą 0, depending
only on p P p1, 2q and A ą 0, such that for any s ą 0 and β ě 1 with βs ď σppq, we have, for any
f P C1pTq,

ż

T

νpdyq
ż

Bpy,π´πp´1sq
pT ˚
y,srrgyspxq ´ gypxqq2 µβpdxq

ď kpp,Aqps2pp´1q ` β2s2q
ˆż

pBfq2 dµβ `
ż
f2 dµβ

˙
, (50)

where T ˚
y,s is the adjoint operator of Ty,s in L

2pµβq and where for any fixed y P T,

@ x P Tzty1u,

$
&
%

gypxq ≔ fpxqdp´1px, yq 9γpx, y, 0q
rgypxq ≔ 1

py´π,y´s
1

2´p q\py`s
1

2´p ,y`πq
pxqgypxq .

Proof

We begin by fixing y P T and by remembering the notations of the proof of Proposition 18 (see

Figure 6). Due to fact that rgy vanishes on pru´, ru`q “ py ´ s
1

2´p , y ` s
1

2´p q, we deduce from
Lemma 16 and (32) that for a.e. x P py ´ π ` πp´1s, y ` π ´ πp´1sq,

T ˚
y,srrgyspxq “ ψ1

εpxq exppβrUppxq ´ Uppψεpxqqsqrgypψεpxqq,

where ε P t´,`u stands for the sign of x ´ y with the conventions of the proof of Proposition 18.
Thus we are led to the decomposition

ż

Bpy,π´πp´1sq
pT ˚
y,srrgyspxq ´ gypxqq2 µβpdxq ď 3J1pyq ` 3J2pyq ` 3J3pyq,
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where

J1pyq ≔
ż

Bpy,π´πp´1sq
pexppβrUppxq ´ Uppψεpxqqsq ´ 1q2pψ1

εpxqrgypψεpxqqq2 µβpdxq

J2pyq ≔
ż

Bpy,π´πp´1sq
pψ1

εpxqq2prgypψεpxqq ´ gypxqq2 µβpdxq

J3pyq ≔
ż

Bpy,π´πp´1sq
pψ1

εpxq ´ 1q2g2ypxqµβpdxq.

We begin by dealing with J1pyq, or rather with just half of it, by symmetry and to avoid the
consideration of ε:

ż y`π´πp´1s

y

pexppβrUppxq ´ Uppψ`pxqqsq ´ 1q2pψ1
`pxqrgypψ`pxqqq2 µβpdxq.

Let us recall that x “ ψ`pxq ´ spψ`pxq ´ yqp´1 and that ψ`pxq ´ y ě s
1

2´p . From (39) we deduce
that for x P py, y ` π ´ πp´1sq, 1 ď ψ`pxq ď 1{p2 ´ pq. Thus it is sufficient to bound

ż y`π´πp´1s

y

pexppβrUppxq ´ Uppψ`pxqqsq ´ 1q2prgypψ`pxqqq2 µβpdxq.

Furthermore, for x P py, y ` π ´ πp´1sq, we have

|x´ ψ`pxq| ď sπp´1, (51)

so under the assumption that sβ P p0, 1{2q, we can bound pexppβrUppxq ´ Uppψ`pxqqsq ´ 1q2 by a
term of the form kβ2s2 for a universal constant k ą 0. It remains to use rg2ypxq ď π2f2pxq to get
an upper bound going in the direction of (50).

We now come to J2pyq and again only to half of it:

ż y`π´πp´1s

y

pψ1
`pxqq2prgypψ`pxqq ´ gypxqq2 µβpdxq.

Due to the upper bound on ψ` seen just above, it is sufficient to deal with

ż y`π´πp´1s

y

prgypψ`pxqq ´ gypxqq2 µβpdxq.

But for x P py, y ` π ´ πp´1sq, we have ψ`pxq P py ` s
1

2´p , y ` πq, so that rgypψ`pxqq “ gypψ`pxqq
and the above expression is equal to

ż y`π´πp´1s

y

pgypψ`pxqq ´ gypxqq2 µβpdxq.

Coming back to the definition of gy, it appears that for x P py, y ` π ´ πp´1sq, both ψ`pxq and x
belong to the same hemicircle obtain by cutting T at y and y1, so

pgypψ`pxqq ´ gypxqq2

“ pdp´1py, ψ`pxqqfpψ`pxqq ´ dp´1py, xqfpxqq2

ď 2d2pp´1qpy, ψ`pxqqpfpψ`pxqq ´ fpxqq2 ` 2f2pxqpdp´1py, ψ`pxqq ´ dp´1py, xqq2

ď 2π2pp´1qpfpψ`pxqq ´ fpxqq2 ` 2π2pp´1q2s2pp´1qf2pxq,
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where we have used (44) to majorize the last term. From (51), we deduce that

pfpψ`pxqq ´ fpxqq2 ď 2sπp´1

ż x`sπp´1

x´sπp´1

pf 1pzqq2 dz.

As usual, the assumption 0 ă sβ ď 1{2 enables to find a universal constant k ą 0 such that for
any z P px´ sπp´1, x` sπp´1q, we have µβpxq ď kµβpzq. From the above computations it follows
there exists another universal constant k1 ą 0 such that for any y P T,

J2pyq ď k1

ˆ
s2pp´1q

ż
f2 dµβ ` s2

ż
pf 1q2 dµβ

˙

ď k1s2pp´1q

ˆż
f2 dµβ `

ż
pf 1q2 dµβ

˙
.

Finally we come to J3pyq, which will need to be integrated with respect to νpdyq. From (39),
we first get that

J3pyq “
ż

Bpy,π´πp´1sq

ˆ
spp´ 1qdp´2pψεpxq, yq

1 ´ spp´ 1qdp´2pψεpxq, yq

˙2

g2ypxqµβpdxq

ď pp´ 1q2
p2 ´ pq2 s

2

ż

Bpy,π´πp´1sq
d2pp´2qpψεpxq, yqg2ypxqµβpdxq

ď π2pp´1qpp´ 1q2
p2 ´ pq2 s2

ż

Bpy,π´πp´1sq
d2pp´2qpψεpxq, yqf2pxqµβpdxq.

Next, recalling that }ν}8 ď 1 ` πA and that dpψεpxq, yq ě s
1

2´p for any x P Bpy, π ´ πp´1sq, it
appears that
ż

T

J3pyq νpdyq ď 1 ` πA

2π

π2pp´1qpp ´ 1q2
p2 ´ pq2 s2

ż

T

dy

ż

Bpy,π´πp´1sq
d2pp´2qpψεpxq, yqf2pxqµβpdxq

ď 1 ` πA

2π

π2pp´1qpp ´ 1q2
p2 ´ pq2 s2

ż

T

µβpdxq f2pxq
ż

T

1"
dpψεpxq,yqěs

1
2´p

*d2pp´2qpψεpxq, yq dy.

But for any fixed z P R{p2πZq, we compute that
ż

T

1"
dpz,yqěs

1
2´p

*d2pp´2qpz, yq dy “ 2

ż π

s
1

2´p

1

y2p2´pq
dy

ď k2
p

$
’&
’%

1 , if p ą 3{2
lnp1{sq , if p “ 3{2
s

2p´3

2´p , if p ă 3{2
,

for s P p0, 1{2q and for an appropriate constant k2
p ą 0 depending only on p P p1, 2q. It is not

difficult to check that as s Ñ 0`, we have

s2pp´1q "

$
’&
’%

s2 , if p ą 3{2
s2 lnp1{sq , if p “ 3{2
s2s

2p´3

2´p , if p ă 3{2
.

