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Abstract

A stochastic algorithm is proposed, finding the set of intrinsic p-mean(s) associated to a prob-
ability measure v on a compact Riemannian manifold and to p € [1,00). It is fed sequentially
with independent random variables (Y},)nen distributed according to v and this is the only knowl-
edge of v required. Furthermore the algorithm is easy to implement, because it evolves like a
Brownian motion between the random times it jumps in direction of one of the Y,, n € N. Its
principle is based on simulated annealing and homogenization, so that temperature and approx-
imations schemes must be tuned up (plus a regularizing scheme if v does not admit a Holderian
density). The analyze of the convergence is restricted to the case where the state space is a circle.
In its principle, the proof relies on the investigation of the evolution of a time-inhomogeneous L2
functional and on the corresponding spectral gap estimates due to Holley, Kusuoka and Stroock.
But it requires new estimates on the discrepancies between the unknown instantaneous invariant
measures and some convenient Gibbs measures.

Keywords: Stochastic algorithms, simulated annealing, homogenization, probability mea-
sures on compact Riemannian manifolds, intrinsic p-means, instantaneous invariant measures,
Gibbs measures, spectral gap at small temperature.
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1 Introduction

The purpose of this paper is to present a stochastic algorithm finding the geometric p-means of
probability measures defined on compact Riemannian manifolds, for p € [1,00). But we are to
analyze its convergence only in the restricted case of the circle.

So let be given v a probability measure on M, a compact Riemannian manifold. Denote by d
the Riemannian distance and consider for p > 1 the continuous mapping

Up: M>sz— fdp(:n,y)y(dy) (1)

A global minimum of U, is called a mean of v and let M,, be their set, which is non-empty in the
above compact setting. For p = 2 one recovers the usual notion of intrinsic mean, while for p = 1
one gets the notion of median.

For some applications (see for instance Pennec [12]), it may be important to find M, or at least
some of its elements. In practice the knowledge of v is often given by a sequence Y := (Y, )nen of
independent random variables, identically distributed according to v. So let us present a stochastic
algorithm using this data and enabling to find some elements of M,. It is based on simulated
annealing and homogenization procedures. Thus we will need respectively an inverse temperature
evolution 8 : Ry — R and an inverse speed up evolution a : Ry — R%. Typically, they are
respectively non-decreasing and non-increasing and we have lim;_, o, 8y = 400 and lim; o, ap = 0,
but we are looking for more precise conditions so that the stochastic algorithm we describe below
finds M,

Let N := (N¢)i>0 be a standard Poisson process: it starts at 0 at time 0 and has jumps of length 1
whose interarrival times are independent and distributed according to exponential random variables
of parameter 1. The process N is assumed to be independent from the chain Y. We define the

speeded-up process N(@) = (Nt(a))t>0 via

0 as

viz0, N o= Npay, (2)

Consider the time-inhomogeneous Markov process X = (X});>0 which evolves in M in the following
heuristic way: if T > 0 is a jump time of N(® then X jumps at the same time, from Xp_ to

X1 =expy,. ((p/2)Brard’=2(Xr_, Y ) X1 YN(Q)). By definition the latter point is obtained by
T T

following during a time s := (p/2)Brard’~2(Xr_ ,YN(a)

to Y N at time 1 (and thus may not really correspond to an image of the exponential mapping if

) the shortest geodesic leading from Xp_

s is not small enough). The schemes o and § will satisfy limy_, o, oy = 0, so that for sufficiently
large jump-times T, X7 will be between X7_ and Y N on the above geodesic and quite close

to Xp_. This construction can be conducted unequlvocally almost surely, because by the end of
the description below, X7  will be independent of Y N and the law of X7 will be absolutely

continuous with respect to the Riemannian probablhty A. It insures that almost surely, Y’ N is not
in the cut-locus of X7 and thus the above geodesics are unique. To proceed with the constructlon
we require that between consecutive jump times (and between time 0 and the first jump time), X
evolves as a Brownian motion, relatively to the Riemannian structure of M (see for instance the
book of Tkeda and Watanabe [8]) and independently of Y and N. Very informally, the evolution
of the algorithm X can be summarized by the equation (in the tangent bundle T'M)

VE20,  dX, = dBi+ (p/2)achd’(Xr.,Yyo) X Yy dN

where (By)i=0 would be a Brownian motion on M and where (YN(Q))»O should be interpreted

as a fast auxiliary process. The law of X is then entirely determined by the initial distribution
mo = L(Xy). More generally at any time ¢ > 0, denote by m; the law of Xj.



We believe that the above algorithm X finds in probability at large times the set M,, of p-means,
at least if v is sufficiently regular:

Conjecture 1 Assume that v admits a density with respect to A and that this density is Holder
continuous with exponent a € (0,1]. Then there exist two constants a, > 0, depending on p > 1
and a, and b, > 0, depending on U, and M, such that for any scheme of the form

V=0 a = (1+0) (3)
’ B b~1In(1 + ¢)

where b > by, we have for any neighborhood N of M,, and for any my,
] =1 W

]

Thus to find a element of M,, with an important probability, one should pick up the value of X;
for sufficiently large times t.

The constant b, > 0 we have in view comes from the theory of simulated annealing (cf. for
instance Holley, Kusuoka and Stroock [4]) and can be described in the following way. For any
xz,y € M, let C;, be the set of continuous paths C' = (C(t))o<t<1 going from C(0) = z to
C(1) = y. The elevation Uy,(C) of such a path C relatively to U, is defined by

Uy(C) = tgﬁggﬁUp(C(t))

and the minimal elevation U,(x,y) between = and y is given by
U, = in U,(C
p(2,y) Auin p(C)
Then we consider

b(Up) = max Uy(x,y) — Up(z) — Up(y) + minU, (5)
z,yeM M

This constant can also be seen as the largest depth of a well not encountering a fixed global
minimum of U,. Namely, if 29 € M, then we have

b(Up) = gé%}l(Up(iﬂan)_Up(y) (6)

independently of the choice of xy € M,,.
Let us also define

a yifp=Tlorp>=2
o = { poloy

min(a,p—1) ,ifpe (1,2) (7)
With these notations, the main result of this paper is:

Theorem 2 Conjecture 1 is true for the circle M = T := R/(2rZ) with a, = a(p) and b, = b(Up).

Let us now describe a stochastic algorithm, derived from the previous one, which should enable
one to find the p-means of any probability measure v on a compact Riemannian manifold M.

For any x € M and k > 0, consider, on the tangent space T,M, the probability measure IN(L,{
whose density with respect to the Lebesgue measure dv is proportional to (1 — & ||v|)+ (where the
Lebesgue measure and the norm are relative to the Euclidean structure on 7, M). Denote K, 4
the image by the exponential mapping at x of I?xﬁ. Assume next that we are given an evolution
k : Ry 3t — K € RY and consider the process Z = (Z;);>0 evolving similarly to (X;)o,
except that at the jump times T of N (@) the target YN;Q) is replaced by a point W sampled from

Ky (. xr, independently from the other variables.
NT
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Theorem 3 In the case M =T and p = 2, consider the schemes

ay = (1 + t)ic
Vt=0, By = b 'In(l+1t)
KRt = (1 + t)k

with b > b(Us), k > 0 and ¢ = 2k + 1. Then, for any neighborhood N of My and for any initial
distribution L(Zy), we get

L Flae N =1
where P stands for the underlying probability.

Still in the situation of the circle, it is possible more generally to find for any given p > 1 similar
schemes (where ¢ depends furthermore on p > 1) enabling to find the set of p-means M, (see
Remark 36). Even if v satisfies the condition of Theorem 2, it could be more advantageous
to consider the alternative algorithm Z instead of X when the exponent a in (3) is too small.
Of course we also believe that a variant of Theorem 3 should hold more generally on compact
Riemannian manifolds M. But it seems that the geometry of M should play a role, especially
through the behavior of the volume of small enlargements of the cut-locus of points.

Remark 4 The schemes «, 5 and x presented above are simple examples of admissible evolutions,
they could be replaced for instance by

o = O (7’1 + t)fc
Vit=0, By = b lln(ry +1)
Kt = CQ(T;), + t)k

where C1,Cy > 0, 1,73 > 0, r2 > 1 and still under the conditions b > b(U,), k > 0 and ¢ > 2k + 1.
It is possible to deduce more general conditions insuring the validity of the convergence results of
Theorems 2 and 3 (see e.g. Proposition 27 below).

How to choose in practice the exponents ¢ and k satisfying ¢ > 2k + 1 in Theorem 37 We note
that the larger ¢, the faster « goes to zero and the faster the algorithm Z is using the data (Y}, )nen-
In compensation, k£ can be chosen larger, which means that v is closer to its approximation by its
transport through the kernel K. ., () (defined before the statement of Theorem 3, for more details
see Section 5), namely the convergence will be more precise. This is quite natural, since more
data have been required at some fixed time. So in practice a trade-off has to be made between the
number of i.i.d. variables distributed according to v one has at his disposal and the quality of the
approximation of M,,.

When v is an empirical measure of the form (Y1 | 8,,)/N where the x;, [ € [1, N], are distinct
points of the circle, Hotz and Huckemann [5] presented an algorithm finding the means with a
complexity of order N2. Another algorithm was proposed by Charlier [2] valid too for means
on the circle associated to empirical measures (the latter can next be used to approximate more
general probability measures, but it seems this is not a very efficient method, since for each new
point added to the empirical measure, the whole algorithm has to be started again from scratch).
But up to our knowledge, the process of Theorem 2 is the only algorithm finding p-means for
any p > 1 and for any probability measure v admitting Holderian densities, even in the restricted
situation of the circle.