It follows that for any p P p1, 2q, we can find a constant k1pp,Aq ą 0, depending only on p P p1, 2q
and A ą 0, such that

ż

T

J3pyq νpdyq ď k1pp,Aqs2pp´1q

ż

T

f2pxqµβpdxq.

This ends the proof of the estimate (50).
�
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3.4 Estimate of L˚
α,βr1s in the cases p ą 2

This situation is simpler than the one treated in the previous subsection and is similar to the case
p “ 2, because for y P T fixed and s ě 0 small enough, the mapping z defined in (31) is injective
when p ą 2. Again for any fixed y P T and s ě 0, the definition (17) has to be replaced by (30),
namely,

@ x P T, Ty,sfpxq ≔ fpzpxqq. (52)

With the previous subsections in mind, the computations are quite straightforward, so we will just
outline them.

The first task is to determine the adjoint T :
y,s of Ty,s in L

2pλq. An immediate change of variable
gives that for any s P p0, σq, for any bounded and measurable function g, we have, for almost every
x P T (identified with its representative in py ´ π, y ` πq),

T :
y,srgspxq “ 1py,zpyqqpxqψ1pxqgpψpxqq,

where σ ≔ π2´p{pp ´ 1q and ψ : pzpy ´ πq, zpy ` πqq Ñ py ´ π, y ` πq is the inverse mapping of
z (with the slight abuses of notation: zpy ´ πq ≔ x ´ π ` πp´1s, zpy ` πq ≔ x ` π ´ πp´1s). The
adjoint T ˚

y,s of Ty,s in L
2pµβq is still given by (32). As in the previous subsections, this operator is

bounded in L
2pµβq. It follows, if ν admits a continuous density with respect to λ and at least for

α ą 0 and β ě 0 such that s ≔ pp{2qαβ P r0, σq, that the adjoint L˚
α,β of Lα,β in L

2pµβq is defined
on D. In particular we can consider L˚

α,β1, which is given, for almost every x P T, by

L˚
α,β1pxq “ β2

2
pU 1

ppxqq2 ´ β

2
U2
p pxq ` pβ

2s

ˆż
T ˚
y,sr1spxq νpdyq ´ 1

˙
. (53)

From this formula we deduce:

Proposition 20 Assume that ν admits a density with respect to λ satisfying (20). Then there
exists a constant CpA, pq ą 0, only depending on A ą 0 and p ą 2, such that for any β ě 1 and
α P p0, σ{ppβ2qq, we have

››L˚
α,β1

››
8

ď CpA, pqmax
`
αβ4, αaβ1`a

˘
.

Proof

The arguments are similar to those of the case J5 in the proof of Proposition 18, but are less
involved, because the omnipresent term 1 ´ spp ´ 1qpψpxq ´ yqp´2 is now easy to bound: for any
s P r0, σ{2s, we have for any y P T and x P pzpy ´ πq, zpy ` πqq,

1

2
ď 1 ´ pp ´ 1q |ψpxq ´ y|p´2 s ď 1.

In particular we have under these conditions,

ψ1pxq “ 1

1 ´ pp´ 1q |ψpxq ´ y|p´2 s
P r1, 2s.

Following the arguments of the previous subsection, one finds a constant Kpp,Aq, depending only
on p ą 2 and A ą 0, such that for any β ě 1, s P r0, σ{p2βqs and x P pzpy ´ πq, zpy ` πqq,

ˇ̌
ˇψ1

`pxq ´ 1 ´ pp´ 1q |ψ`pxq ´ y|p´2 s
ˇ̌
ˇ ď Kpp,Aqs2

ˇ̌
ˇexppβrUppxq ´ Uppψ`pxqqsq ´ 1 ` βsignpx´ yqU 1

ppxq |x´ y|p´1 s
ˇ̌
ˇ ď Kpp,Aqβ2s2.
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This bound enables us to approximate T ˚
α,β1pxq ´ 1 up to a term Op,Apβ2s2q (recall that this

designates a quantity which is bounded by an expression of the form K 1pp,Aqβ2s2 for a constant
K 1pp,Aq ą 0 depending on p ą 2 and A ą 0), by

´
pp´ 1q |ψ`pxq ´ y|p´2 ´ βsignpx´ yqU 1

ppxq |x´ y|p´1s
¯
s.

Next we consider

J ≔ ty P T : x P pzpy ´ πq, zpy ` πqqu
“ Tzrx1 ´ sπp´1, x1 ` sπp´1s, (54)

in order to decompose

pβ

2s

ż

T

T ˚
y,sr1spxq ´ 1 νpdyq “ pβ

2s

ż

J

T ˚
y,sr1spxq ´ 1 νpdyq ´ pβ

2s
νprx1 ´ sπp´1, x1 ` sπp´1sq. (55)

According to the previous estimate, up to a term Op,Apβ3s2q the first integral is equal to

ppp´ 1qβ
2

ż

J

dp´2py, xq νpdyq ´ pβ2

2
U 1
ppxq

ż

J

signpx ´ yqdp´1px, yq νpdyq.

In view of (54), up to an additional term Op,Apβ2sq, we can replace J in the above integrals by T.
Thus putting together (53) and (55) with (34) and (35) (which are also valid here), it remains to
estimate

pβ

2

ˇ̌
ˇ̌πp´2νpx1q ´ 1

s
νrx1 ´ sπp´1, x1 ` sπp´1s

ˇ̌
ˇ̌

and this is easily done through the assumption (20).
�

We finish this subsection with the equivalent of Lemma 11:

Lemma 21 For p ą 2, there exists a constant kppq ą 0, depending only on p ą 2, such that for
any s P p0, σq, with σ ≔ π2´p{pp´1q, and β ě 1 with βs ď 1, we have, for any y P T and f P C1pTq,

ż

Bpy,π´sπp´1q
pT ˚
y,srgyspxq ´ gypxqq2 µβpdxq ď kppqs2β2

ˆż
pBfq2 dµβ `

ż
f2 dµβ

˙
,

where T ˚
y,s is the adjoint operator of Ty,s in L

2pµβq and where for any fixed y P T,

@ x P Tzty1u, gypxq ≔ fpxqdp´1px, yq 9γpx, y, 0q.

Proof

We only sketch the arguments, which are just an adaptation of those of the proof of Lemma 11.
Again it is sufficient to deal with the case y “ 0, which is removed from the notations, and
consequently with the function gpxq “ ´signpxq |x|p´1 fpxq. As seen previously in this subsection,
we have for s P p0, σq and x P p´π, πq,

T ˚
s rgspxq “ 1p´π`sπp´1,π´sπp´1qpxq exppβrUppxq ´ Uppψpxqqsqψ1pxqgpψpxqq,

where ψ is the inverse mapping of p´π, πq Q x ÞÑ x ´ signpxq |x|p´1. Recall that for x P p´π `
sπp´1, π ´ sπp´1q,

ψ1pxq “ 1

1 ´ pp ´ 1q |ψpxq|p´2 s
P r1, 2s. (56)
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Considering the decomposition

T ˚
s rgspxq ´ gpxq
“ pexppβrUppxq ´ Uppψpxqqsq ´ 1qψ1pxqgpψpxqq ` ψ1pxqpgpψpxqq ´ gpxqq ` pψ1pxq ´ 1qgpxq,

we are led, after integration with respect to 1p´π`sπp´1,π´sπp´1qpxqµβpdxq, to computations sim-
ilar to those of Subsections 3.1 and 3.3, and indeed simpler than in the latter one, due to the
boundedness property described in (56).

�

Let us summarize the Propositions 10, 14, 18 and 20 of the previous subsections into the
statement:

Proposition 22 Assume that (20) is satisfied and for p ě 1, consider the constant appq ą 0
defined in (5). Then there exists two constants σppq P p0, 1{2q and CpA, pq ą 0, depending only on
the quantities inside the parentheses, such that for any α ą 0 and β ą 1 such that αβ ă σppq, we
have

b
µβrpL˚

α,β1q2s ď CpA, pqαappqβ4.

Despite this bound is very rough, since we have replaced an essential norm by a L
2 norm, it will

be sufficient in the next section, when αappqβ4 is small, as a measure of the discrepancy between
µβ and the invariant measure for Lα,β.

4 Proof of convergence

This is the main part of the paper: we are going to prove Theorem 1 by the investigation of the
evolution of a L

2 type functional.

On T consider the algorithm X ≔ pXtqtě0 described in the introduction. We require that the
underlying probability measure ν admits a density with respect to λ which is Hölder continuous:
a P p0, 1s and A ą 0 are constants such that (20) is satisfied. For the time being, the schemes
α : R` Ñ R

˚
` and β : R` Ñ R` are assumed to be respectively continuous and continuously

differentiable. Only later on, in Proposition 27, will we present the conditions insuring the wanted
convergence (4). On the initial distribution m0, the last ingredient necessary to specify the law of
X, no hypothesis is made. We also denote mt the law of Xt, for any t ą 0. From the lemmas given
in the appendix, we have that mt admits a C1 density with respect to λ, which is equally written
mt. As it was mentioned in the previous section, we want to compare these temporal marginal laws
with the corresponding instantaneous Gibbs measures, which were defined in (11) with respect to
the potential Up given in (1). A convenient way to quantify this discrepancy is to consider the
variance of the density of mt with respect to µβt under the probability measure µβt:

@ t ą 0, It ≔

ż ˆ
mt

µβt
´ 1

˙
2

dµβt . (57)

Our goal here is to derive a differential inequality satisfied by this quantity, which implies its
convergence to zero under appropriate conditions on the schemes α and β. More precisely, our
purpose it to obtain:

Proposition 23 There exists two constants c1pp,Aq, c2pp,Aq ą 0, depending on p ě 1 and A ą 0,
and a constant ςppq P p0, 1{2q, depending on p ě 1, such that for any t ą 0 with βt ě 1 and
0 ă αtβ

2
t ď ςppq, we have

I 1
t ď ´c1pp,Aqpβ´3

t expp´bpUpqβtq ´ α
rappq
t β3t ´

ˇ̌
β1
t

ˇ̌
qIt ` c2pp,Aqpαappq

t β4t `
ˇ̌
β1
t

ˇ̌
q
a
It,
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where bpUpq was defined in (6), appq in Proposition 22 and

rappq ≔
"

1 , if p “ 1 or p ě 3{2
2pp ´ 1q , if p P p1, 3{2q .

At least formally, there is no difficulty to differentiate the quantity It with respect to the time
t ą 0. But we postpone the rigorous justification of the following computations to the end of the
appendix, where the regularity of the temporal marginal laws is discussed in detail. Thus we get
at any time t ą 0,

I 1
t “ 2

ż ˆ
mt

µβt
´ 1

˙ Btmt

µβt
dµβt ´ 2

ż ˆ
mt

µβt
´ 1

˙
mt

µβt
Bt lnpµβtq dµβt

`
ż ˆ

mt

µβt
´ 1

˙
2

Bt lnpµβtq dµβt

“ 2

ż ˆ
mt

µβt
´ 1

˙
Btmt dλ ´

ż ˆ
mt

µβt
´ 1

˙2

Bt lnpµβtq dµβt ´ 2

ż ˆ
mt

µβt
´ 1

˙
Bt lnpµβtq dµβt

ď 2

ż ˆ
mt

µβt
´ 1

˙
Btmt dλ ` }Bt lnpµβtq}8

˜ż ˆ
mt

µβt
´ 1

˙
2

dµβt ` 2

ż ˇ̌
ˇ̌mt

µβt
´ 1

ˇ̌
ˇ̌ dµβt

¸

ď 2

ż ˆ
mt

µβt
´ 1

˙
Btmt dλ ` }Bt lnpµβtq}8

´
It ` 2

a
It

¯
,

where we used the Cauchy-Schwarz inequality. The last term is easy to deal with:

Lemma 24 For any t ě 0, we have

}Bt lnpµβtq}8 ď πp
ˇ̌
β1
t

ˇ̌
.

Proof

Since for any t ě 0 we have

@ x P T, lnpµβtq “ ´βtUppxq ´ ln

ˆż
expp´βtUppyqqλpdyq

˙
,

it appears that

@ x P T, Bt lnpµβtq “ β1
t

ż
Uppyq ´ Uppxqµβtpdyq,

so that

}Bt lnpµβtq}8 ď oscpUpq
ˇ̌
β1
t

ˇ̌
.

The bound oscpUpq ď πp is an immediate consequence of the definition (1) of Up and of the fact
that the (intrinsic) diameter of T is π.

�

Denote for any t ą 0, ft ≔ mt{µβt. If this function was to be C2, we would get, by the
martingale problem satisfied by the law of X, that

ż ˆ
mt

µβt
´ 1

˙
Btmt dλ “

ż
Lαt,βt rft ´ 1s dmt

“
ż
Lαt,βt rft ´ 1s ft dµβt ,
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where Lαt,βt , described in the previous section, is the instantaneous generator at time t ě 0 of X.
The interest of the estimate of Proposition 22 comes from the decomposition of the previous term
into

ż
Lαt,βt rft ´ 1s pft ´ 1q dµβt `

ż
Lαt,βt rft ´ 1s dµβt

“
ż
Lαt,βt rft ´ 1s pft ´ 1q dµβt `

ż
pft ´ 1qL˚

αt,βt
r1s dµβt

ď
ż
Lαt,βt rft ´ 1s pft ´ 1q dµβt `

a
It

b
µβtrpL˚

αt,βt
r1sq2s.

It follows that to prove Proposition 23, it remains to treat the first term in the above r.h.s. A first
step is:

Lemma 25 There exist a constant c3pp,Aq ą 0, depending on p ě 1 and A ą 0 and a constant
rσppq P p0, 1{2q, such that for any α ą 0 and β ě 1 such that αβ2 ď rσppq, we have, for any
f P C2pTq,
ż
Lα,β rf ´ 1s pf ´ 1q dµβ ď ´

ˆ
1

2
´ c3pp,Aqαrappqβ3

˙ ż
pBfq2 dµβ ` c3pp,Aqαrappqβ3

ż
pf ´ 1q2 dµβ,

where rappq is defined in Proposition 23.

Proof

For any α ą 0 and β ě 0, we begin by decomposing the generator Lα,β into

Lα,β “ Lβ `Rα,β, (58)

where Lβ ≔ pB2 ´ βU 1
pBq{2 was defined in (10) (recall that U 1

p is well-defined, since ν has no atom)
and where Rα,β is the remaining operator. An immediate integration by parts leads to

ż
Lβ rf ´ 1s pf ´ 1q dµβ “ ´1

2

ż
pBpf ´ 1qq2 dµβ

“ ´1

2

ż
pBfq2 dµβ.