The paper is constructed on the following plan. In next section we recall some results about
simulated annealing which give the heuristics for the above convergence. Another alternative
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algorithm is presented, in the same spirit as X and Z, but without jumps. In Section 3 we
discuss about the regularity of the function U, in terms of that of v. It enables to see how close
is the instantaneous invariant measure associated to the algorithm at large times ¢ > 0 to the
Gibbs measures associated to the potential U, and to the inverse temperature 3, 1. The proof
of Theorem 2 is given in Section 4. The fifth section is devoted to the extension presented in
Theorem 3 and the appendix deals with technicalities relative to the temporal marginal laws of
the algorithms.

2 Simulated annealing

Here some results about the classical simulated annealing are reviewed. The algorithm X described
in the introduction will then appear as a natural modification. This will also give us the opportunity
to present another intermediate algorithm.

Consider again M a compact Riemannian manifold and denote {:,-), V, A and A the corre-
sponding scalar product, gradient, Laplacian operator and probability measure. Let U be a given
smooth function on M to which we associate the constant b(U) > 0 defined similarly as in (5). We
denote by M the set of global minima of U.

A corresponding simulated annealing algorithm 6 = (6;);>0 associated to a measurable inverse
temperature scheme 3 : R, — R, is defined through the evolution equation

V=0, do, = dBt—%VU(Qt)dt

It is a shorthand meaning that 6 is a time-inhomogeneous Markov process whose generator at any
time t > 0 is Lg,, where

VB0, Ly = (& —B(VUTY) (8)
Holley, Kusuoka and Stroock [4] have proven the following result
Theorem 5 For any fizred T > 1, consider the inverse temperature scheme
Vit=0, By = b tIn(T +1t)
with b > b(U). Then for any neighborhood N of M and for any initial distribution L(6y), we have
tEJHrloo Plh,eN] = 1

A crucial ingredient of the proof of this convergence are the Gibbs measures associated to the
potential U. They are defined as the probability measures pg given for any 3 > 0 by

o) = SR 9)

where Z3 = {exp(—BU(z)) A(dz) is the normalizing factor.
Indeed, Holley, Kusuoka and Stroock [4] show that £(6;) and pg, become closer and closer as t > 0
goes to infinity, for instance in the sense of total variation:

dim £00) ~ gl = 0 (10)
Theorem 5 is then an immediate consequence of the fact that for any neighborhood AN of M,

lim pg[N] = 1

B—+00



The constant b(U) is critical for the behaviour (10), in the sense that if we take
Vit=0, By = b 'In(T +1)

with "> 1 and b < b(U), then there exist initial distributions £(6p) such that (10) is not true.
But in general the constant b(U) is not critical for Theorem 5, the corresponding critical
constant being, with the notations of the introduction,

V(U) = min maxU(xg,y) —U(y) < bU)
roeM yeM
(compare with (6), where U replaces U, and where a global minimum z, € M is fixed). Note that
it may happen that 0/(U) = b(U), for instance if M has only one connected component.

Another remark about Theorem 5 is that the convergence in probability of 8; for large ¢ > 0
toward M cannot be improved into an almost sure convergence. Denote by A the connected
component of {x € M : U(z) < miny U + b} which contains M (the condition b > b(U) insures
that M is contained in only one connected component of the above set). Then almost surely, A is
the limiting set of the trajectory ()0 (see [10], where the corresponding result is proven for a
finite state space but whose proof could be extended to the setting of Theorem 5).

Even if we won’t be interested in this paper by the analogous remarks for Conjecture 1 and
Theorem 2, they should still hold under their assumptions.

Let us now heuristically put forward why a result such as Conjecture 1 should be true, in
relation with Theorem 5. For simplicity of the exposition, assume that v is absolutely continuous
with respect to \. For almost every =,y € M, there exists a unique minimal geodesic with speed 1
leading from z to y. Denote it by (v(z,y,t))wr, so that v(z,y,0) = z and v(x,y,d(x,y)) = y. The
process (X¢)i=0 underlying Theorem 5 is Markovian and its inhomogeneous family of generators is
(Lay 5, )t=0, where for any a > 0 and 3 > 0, L, 5 acts on functions f from C*(M) via

VeeM,  Laglfl@) = 3507 j (9, (p/2)Bad? (z, ) — f(x) v(dy) (11)

(to simplify notations, we will try to avoid writing down explicitly the dependence on p > 1). The
r.h.s. is well-defined, due to the fact that v « A\ which implies that the cut-locus of x is negligible
with respect to v. Furthermore Fubini’s theorem enables to see that the function L, g[f] is at
least measurable. Next remark that as a goes to 0, we have for any f e C'(M), any x € M and
any y € M which is not in the cut-locus of z,