Thus our main task is to find constants c3pp,Aq ą 0 and rσppq P p0, 1{2q such that for any α ą 0
and β ě 1 with αβ2 ď rσppq, we have, for any f P C2pTq,

ˇ̌
ˇ̌
ż
Rα,β rf ´ 1s pf ´ 1q dµβ

ˇ̌
ˇ̌ ď c3pp,Aqαrappqβ3

ˆż
pBfq2 dµβ `

ż
pf ´ 1q2 dµβ

˙
. (59)

By definition, we have for any f P C2pTq (but what follows is valid for f P C1pTq),

@ x P T, Rα,βrf spxq “ 1

α

ż
fpγpx, y, pp{2qαβdp´1px, yqqq ´ fpxq νpdyq ` β

2
U 1
ppxqf 1pxq.

To evaluate this quantity, on one hand, recall that we have for any x P T,

U 1
ppxq “ ´p

ż

T

dp´1px, yq 9γpx, y, 0q νpdyq

and on the other hand, write that for any x P T and y P Tztxu,

fpγpx, y, pp{2qαβdp´1px, yqqq ´ fpxq “ p

2
αβ

ż
1

0

f 1pγpx, y, pp{2qαβdpx, yquqqdp´1px, yq 9γpx, y, 0q du.
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Writing s ≔ pp{2qαβ and considering again the operators introduced in (30) (now for any p ě 1),
it follows thatż

Rα,β rf ´ 1s pf ´ 1q dµβ

“ pβ

2

ż
1

0

du

ż
νpdyq

ż
µβpdxqpTy,surf 1spxq ´ f 1pxqqpfpxq ´ 1qdp´1px, yq 9γpx, y, 0q

“ pβ

2

ż
1

0

du

ż
νpdyq

ż
µβpdxqpTy,surf 1spxq ´ f 1pxqqgypxq,

where for any fixed y P T,

@ x P Tztyu, gypxq ≔ pfpxq ´ 1qdp´1px, yq 9γpx, y, 0q (60)

(with e.g. the convention that gypy1q ≔ 0). Let us also fix the variable u P r0, 1s for a while.
We begin by considering the case where p ě 2. By definition of T ˚

y,su (discussed in Section 3),
we have ż

pTy,surf 1spxq ´ f 1pxqqgypxqµβpdxq “
ż
f 1pxqpT ˚

y,surgyspxq ´ gypxqqµβpdxq (61)

“ I1py, uq ` I2py, uq,
where for any y P T,

I1py, uq ≔
ż

Bpy,π´suπp´1q
f 1pxqpT ˚

y,surgyspxq ´ gypxqqµβpdxq

I2py, uq ≔ ´
ż

Bpy1,suπp´1q
f 1pxqgypxqµβpdxq (62)

(recall from Subsections 3.1 and 3.4 that for any measurable function g, T ˚
y,srgs vanishes on

Bpy1, suπp´1q). The first integral is treated through the Cauchy-Schwarz inequality,

|I1py, uq| ď
dż

pf 1q2 dµβ
dż

Bpy,π´suπp´1q
pT ˚
y,surgys ´ gyq2 µβ

and Lemmas 11 and 21, at least if sβ ą 0 is smaller than a certain constant rσppq P p0, {12q. It
follows that for a universal constant k ą 0, we have

ż

Tˆr0,1s
|I1py, uq| νpdyqdu ď ks2β2

ˆż
pBfq2 dµβ `

ż
pf ´ 1q2 dµβ

˙ ż
1

0

u2 du

“ k

2
s2β2

ˆż
pBfq2 dµβ `

ż
f2 dµβ

˙

ď k

4
sβ

ˆż
pBfq2 dµβ `

ż
f2 dµβ

˙
,

bound going in the direction of (59).
Next we turn to the integral I2py, uq. We cannot deal with it uniformly over y P T but we get
a convenient bound by integrating it with respect to νpdyq. Recalling that under the assumption
(20) the density of ν with respect to λ is bounded by 1 `Aπ, it appears that

ż
|I2py, uq| νpdyq ď 1 `Aπ

2π

ż π

´π
|I2py, uq| dy (63)

ď 1 `Aπ

2π

ż

T

dy

ż

Bpy1,suπp´1q

ˇ̌
f 1pxq

ˇ̌
|gypxq| µβpdxq

ď 1 `Aπ

2
πp´2

ż

T

µβpdxq
ˇ̌
f 1pxq

ˇ̌
|fpxq ´ 1|

ż

Bpx1,suπp´1q
1 dy

“ p1 `Aπqπ2p´3su

ż

T

ˇ̌
f 1

ˇ̌
|f ´ 1| dµβ.
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The Cauchy-Schwarz inequality and integration with respect to 1r0,1spuqdu lead again to a bound
contributing to (59).

It is time to consider the cases where p P r1, 2q. We will rather decompose the l.h.s. of (61)

into three parts. Let us extend the notation ru˘ ≔ y˘ psuq
1

2´p from Subsection 3.3 to all p P r1, 2q.
Next we modify the definition (60) by introducing rgypxq ≔ 1ry´π,ru´s\rru`,y`πspxqgypxq. Then we
write

ż
pTy,surf 1spxq ´ f 1pxqqgypxqµβpdxq “ rI1py, uq ` I2py, uq ` I3py, uq,

where

rI1py, uq ≔
ż

Bpy,π´suπp´1q
f 1pxqpT ˚

y,surrgyspxq ´ gypxqqµβpdxq

I2py, uq ≔ ´
ż

Bpy1,suπp´1q
f 1pxqgypxqµβpdxq

I3py, uq ≔
ż

rru´,ru`s
Ty,surf 1spxqgypxqµβpdxq.

The treatment of rI1py, uq is similar to that of I1py, uq, with Lemmas 15 and 19 (where a preliminary
integration with respect to νpdyq was necessary) replacing Lemmas 11 and 21.
Concerning I2py, uq, it is bounded in the same manner as the corresponding quantity defined in
(62).
It seems that the most convenient way to deal with I3py, uq is to first integrate it with respect to
1r0,1spuq νpdyqdu. Taking into account that }ν}8 ď p1`Aπq and using Cauchy-Schwarz inequality,
we get

ż
|I3py, uq|1r0,1spuq νpyqdu ď 1 `Aπ

2π

ż
|I3py, uq|1r0,1spuq dydu

ď 1 `Aπ

2π

dż
1rru´,ru`spxqpTy,surf 1spxqq21r0,1spuqµβpdxqdydu

dż
1rru´,ru`spxqg2ypxq1r0,1spuqµβpdxqdydu.

The last factor can be rewritten under the form

dż
µβpdxq

ż
1

rx´s
1

2´p ,x`s
1

2´p s
pyqg2ypxq dy ď πp´1

gffeż
µβpdxqpfpxq ´ 1q2

ż x`s
1

2´p

x´s
1

2´p

dy

“ π

b
2s

1

2´p

dż
pf ´ 1q2 dµβ . (64)

So it remains to consider the term
ż
1rru´,ru`spxqpTy,surf 1spxqq21r0,1spuqµβpdxqdydu (65)

“ 1

2π

ż
1rru´,ru`spxqTy,surpf 1q2spxqµβpxq1r0,1spuq dydu

(where as a function, µβ stands for the density of the measure µβ with respect to λ). Remember that
for any measurable function h, we have Ty,surhspxq ≔ hpx`sudp´1px, yq 9γpx, y, 0qq. For x P rru´, ru`s,
we have dpx, yq ď psuq

1

2´p and it follows that dpx, x`sudp´1px, yq 9γpx, y, 0qq ď psuq
3´p
2´p . Taking into
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account that
››U 1

p

››
8

ď πp´1, we can then a universal constant k ą 0 such that for 0 ď sβ ď rσppq (for
an appropriate constant rσppq P p0, 1{2q) and x P T, we have µβpxq{µβpx` sudp´1px, yq 9γpx, y, 0qq ď
k. This leads us to consider the function h defined by

@ x P T, hpxq ≔ pf 1pxqq2µβpxq, (66)

since up to a universal constant, we have to find an upper bound of

ż
1rru´,ru`spxqTy,surhspxq1r0,1spuq dxdydu ď

ż π

´π
dx

ż x`s
1

2´p

x´s
1

2´p

dy

ż x`sdp´1px,yq

x´sdp´1px,yq
hpvq dv

sdp´1px, yq

“
ż

T

Hpvqhpvq dv,

where for any fixed v P T,

Hpvq ≔ 1

s

ż

T2

1"
dpx,yqďs

1
2´p , dpv,xqďsdp´1px,yq

* dxdy

dp´1px, yq .