P (z — f(x
v B > 0’ lim f(’)/(l‘,y, (p/Z)ﬁOéd ( 7y))) f( ) _ ﬁpdp 1($ y)(Vf( ) (JE y’0)>

a—04 «

so that for any f € C2(M) and = € M,

a—>0+

V620, lim Laglfl@) = SAfG fdp Y, y) (Y F(2), 3 (2,3, 0)) v(dy)

Recall that the potential U = U, we are now interested in is given by (1) and that for almost every
(,y) € M?,

VedP(z,y) = —pd™ (2, y)¥(z,y,0)

(problems occur for points z in the cut-locus of y and, if p = 1, for x = y), thus

VO,(@) = -p f P () (2, 0) w(dy) (12)



It follows that or any f € C*(M) and x € M,
VB=0, im Lo p[f](z) = Lslfl(x)

a—04

Since limy, ;o ay = 0, it appears that at least for large times, (X¢)i=0 and (0;)=0 should behave
in a similar way. The validity of Theorem 5 for any 7" > 1 and any initial distribution £(6y) then
suggests that Conjecture 1 should hold. But this rough explanation is not sufficient to understand
the choice of the scheme (at)i=0p, which will require more rigorous computations relatively to
the corresponding homogenization property. The heuristics for Theorem 3 are similar, since the
underlying algorithm (Z;)¢>0 is Markovian and its inhomogeneous family of generators (Lq, g, x, )t=0
satisfies

v f € C2<M)7 tligloo HLat75t7Ht[f] - LBt[f]Hoo =0

For any o > 0, 8 > 0 and s > 0, the generator L, g, acts on functions f € C%(M) via
VaxeM, Logrlflz) = —Af ff (2,2, (p/2)Bad? (x,2))) — f(x) Ky .(dz)v(dy)

The previous observations suggest another possible algorithm to find the mean of a probability

measure v on M. Consider the M x M-valued inhomogeneous Markov process (X, Y@ +1)t>0
t

where (Nt(a))t>0 was defined in (2) and where

Vt>0,  dX, = dBi+ (p/25d (X0 Yy )X Y,

0) dt (13)
Again, up to appropriate choices of the schemes (ay)i=0 and (5¢)i=0, it can be expected that for

any neighborhood A of M and for any initial distribution £(Xj),
L FlRee N =1

Indeed, this can be obtained by following the line of arguments presented in [11], see [1].

But the main drawback of the algorithm ()N(t)t>0 is that theoretically, it is asking for the
computation of the unit vector ;Y(Xt’YN}‘*)H’ 0) and of the distance d()?t, YNt(a)H), at any time
t = 0. From a practical point of view, its complexity will be bad in comparison with that of the
algorithm X = (X});>0. Indeed, X is not so difficult to implement, e.g. if M is a torus. For
simplicity, consider the case M = T, identified with (—m, 7], and let us construct X; for some fixed
t > 0. Assume we are given (Y;,)nen, (ts)sefo,, (Bs)selo t] and X as in the introduction. We need
furthermore two independent sequences (7, )neny and (V,)nen, consisting of i.i.d. random variables,
respectively distributed according to the exponential law of parameter 1 and to the centered reduced
Gaussian law. We begin by constructing the finite sequence (7},),e[o,n] corresponding to the jump
times of N(@: let Ty = 0 and next by iteration, if 7, was defined, we take T},; such that
S;”“ 1/asds = Tp4q. This is done until T > ¢, with N € N, then we change the definition of
Tn by imposing Ty = t. Next we consider the sequence (Xn, X, Jneo,n] constructed through the
following iteration (where the variables are reduced modulo 27): starting from XO = Xo = X, if
X, was defined, with n € [0, N — 1], we consider Xn+1 =X, + Tn+1 — TpVis1. Next we define

- - -2 - -
~ Xpy1 + (p/Z)OéTnHﬁTnH Y1 — Xn+1’p (Yn+1 - Xn+1) A Yo — X | <7

Xpt1 = - > P2 o :
Xpy1 + (p/Z)OéTnHﬁTnH Y1 — Xn+1’ (Xn+1 - Yn+1) , otherwise

Then X ~ has the same law as X;. On the contrary, the construction of X’t requires the discretiza-
tion in time of the stochastic differential equation (13) and the evaluation of the corresponding
approximation errors.

Apart from these practical considerations, another strong motivation for this paper is the
treatment of the jumps of the algorithms X and Z, situation which is not covered by the techniques
of [11] (to the contrary of the jumps of the auxilliary process, which can be more easily dealt with).
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3 Regularity issues

From this section on, we restrict ourselves to the case of the circle. Here we investigate the
regularity of the potential U, introduced in (1) and use the obtained information to evaluate how
far are the instantaneous invariant measures of the algorithm X from the corresponding Gibbs
measures, as well as some other preliminary bounds.

For any x € T, we denote z’ the unique point in the cut-locus of z, namely the opposite point
2" = x 4+ 7. Recall that for y € T\{z'}, (v(x,y,t))icr denotes the unique minimal geodesic with
speed 1 going from x to y and that ¢, stands for the Dirac mass at x.