Let us furthermore fix x P T,

1

s

ż

T

1"
pdpv,xq{sq

1
p´1 ďdpx,yqďs

1
2´p

* dy

dp´1px, yq “ 2

p2 ´ pqs

˜
s´

ˆ
dpv, xq
s

˙ 2´p

p´1

¸

`

.

The integration of the last r.h.s. with respect to dx is bounded above by

2

2 ´ p

ż ps
1

2´p qp´1s

0

dx “ 2

2 ´ p
s

1

2´p .

Thus we have found a constant kppq ą 0 depending on p P r1, 2q such that (65) is bounded above

by kppqs
1

2´p under our conditions on s ą 0 and β ě 1. In conjunction with (64) and definition
(66), it enables to conclude to the existence of a constant kpp,Aq ą 0, depending on p P r1, 2q and
A ą 0, such that

ż
|I3py, uq| 1r0,1spuq νpyqdu ď kpp,Aqs

1

2´p

dż
pf ´ 1q2 dµβ

dż
pf 1q2 dµβ.

Putting together all these estimates and taking into account that β ě 1, 0 ă sβ ď rσppq and
s2pp´1q ě s1{p2´pq, it appears that

ˇ̌
ˇ̌
ˇ

ż

Tˆr0,1s

rI1py, uq ` I2py, uq ` I3py, uq νpdyqdu
ˇ̌
ˇ̌
ˇ ď k1pp,Aq

"
βs , if p “ 1 or p ě 2

βs` s2pp´1q , if p P p1, 2q

ď 2k1pp,Aq
"
βs , if p “ 1 or p ě 3{2
βs` s2pp´1q , if p P p1, 3{2q ,

for another constant k1pp,Aq ą 0, depending on p P r1, 2q and A ą 0. This finishes the proof of
(59).

�

To conclude the proof of Proposition 23, we must be able to compare, for any β ě 0 and any
f P C1pTq, the energy µβrpBfq2s and the variance Varpf, µβq. This task was already done by
Holley, Kusuoka and Stroock [15], let us recall their result:
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Proposition 26 Let Up be a C1 function on a compact Riemannian manifold M of dimension
m ě 1. Let bpUpq ě 0 be the associated constant as in (6). For any β ě 0, consider the Gibbs
measure µβ given in (11). Then there exists a constant CM ą 0, depending only on M , such that
the following Poincaré inequalities are satisfied:

@ β ě 0, @ f P C1pMq, Varpf, µβq ď CM r1 _ pβ
››U 1

p

››
8

qs5m´2 exppbpUpqβqµβr|∇f |2s.

We can now come back to the study of the evolution of the quantity It “ Varpft, µβtq, for t ą 0.
Indeed applying Lemma 25 and Proposition 26 with α “ αt, β “ βt and f “ ft, we get at any
time t ą 0 such that βt ě 1 and αtβ

2
t ď ςppq,

ż
Lαt,βt rft ´ 1s pft ´ 1q dµβt

ď ´c4β´3

t expp´bpUpqβtq
´
1 ´ 2c3pp,Aqαrappq

t β3t

¯
It ` c3pp,Aqαrappq

t β3t It

ď ´pc4β´3

t expp´bpUpqβtq ´ c5pp,Aqαrappq
t β3t qIt,

where c4 ≔ p16π3CTq´1 and c5pp,Aq ≔ c3pp,Aqp1 ` 2c4q.
Taking into account Lemma 24, the computations preceding Lemma 25 and Proposition 22, one
can find constants c1pp,Aq, c2pp,Aq ą 0 and ςppq P p0, 1{2q such that Proposition 23 is satisfied.

This result leads immediately to conditions insuring the convergence toward 0 of the quantity
It for large times t ą 0:

Proposition 27 Let α : R` Ñ R
˚
` and β : R` Ñ R` be schemes as at the beginning of this

section and assume:

lim
tÑ`8

βt “ `8
ż `8

0

p1 _ βtq´3 expp´bpUpqβtq dt “ `8

and that for large times t ą 0,

max
!
α
appq
t β4t , α

rappq
t β3t ,

ˇ̌
β1
t

ˇ̌)
! expp´bpUpqβtq

(where appq ą 0 and rappq ą 0 are defined in Propositions 22 and 23). Then we are assured of

lim
tÑ`8

It “ 0.

Proof

The differential equation of Proposition 23 can be rewritten under the form

F 1
t ď ´ηtFt ` ǫt, (67)

where for any t ą 0,

Ft ≔
a
It

ηt ≔ c1pp,Aqpβ´3

t expp´bpUpqβtq ´ α
rappq
t β3t ´

ˇ̌
β1
t

ˇ̌
q{2

ǫt ≔ c2pp,Aqpαappq
t β4t `

ˇ̌
β1
t

ˇ̌
q{2.

The assumptions of the above proposition imply that for t ě 0 large enough, βt ě 1 and αtβ
2
t ď

ςppq, where ςppq P p0, 1{2q is as in Proposition 23. This ensures that there exists T ą 0 such that
(67) is satisfied for any t ě T (and also FT ă `8). We deduce that for any t ě T ,

Ft ď FT exp

ˆ
´

ż t

T

ηs ds

˙
`

ż t

T

ǫs exp

ˆ
´

ż t

s

ηu du

˙
ds. (68)
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It appears that limtÑ`8 Ft “ 0 as soon as

ż `8

T

ηs ds “ `8

lim
tÑ`8

ǫt{ηt “ 0.

The above assumptions were chosen to ensure these properties.
�

In particular, remarking that appq ď rappq for any p ě 1, the schemes given in (3) satisfy the
hypotheses of the previous proposition, so that under the conditions of Theorem 1, we get

lim
tÑ`8

It “ 0.

Let us deduce (4) for any neighborhood N of the set Mp of the global minima of Up. From
Cauchy-Schwartz inequality we have for any t ą 0,

}mt ´ µβt}tv “
ż

|ft ´ 1| µβt

ď
a
It.

An equivalent definition of the total variation norm states that

}mt ´ µβt}tv “ 2max
APT

|mtpAq ´ µβtpAq|

where T is the Borelian σ-algebra of T. It follows that (4) reduces to

lim
βÑ`8

µβpN q “ 1,

for any neighborhood N of Mp, property which is immediate from the definition (11) of the Gibbs
measures µβ for β ě 0. This finishes the proof of Theorem 1.

Remark 28 Under mild conditions, the results of Hwang [18] enable to go further, because he
identifies the weak limit µ8 of the Gibbs measures µβ as β goes to `8. Thus, if one knows, as
above, that

lim
tÑ`8

}mt ´ µβt}tv “ 0,

then one gets that mt also weakly converges toward µ8 for large times t ą 0. The weight given by

µ8 to a point x P Mp is inversely related to the value of
b
U2
p pxq and in this respect Lemma 6 is

useful (still assuming that ν admits a continuous density).
First note that for any x P Mp, we have U2

p pxq ě 0, since x is a global minima of Up, and by
consequence νpx1q ď 1. Next assume that we have for any x P Mp, νpx1q ă 1. It follows that Mp

is discrete and by consequence finite, since T is compact. This property was already noted by Hotz
and Huckemann [16], among other features of intrinsic means on the circle. Then we deduce from
Hwang [18] that

µ8 “ 1

Z

ÿ

xPMp

1a
1 ´ νpx1q

δx,

where Z ≔
ř
xPMp

p1 ´ νpx1qq´1{2 is the normalizing factor.

In this situation LpXtq concentrates for large times t ą 0 on all the p-means of ν. Thus to find
all of them with an important probability, one should sample independently several trajectories of
X, e.g. starting from a fixed point X0 P T.
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˝

Remark 29 Similarly to the approach presented for instance in [22, 25], we could have studied
the evolution of pEtqtą0, which are the relative entropies of the time marginal laws with respect to
the corresponding instantaneous Gibbs measures, namely

@ t ą 0, Et ≔

ż
ln

ˆ
mt

µβt

˙
dmt.

To get a differential inequality satisfied by these functionals, the spectral gap estimate of Holley,
Kusuoka and Stroock [15] recalled in Proposition 26 must be replaced by the corresponding loga-
rithmic Sobolev constant estimate, which is proven in the same article [15].

˝

5 Extension to all probability measures ν

Our main task here is to adapt the computations of the two previous sections in order to prove
Theorem 2. As in the statement of this result, it is better for simplicity of the exposition to restrict
ourselves to the important and illustrative case p “ 2, the general situation will be alluded to in
the last remark of this section.

We begin by remarking that the algorithm Z described in the introduction evolves similarly to
the process X, if we allow the probability measure ν to depend on time. More precisely, for any
κ ą 0, consider the probability measure νκ given by

@ z P M, νκpdzq ≔
ż
νpdyqKy,κpdzq, (69)

where the kernel on M , py, dzq ÞÑ Ky,κpdzq was defined before the statement of Theorem 2. For
α ą 0, β ě 0 and κ ą 0, let us denote by Lα,β,κ the generator defined in (13), where ν is replaced
by νκ. Then the law of Z is solution of the time-inhomogeneous martingale problem associated to
the family of generators pLαt,βt,κtqtě0. This observation leads us to introduce the potentials

@ κ ą 0, @ x P M, U2,κpxq ≔
ż
d2px, yq νκpdyq,

as well as the associated Gibbs measures:

@ β ě 0, @ κ ą 0, µβ,κpdxq ≔ Z´1

β,κ expp´βU2,κpxqqλpdxq,

where Zβ,κ is the renormalization constant.
Denote by mt the law of Zt for any t ě 0. The proof of Theorem 2 is then similar to that of

Theorem 1 and relies on the investigation of the evolution of

@ t ą 0, It ≔

ż ˆ
mt

µβt,κt
´ 1

˙
2

dµβt,κt, (70)

which play the role of the quantities defined in (57).

While the above program was presented for a general compact Riemannian manifold M , we
again restrict ourselves to the situation M “ T.
We first need some estimates on the probability measures νκ, for κ ą 0:
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Lemma 30 For any κ ą 0, νκ admits a density with respect to λ, still denoted νκ. Furthermore
we have, for any κ ą 1{π,

}νκ}8 ď 2πκ

}Bνκ}8 ď 2πκ2,

where Bνκ stands for the weak derivative (so that the last norm }¨}8 is the essential supremum
norm with respect to λ).

Proof

When M “ T, for any κ ą 0, the kernel K¨,κp¨q corresponds to the rolling around T of the kernel
defined on R by py, dzq ÞÑ κp1 ´ κ |z ´ y|q` dz. In particular for any y P T, Ky,κp¨q is absolutely
continuous with respect to λ and (69) shows that the same is true for νκ. If furthermore κ ą 1{π,
from this definition we can write for any z P T,

νκpdzq “ κ

˜ż z`1{κ

z´1{κ
p1 ´ κdpy, zqq` νpdyq

¸
dz,

namely, almost everywhere with respect to λpdzq,

νκpzq “ 2πκ

ż z`1{κ

z´1{κ
p1 ´ κdpy, zqq` νpdyq

ď 2πκ

ż z`1{κ

z´1{κ
νpdyq

ď 2πκ.

Next for almost every x, y P T, we have

|νκpxq ´ νκpyq| ď 2πκ

ż

T

|p1 ´ κdpx, zqq` ´ p1 ´ κdpy, zqq`| νpdzq

ď 2πκ

ż

T

|1 ´ κdpx, zq ´ 1 ` κdpy, zq| νpdzq

ď 2πκ2
ż

T

|dpx, zq ´ dpy, zq| νpdzq

ď 2πκ2dpx, yq.

This proves the second bound.
�

An immediate consequence of the last bound is that for any x P T, the map p1{π,`8q Q κ ÞÑ U2,κpxq
is weakly differentiable and for almost every κ ą 1{π, |BκU2,κpxq| ď 2π4κ2. But one can do better:

Lemma 31 For any x P T and any κ ą 1{π, we have

|BκU2,κpxq| ď 3π3

κ
.

Proof

It is better to come back to the definition of νκ, to get, for x P T and κ ą 1{π (where Bκ stands
for weak derivative):

BκU2,κpxq “ Bκ
ˆ
2πκ

ż
λpdyq d2px, yq

ż

T

p1 ´ κdpy, zqq` νpdzq
˙

“ 2π

ż
λpdyq d2px, yq

ż

T

νpdzq p1 ´ κdpy, zqq` ´ 2πκ

ż
λpdyq d2px, yq

ż y´1{κ

y´1{κ
νpdzq dpy, zq.
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The first term of the r.h.s. is equal to U2,κpxq{κ and is bounded by }U2,κ}8 {κ ď π2{κ. In absolute
value, the second term can be written under the form

2πκ

ż
νpdzq

ż z´1{κ

z´1{κ
λpdyq d2px, yqdpy, zq ď 2π3κ

ż
νpdzq

ż z´1{κ

z´1{κ
λpdyq |y ´ z|

“ 2π3

κ
.

�

The improvement of the estimate of the previous lemma with respect to the one given before its
statement is important for us, since it enables to obtain that if pβtqtě0 and pκtqtě0 are C1 schemes,
then we have

@ t ě 0, }Bt lnpµβt,κtq}8 ď π2
ˇ̌
β1
t

ˇ̌
` 3π3βt

ˇ̌
plnpκtqq1

ˇ̌
. (71)

This bound replaces that of Lemma 24 in the present context. Note that for the schemes we
have in mind and up to mild logarithmic corrections, we recover a bound of order 1{p1 ` tq for
}Bt lnpµβt,κtq}8, which is compatible with our purposes.

In the same spirit, even if this cannot be deduced directly from Lemma 31, we have

Lemma 32 As κ goes to infinity, U2,κ converges uniformly toward U2. In particular, if bp¨q is the
functional defined in (6), then we have

lim
κÑ`8

bpU2,κq “ bpU2q.