Lemma 6 For any probability measure v on T, we have for the potential U, defined in (1), in the
distribution sense, for x € T,

U'(x) = { p(p = 1) §p d"2(y, @) = 2pmP 1oy (@) v(dy)  ifp>1
! 2§(0y(x) — oy (x)) v(dy) cifp=1
In particular if v admits a continuous density with respect to A\, still denoted v, then we have that
U, € CX(T) and

~ plp—1) Sy dP 2 (y,2) v(dy) — prP (2l ifp> 1

veel, U@ = { (v(z) — v(a))/m ifp—1

Proof

We begin by considering the case where p > 1. Furthermore, we first investigate the situation
where v = §, for some fixed y € T. Then U,(x) = dP(z,y) for any = € T and we have seen in (12)
that

Ve=y, Ulx) = —pd ' (z,y)¥(x,y,0)

By continuity of U, this equality holds in the sense of distributions on the whole set T. To compute
U, , consider a test function ¢ € C*(T):

Y+ Y
f (@)U () de = p j (@)(@ — y)" " dz — p f @)y — o) da
T Y y—T
Y+
- p[w(m)(m—y)f?—ﬂz*”—p<p—1>f (@) — )2 da

—plp(@)y — 2P —p(p— 1) j @)y — )2 du
y—m

= 2pr? oY) — p(p — 1) L p(a)d"~*(y, ) du
So we get that for z € T,
Uj(z) = plp— 1) >(y,x) — 2pr" 5, (x)
If p = 1, starting again from
Ve=y, Ulx) = —(@y0) (14)

we rather get for any test function ¢ € C*(T):

[voviwa = [T owa- [ s



so that
Ul = 20— Jy')

The general case of a probability measure v follows by integration with respect to v(dy).
The second announced result follows from the observation that if ¥ admits a density with respect
to A, we can write for any x € T,

[ar@via = [sotwr s
v(z')

2

In particular, it appears that the potential U, belongs to C*(T), if the density v is smooth.

Let us come back to the case of a general probability measure v on T. For any o > 0 and 5 > 0,
we are interested into the generator L, g defined in (11). Rigorously speaking, this definition is only
valid if v is absolutely continuous. Otherwise the r.h.s. of (11) is not well-defined for x € T belonging
to the union of the cut-locus of the atoms of v. To get around this little inconvenience, one can
consider for z € T, (y4+(z,x + 7,t))er and (y—(z,z + 7,1))er, the unique minimal geodesics with
speed 1 leading from x to = + 7 respectively in the anti-clockwise (namely increasing in the cover
R of T) and clockwise direction. If y € T\{z'}, we take as before (v4 (z,9,t))ter = (Y(2,9,t))ter =
(v—(z,y,t))ser. Next let k be a Markov kernel from T? to {—, +} and modify the definition (11)
by imposing that for any f e C%(T),

VaeT  Loglfl) = 380+ [ FOu(o0. (/2800 (@) £ (o) ki(e.p). ds)vidy

where 0 stands for the natural derivative on T. Then the function L, g[f] is at least measurable.
But these considerations are not very relevant, since for any given measurable evolutions R, 3
t — oy € R} and Ry 5t +— B € Ry, the solutions to the martingale problems associated to the
inhomogeneous family of generators (Lq, g, )i=0 (see for instance the book of Ethier and Kurtz [3])
are all the same and are described in a probabilistic way as the trajectory laws of the processes X
presented in the introduction. Indeed, this is a consequence of the absolute continuity of the heat
kernel at any positive time (for arguments in the same spirit, see the appendix). So to simplify
notations, we only consider the case where k((x,y),—) = 0 for any =,y € T, this brought us back
to the definition (11), where (y(x,y,t))wr stands for (4 (x,y,t))wer, for any =,y € T.

As it was mentioned for usual simulated annealing algorithms in the previous section, a tradi-
tional approach to prove Theorem 2 would try to evaluate at any time ¢ > 0, how far is £(X;) from
the instantaneous invariant probability p,, g,, namely that associated to L, g,. Unfortunately for
any a > 0 and 8 > 0, we have few informations about the invariant probability p. g of L g, even
its existence cannot be deduced directly from the compactness of T, because the functions L g f]
are not necessarily continuous for f € C?(T). Indeed it will be more convenient to use the Gibbs
distribution pz defined in (9) for 5 > 0, where U is replaced by U,. It has the advantage to be
explicit and easy to work with, in particular it is clear that for large 8 > 0, ug concentrates around
M, the set of p-means of v.