Proof

Since }BU2,κ}8 ď 2π, for any κ ą 0, it appears that pU2,κqκą0 is an equicontinuous family of
mappings. It is besides clear that νκ weakly converges toward ν as κ goes to infinity, so that
U2,κpxq converges toward U2pxq for any fixed x P T. Compactness of T and Arzelà-Ascoli theorem
then enable to conclude to the uniform of U2,κ toward U2 as κ goes to infinity. The second assertion
of the lemma is an immediate consequence of this convergence.

�

Consider for the evolution of the inverse temperature the scheme

@ t ě 0, βt ≔ b´1 lnp1 ` tq,

where b ą bpU2q and denote ρ ≔ p1 ` bpU2q{bq{2 ă 1. Assume that the scheme pκtqtě0 is such that
limtÑ`8 κt “ `8. Then from the above lemma and Proposition 26 (recall that }BU2,κ}8 ď 2π,
for any κ ą 0), there exists a time T ą 0 such that for any t ě T ,

@ f P C1pTq, 2

p1 ` tqρVarpf, µβt,κtq ď µβt,κtrpBfq2s. (72)

Like (71), this crucial estimate for the investigation of the evolution of the quantities (70) still does
not explain the requirement that k P p0, 1{2q in Theorem 2. Its justification comes from the next
result, which replaces Proposition 10 in the present situation.

Proposition 33 For α ą 0, β ě 0 and κ ą 0, let L˚
α,β,κ be the adjoint operator of Lα,β,κ in

L
2pµβ,κq. There exists a constant C1 ą 0 such that for any β ě 1, κ ě 1 and α P p0, p2βq´1 ^

pβ3pβ ` κqq´1{2q, we have

››L˚
α,β,κ1

››
8

ď C1αβ
2pβ2 ` κ2q.
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Proof

It is sufficient to replace U2 by U2,κ in the proofs of Section 3, in particular note that (19) still
holds. From Lemma 6 and the first part of Lemma 30, it appears that (21) has to be replaced by

@ κ ě 1,
››U2

2,κ

››
8

ď 4πκ.

Instead of (22), we deduce that for any x, y P T and α, β and κ as in the statement of the
proposition,

exp

ˆ
β

„
U2,κpxq ´ U2,κ

ˆ
x´ αβ

1 ´ αβ
py ´ xq

˙˙
“ 1 ` αβ2

1 ´ αβ
U 1
2,κpxqpy ´ xq ` Opα2β3pβ ` κqq.

Keeping following the computations of the same proof, we end up with

L˚
α,β,κ1pxq “ β

1 ´ αβ

1

2παβ

ż x1`αβπ

x1´αβπ
νκpx1q ´ νκpyq dy ` Opαβ3pβ ` κqq.

To estimate the last integral, we resort to the second part of Lemma 30: we get

ˇ̌
ˇ̌
ˇ

ż x1`αβπ

x1´αβπ
νκpx1q ´ νκpyq dy

ˇ̌
ˇ̌
ˇ ď 2πκ2

ż x1`αβπ

x1´αβπ

ˇ̌
x1 ´ y

ˇ̌
dy

“ 2πκ2pαβπq2.

This leads to the announced bound.
�

Similar arguments transform Lemma 25 into:

Lemma 34 There exists a constant C2 ą 0, such that for any α ą 0, β ě 1 and κ ě 1 with
αβ2 ď 1{2, we have, for any f P C2pTq,

ż
Lα,β,κ rf ´ 1s pf ´ 1q dµβ ď ´

ˆ
1

2
´ C2αβ

2pβ ` κq
˙ ż

pBfq2 dµβ

`C2αβ
2pβ ` κq

ż
pf ´ 1q2 dµβ .

Proof

The modifications with respect to the proof of Lemma 25 are very limited: one just needs to take
into account the bounds

››U 1
p,κ

››
8

ď 2π and }νκ}8 ď 2πκ for κ ě 1. Indeed, there are two main
changes:
‚ in (58), where the remaining operator has to be defined by

Rα,β,κ ≔ Lα,β,κ ´ 1

2
pB2 ´ βU 1

p,κBq,

‚ in (63), the factor 1 `Aπ must be replaced by 2πκ, by virtue of the first estimate of Lemma 30.
It leads to the supplementary term αβ2κ in the bound of the above lemma.

�

All the ingredients are collected together to get a differential inequality satisfied by pItqě0.
More precisely, under the requirement that (72) is true for t ě T ą 0, as well as βt ě 1, κt ě 1
and αtβ

2
t

?
κt ď 1{2, we get that there exists a constant C3 ą 0 such that

@ t ě T, I 1
t ď ´ηtIt ` ǫt

a
It,
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where for any t ě T ,

ηt ≔
1

p1 ` tqρ ´ C3pαtβ2t pβt ` κtq `
ˇ̌
β1
t

ˇ̌
` βt

ˇ̌
plnpκtqq1

ˇ̌
q

ǫt ≔ C3pαtβ2t pβ2t ` κ2t q `
ˇ̌
β1
t

ˇ̌
` βt

ˇ̌
plnpκtqq1

ˇ̌
q.

Under the assumptions of Theorem 2 (already partially used to ensure the validity of (72) for some
ρ P p0, 1q), it appears that as t goes to infinity,

ηt „ 1

p1 ` tqρ

ǫt “ O

ˆ
1

1 ` t

˙

and this is sufficient to ensure that

lim
tÑ`8

It “ 0.

The proof of Theorem 2 finishes by the arguments given at the end of Section 4.

Remark 35 As it was mentioned at the end of the introduction, if one does not want to waste
rapidly the sample pYnqnPN (especially if it is not infinite ...), one should take the exponent c the
smallest possible. From our assumptions, we necessarily have c ą 1. But the limit case c “ 1 can
be attained: the above proof shows that the convergence of Theorem 2 is also valid for the schemes

@ t ě 0,

$
&
%

αt ≔ p1 ` tq´1

βt ≔ b´1 lnp1 ` tq
κt ≔ lnp2 ` tq

.

The drawback is that ν is not rapidly approached by νκt as t goes to infinity and this may slow
down the convergence of the algorithm toward N . Indeed, from the previous computations, it
appears that the law of Zt is rather close to the set of global minima of U2,κt .

˝

Remark 36 The cases p “ 1 and p ě 2 can be treated in the same manner, but for p P p1, 2q, one
must follow the dependence on A of the constants in the proof of Lemma 19. In the end it only
leads to supplementary factors of κ, so that Theorem 2 is satisfied with a sufficiently large constant
c, depending on p ě 1 and on the exponent k entering in the definition of the scheme pκtqtě0. But
before going further in the direction of this generalization, it would be more rewarding to first
check if the dependence on p of ap in Theorem 1 is just technical or really necessary.

˝

A Regularity of temporal marginal laws

Our goal is to see that at positive times, the marginal laws of the considered algorithms are
absolutely continuous and that if furthermore ν ! λ, then the corresponding densities belong to
C1pTq. We will also check that this is sufficient to justify the computations made in Section 4.

Let X be the process described in the introduction, for simplicity on T, but the following
arguments could be extended to general connected and compact Riemannian manifolds. We are
going to use the probabilistic construction of X to obtain regularity results on mt, which as usual
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stands for the law of Xt, for any t ě 0. So for fixed t ą 0, let Tt be the largest jump time of
N pαq in the interval r0, ts, with the convention that Tt “ 0 if there is no jump time in this interval.
Denote by ξt the law of pTt,XTtq on r0, ts ˆT. Furthermore, let Pspx, dyq be the law at time s ě 0
of the Brownian motion on T, starting at x P T. From the construction given in the introduction,
we have for any t ą 0,

mtpdxq “
ż

r0,tsˆT

ξtpds, dzqPt´spz, dxq. (73)

An immediate consequence is:

Lemma 37 Let t ą 0 be fixed. About the measurable evolutions α : R` Ñ R
˚
` and β : R` Ñ

R`, only assume that infsPr0,ts αs ą 0. Then, whatever the probability measure ν entering in the
definition of X, we have that mt is absolutely continuous.