The remaining part of this section is mainly devoted to a quantification of what separates g
from being an invariant probability of L, g, for a > 0 and 8 = 0. It will become clear in the next
section that a practical way to measure this discrepancy is through the evaluation of ug[(L};, 5 [1])?],
where L7, 5 is the dual operator of Lo, in L2(up) and where 1 is the constant function taking the
value 1. Indeed, it can be seen that L}, 43[1] = 0 in L%(ug) if and only if ug is invariant for L, s.
We will also take advantage of the computations made in this direction to provide some estimates
on related quantities which will be helpful later on.



Since the situation of the usual mean p = 2 is important and is simpler than the other cases, we
first treat it in detail in the following subsection. Next we will investigate the differences appearing
in the situation of the median. The third subsection will deal with the cases 1 < p < 2, whose
computations are technical and not very enlightening. We will only give some indications about
the remaining situation p € (2,00), which is less involved.

Some other preliminaries about the regularity of the time marginal laws of the considered
algorithms will be treated in the appendix. They are of a more qualitative nature and will mainly
serve to justify some computations of the next sections, in some sense they are less relevant than
the estimates and proofs of Propositions 10, 14, 18 and 20 below, which are really at the heart of
our developments.

3.1 Estimate of L} ;[1] in the case p = 2

Before being more precise about the definition of L7 g We need an elementary result, where we
will use the following notations: for y € T and § = 0, B(y,d) stands for the open ball centered at
y of radius ¢ and for any s € R, T} ; is the operator acting on measurable functions f defined on
T via

VaeT,  Ty.f(x) = fOy(zy sd(z,y))) (15)

Lemma 7 For any y€ T, any s € [0,1) and any measurable and bounded functions f,g, we have

1
Tyefir = | 1Ty g dA
LF ’ L= g amgm 070

Proof

By definition, we have

Y+
27Tf gLy sfdXx = f g(@)f(z +s(y —x))de
T y—
In the r.h.s. consider the change of variables z := sy + (1 — s)z to get that it is equal to
1 f“(l_s)” (z — sy> 2
g ferd = 7 ITy oy dA
L=sJy-qsr "\ 1-5 ) L= s Jpgaogm” #70

Y

which corresponds to the announced result.
|

This lemma has for consequence the next result, where D is the subspace of L2(\) consisting
of functions whose second derivative in the distribution sense belongs to IL?(\) (or equivalently to
L%(ug) for any 8 = 0).

Lemma 8 For a > 0 and 8 = 0 such that af8 € [0,1), the domain of the mazimal extension of
Lo on L2(ug) is D. Furthermore the domain D* of its dual operator L 5 in L2(up) is the space

{f € L?(up) : exp(—BUs)f € D} and we have for any f € D*,

Lisf = 5 esp(BU2)Pexp(—502)]

BU 5
+% fﬂB(yv(l—aﬁ)w)Ty7—aﬁ/(1—a5) [exp(—BUs) f] v(dy) — -

In particular, if v admits a continuous density, then D* = D and the above formula holds for any
feD.

10



Proof

With the previous definitions, we can write for any @ > 0 and 5 >0
1o 1 1
LO!,B = 50 =+ a fT:%aB I/(dy) — a

where [ is the identity operator. Note furthermore that the identity operator is bounded from L2(\)
to L%(ug) and conversely. Thus to get the first assertion, it is sufficient to show that § 7}, o5 v(dy)
is bounded from IL2(\) to itself, or even only that |7, yvaﬁHuﬁ( o 18 uniformly bounded in y € T. To
see that this is true, consider a bounded and measurable function f and assume that of € [0, 1).
Since (Ty,oﬁf)2 = y7a5f2, we can apply Lemma 7 with s = a8, g = 1 and f replaced by f? to get
that

1
f(T vasf)'dN = o3 Btatimem Ty, ap/(1-op) L dA

1
_ F2dx
L —aB Jpwy,(1-s)m)

1 —10z5 jf2 dx

Next to see that for any f,g e C(T),

JgLaﬁf dug = jf L3 59 dug (16)

where L(’; g 18 the operator defined in the statement of the lemma, we note that, on one hand,

J s rdns = 25 | exp(-puagesin
= ff exp(BU2)0*[exp(—BUx2)g] dps

and on the other hand, for any y € T,

ngy,aﬁf dpg = Zﬁ_1 fexp(—ﬁUg)gTy,agf dA

so that we can use again Lemma 7. After an additional integration with respect to v(dy), (16)
follows without difficulty. To conclude, it is sufficient to see that for any f € L2 (1p), L:; sf € L2 (1g)
(where L7 ;f is first interpreted as a distribution) if and only if exp(—BUz) f € D. This is done by
adapting the arguments given in the first part of the proof, in particular we get that

exp(BU3)

2 2Bosc (U
WJ 1p(y,(1—ap)m) Ty—as/(1—ap) [exp(—=8Us) -1 v(dy) < Ep(2fosc(lh))

S

L2(\)5 042(1 —045)

Remark 9 By working in a similar spirit, the previous lemma, except for the expression of L}
is valid for any for any o > 0 and § > 0 such that a8 = 1. The case a8 = 1 can be dlﬁerent 1t
follows from

1 1
Lojja = 532 + (v - I)

that if v does not admit a density with respect to A which belongs to L.?(\), then the domain of
definition of L* o/ 18 D* n {f € L*(ug) : uglf] = 0}, subspace which is not dense in L*(\) and

11



worse for our purposes, which does not contain 1. Anyway, this degenerate situation is not very
interesting for us, because the evolutions (ay)i>o and (5;)i=0 we consider satisfy a;3; € (0,1) for ¢
large enough. Furthermore we will consider probability measures v admitting a continuous density,
in particular belonging to LL?(\). In this case, Lo/ and LZ,1 Jo admit D for natural domain, as
in fact Lo g and Ly 4 for any 8 =0

]

For any o > 0 and 8 > 0 such that a5 € [0,1), denote n = a3/(1—af3). As seen from the previous
lemma, a consequence of the assumption that Us is C? is that for any z € T,

Logl@) = 5exp(BUs(a) exp(~0Ua(a)) -
% J]IB(y,(laﬁ)w) ()T, —n[exp(—=BU2)] (z) v(dy)
B B 1

= 7(U§(l’))2 —5U2(2) - o

b | exp(B[Un(x) — Ua(y (., —nd(x.y))))) v(dy)  (17)
a(l—=ap) Jp@,(1—ap)m)

It appears that L* is defined and continuous if v has a continuous density (with respect to

A). The next result evaluates the uniform norm of this function under a little stronger regularity

assumption. Despite it may seem quite plain, we would like to emphasize that the use of an

estimate of L* 5l to replace the invariant measure of L, g by the more tractable pz is a key to all

the results presented in the introduction.

Proposition 10 Assume that v admits a density with respect to A which is Holder continuous:
there exists a € (0,1] and A > 0 such that

VayeT,  |vy)—viz) < Ad'(z,y) (18)

Then there exists a constant C(A) > 0, only depending on A, such that for any f = 1 and
ae (0,1/(28?)), we have

||LZ,511||OO < C(A)max(aﬁ4,a“61+“)

Proof

In view of the expression of L} B]l(x) given before the statement of the proposition, we want to
estimate for any fixed x € T, the quantity

f exp(B[Us(x) — Us(v(x,y, —nd(z,y)))]) v(dy)
B(z,(1-aB)r)

z+(1—af)m

_ f exp(B[Un(x) — Un(z — n(y — 2))]) v(dy)
z—(1—af)m

Lemma 6 and the continuity of the density v insure that Uy € C?(T). Furthermore, since this
density takes the value 1 somewhere on T, we get that

U3, Ar® < 271A (19)

< 472 A, but for

Since Uy vanishes somewhere on T, we can deduce from this bound that |Us]_, <

A > 1/(2m), it is better to use (12), which gives directly ||Us] , <
Expanding the function Uy around z, we see that for any y € (x — (1 — af)m, 2 + (1 — af)7) and

12



n € (0,1] (this is satisfied because the assumptions on « and £ insure that a5 € (0,1/2)), we can
find z € (xr — (1 — af)m,z + (1 — af)nw) such that

2
The last term can be written under the form O4(a?33), where for any ¢ > 0, O4(¢) designates a
quantity which is bounded by K (A)e, where K(A) is a constant depending only on A (as usual O
has a similar meaning, but with a universal constant). Note that we also have pnUs(z)(y — x) =

O(af?). Observing that for any r, s € R, we can find u,v € (0,1) such that exp(r +s) = (1 +r +
r? exp(ur)/2)(1 + sexp(vs)) and in conjunction with the assumption a3? < 1/2, we can write that

exp(B[Ua(x) — Uz(z —nly —x))]) = 1+ BnUs(x)(y — ) + Oala’s?) (20)

Integrating this expression, we get that

exp(B[Uz(z) — Ua(y(x,y, —n))]) v(dy)

BlUs(&) — Usle —nly —2))] = Bul(a)(y — «) — AU ()

jB(w,(laﬁ)w)
z+(1—af)m
= B0 ad) + o) |yl + Oafa®s)

Recalling that v has no atom, the first term is equal to 1 — v(B(2/, af7). Taking into account
(12), we have Uj(z) = —2 ng: y — xv(dy), so that the second term is equal to

' +afm

y — 2 u(dy) — Bl () f y— 2 u(dy)

' —afrT
B
2
(in the last term of the Lh.s., y — x is to be interpreted as its representative in (—m, 7] modulo 27).
We can now return to (17) and recalling the expression for Uj given in Lemma 6, we obtain that
for any z € T,

xr+7

suv(o) |

r—T

(Us(2))? + Oa(e?5%)

i) = Sy -0 - v - -
bt (1 B ) - v + 0ae?sY)
= arem P a7 (e 8 (e - SR
+04(aB?)
- 5 (v - L))+ Ostas)
- 2 - <y(x’) - ”(B(Zgaﬂ w)) - 10152 /(@) + Ol

B 1 ' +afm

_ . )
T 1—aB2maB Jy_ase v(@') — v(y) dy + Oa(ap®)

The justification of the Holder continuity comes above all from the evaluation of the latter integral:

' +afm
< Af ‘x/ — y‘a dy

' —afT

fﬁ V(&) — vly) dy

' —afm

_ o4 (aﬂﬂ)lﬂl
1+a
< 2A(apn)

13



The bound announced in the lemma follows at once.
[ |

To finish this subsection, let us present a related but more straightforward preliminary bound.