Proof

By the hypothesis on α, 0 is the unique atom of ξp¨,Tq, the distribution of Tt (its mass is ξtpt0u,Tq “
expp´

şt
0
1{αs dsq) and ξp¨,Tq admits a bounded density on p0, ts. Since furthermore for any s ą 0

and z P T, Pspz, ¨q is absolutely continuous, the same is true for mt due to (73).
�

To go further, we need to strengthen the assumption on ν.

Lemma 38 In addition to the hypotheses of the previous lemma, assume that ν admits a bounded
density and that infsPr0,ts βs ą 0. Then for any t ą 0, the density of mt belongs to C1pTq.

Proof

We begin by recalling a few bounds on the heat kernels Pspx, dyq, for s ą 0 and x P T. We have
already mentioned they admit a density, namely they can be written under the form pspx, yq dy.
Since the Brownian motion on T is just the rolling up of the usual Brownian motion on R, we have
for any x P T,

@ y P px ´ π, x` πs, pspx, yq “
ÿ

nPZ

expp´py ´ x ` 2πnq2{p2sqq?
2πs

. (74)

From a general bound due to Hsu [17], we deduce that there exists a constant C0 ą 0 such that
for any s ą 0 and y P px ´ π, x` πs, we have

|Bypspx, yq| ď C0

ˆ
dpx, yq
s

` 1?
s

˙
pspx, yq.

To get an upper bound on pspx, yq “ psp0, y ´ xq, consider separately in (74) the sums of n P Zσ

and n P Z´σzt0u, where σ P t´,`u is the sign of y ´ x. It appears that for s P p0, ts,

pspx, yq ď 2
ÿ

nPZσ

expp´py ´ x ` 2πnq2{p2sqq?
2πs

ď 2
expp´py ´ xq2{p2sqq?

2πs

ÿ

nPZ`

expp´p2πnq2{p2sqq

ď C1ptqexpp´d2px, yq{p2sqq?
2πs

,

where C1ptq ≔ ř
nPZ`

expp´2pπnq2{tq. Taking into account (73) and Lemma 37, if we were allowed
to differentiate under the sign integral, we would get for any x P T,

Bxmtpxq “
ż

r0,tsˆT

ξtpds, dzq Bxpt´spz, xq (75)
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(where the l.h.s. stands for the density of mt with respect to 2πλ). Unfortunately the usual
conditions don’t apply here, so it is better to consider the approximation of the density mt by mǫ,t,
where for ǫ P p0, tq,

@ x P T, mt,ǫpxq ≔
ż

r0,t´ǫsˆT

ξtpds, dzq pt´spz, xq.

There is no difficulty in differentiating this expression under the sign sum and in the end it appears
to be smooth in x. So to get the announced result, it is sufficient to see that Bxmǫ,tpxq converges
to the r.h.s. of (75), uniformly in x P T as ǫ goes to 0`. Let us prove the stronger convergence

lim
ǫÑ0`

sup
xPT

ż

rt´ǫ,tsˆT

ξtpds, dzq |Bxpt´spz, xq| “ 0.

The assumptions that infsPr0,ts αsβs ą 0 and that ν admits a bounded density imply that the latter
is equally true for ξtps, ¨q, the regular conditional law of XTt knowing that Tt “ s, for any s ą 0.
We can even find C2ptq ą 0 such that ξtps, dzq ď C2ptq dz, uniformly over s P p0, ts (but a priori
C2ptq may depend on t ą 0 through infsPr0,ts αsβs). In the proof of Lemma 37, we have already
noticed that there exists C3ptq ą 0 such that ξtpds,Tq ď C3ptq ds, for s ­“ 0. It follows that for
ǫ P p0, tq,

ż

rt´ǫ,tsˆT

ξtpds, dzq |Bxpt´spz, xq|

ď C0C1ptqC2ptqC3ptq
ż

rt´ǫ,ts
ds

ż

T

dz

ˆ
dpz, xq

pt´ sq3{2
` 1

t´ s

˙
expp´d2pz, xq{p2pt ´ sqqq?

2π

“ 2C0C1ptqC2ptqC3ptq
ż π

0

dz

ż ǫ

0

ds

ˆ
z

s3{2
` 1

s

˙
expp´z2{p2sqq?

2π
.

This bound no longer depends on x and to compute the latter integral, consider the change of
variable u “ z2{s, z being fixed:

ż π

0

dz

ż ǫ

0

ds

ˆ
z

s3{2
` 1

s

˙
expp´z2{p2sqq “

ż π

0

dz

ż `8

z2{ǫ
du

ˆ
1?
u

` u

˙
expp´u{2q.

We conclude by remarking that by the dominated convergence theorem, the latter term goes to
zero with ǫ.

�

Remark 39 More generally, but still under the assumption that ν admits a bounded density,
the density mt is C1 at some time t ą 0, if we can find ǫ P p0, tq such that infsPrt´ǫ,ts αs ą 0 and
infsPrt´ǫ,ts βs ą 0. This comes from the above proof or can be deduced directly from Lemma 38
and the Markov property of X.

˝

The same arguments cannot be used to prove that for t ą 0, the density of mt belongs to C2pTq.
A priori, this is annoying, since in Section 4, to study the evolution of the quantity It defined in
(57), we had to differentiate it with respect to t ą 0 and the computations were justified only if
the densities mt were C2. The classical way go around this apparent difficulty is to use a mollifier.

Let ρ be a smooth nonnegative function on R whose support is included in r´1, 1s and satisfyingş
R
ρpyq dy “ 1. For any δ P p0, 1q, define

@ t ě 0, @ x P T, m
pδq
t pxq ≔ 1

δ

ż

R

mtpx ` yqρ
´y
δ

¯
dy
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(where functions on T are naturally identified with 2π-periodic functions on R). These functions are

smooth and what is even more important for Section 4, the mapping R
˚
` ˆ T Q pt, xq ÞÑ B2xm

pδq
t pxq

is continuous. Furthermore, the m
pδq
t are densities of probability measures on T. More precisely,

for any t ě 0, m
pδq
t is the density of LpXtq when LpX0q “ m

pδq
0

, as a consequence of the linearity
of the underlying evolution equation (i.e. @ t ě 0, Btmt “ mtLαt,βt, in the sense of distributions).

Thus the computations of Section 4 are justified if we replace there pmtqtą0 by pmpδq
t qtą0, for any

fixed δ P p0, 1q. In particular the inequality (68) is satisfied for pmpδq
t qtą0 instead of pmtqtą0. It

remains to let δ go to 0` to see that the same bound is true for the flow pmtqtą0. This proves
Theorem 1 for general initial distributions m0, for instance Dirac masses. In fact, one could pass
to the limit δ Ñ 0` before (68), for instance already in Proposition 23, to see that it is also valid.
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Séminaire de Probabilités, XXXIII, volume 1709 of Lecture Notes in Math., pages 69–119.
Springer, Berlin, 1999.

[10] B. Charlier. Necessary and sufficient condition for the existence of a Fréchet mean on the
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Institut de Mathématiques de Toulouse
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