Lemma 11 There exists a universal constant k > 0 such that for any s > 0 and 5 = 1 with
Bs < 1/2, we have, for any y € T and f € C*(T),

o Tl = s ustir) < k8 ([0 2y [ i) o)

where Ty ; is the adjoint operator of Ty s in LQ(,ug) and where for any fized y € T,

Vzxe ']I'\{y'}, gy(x) = f($)d(x,y)7($,y, 0)

(neglecting the cut-locus point y' of y).

Proof

Since the problem is clearly invariant by translation of y € T, we can work with a fixed value of y,
the most convenient to simplify the notations being y = 0 € R/(27Z). Then the function g = gq is
given by g(z) = —z f(x) for z € (—m, 7).

Due to the above assumptions, s € (0,1/2) and we are in position to use Lemma 7 to see that for
s€(0,1/2) and for a.e. x € (—(1 — s)m, (1 — s)7),

o)) = o exp(BU )Ty lexp(~AUx)g](x)

- s
with 7 := s/(1 — s) and where we simplified notations by replacing 7, and Ty, by T3 and T,
This observation induces us to introduce on (—(1 — s)7, (1 — s)m) the decomposition

1 1 S
% o _ % - - o 2
Tilgl -9 o9l = g Tonlgl + — (Talgl = 9) + 79
leading to

82
[z — s wsian) < T+ gk e (22)

where

(1—s)m
o [ ep(BlUae) — Ual( 4 n)e)]) ~ DTy lg]) sl

—(1—s)m
(1—s)m )
Jo = J (T-ylg] = 9)" dps
—(1—s)
(1—s)7 )
J3 = J g°dug
—(1—s)m

The simplest term to treat is J3: we just bound it above by { g° dpg. Recalling that g < w2 f2,
we end up with a bound which goes in the direction of (21), due to the factor 3s?/(1 — s)? in (22)
and the fact that 8 > 1.

Next we estimate the term J;. Via the change of variable z := (1 + n)x, Lemma 7 enables to
write it down under the form

(1-s9) JT(eXp(ﬁ[Uﬂ(l —5)2) = Ua(2)]) — 1)?¢%(2) exp(B[U2(2) — U2((1 — 5)2)] np(d2)

— 4(1-s) fT sinh2(B[Ua((1 — )2) — Ua(2)]/2)6% (2) ps(d2)

14



Since s < 1/2, we are assured of the bounds

B[U2((1 = 8)2) — U2(2)]]

and we deduce that
J, <167 (:osh2(7r2)ﬁ2$2 592 dpg

Again this bound is going in the direction of (21).

We are thus left with the task of finding a bound on Jy and this is where the Dirichlet type
quantity §(f’ )2 dpg will be needed. Of course, its origin is to be found in the fundamental theorem
of calculus, which enables to write for any z € (1 — s)),

1
T_plgl(z) —g(z) = _”L g (1 + nu)z)x dv

It follows that
5 5 (1—s)m 1 9
s ow [ gldo) [ do g+ o)) (24)
—(1—s)m 0
Recalling the definition of g, we have for any z € (—m, 7),
(9'(2))* < 2(7*(f'(2)) + [*(2))

where we used again that |Uj|, < 27 and that 3 > 1. Next we deduce from a computation similar
to (23) and from n < 2s that

f(z)
p((1 + nv)z)

so it appears that there exists a universal constant k; > 0 such that

< exp(4n?)

(1—s)m 1 . 9 1 (1—s)m
f ,ug(dx)f dv (¢'(A+no)z))” < ki f dvf Adx) Ty [R](x)
—(1—s)7 0 0 —(1—s)7
where
VeeT, ) = [(f@)+ (@)]ps(x)
The proof of Lemma 7 shows that for any fixed v € [0, 1],
e T_.0|h A(d < ! h(x) \(d
[ Tl ) < e A
< h(x) \(d
< | b))
[Pt [ P dus
T T

Coming back to (24) and recalling that n = s/(1 — s), we obtain that

Jo < ks’ <L(f/)2dﬂﬁ + L f? duﬁ)

for another universal constant ko > 0. This ends the proof of (21).
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3.2 Estimate of L ;[1] in the case p = 1

When we are interested in finding medians, the definition (15) must be modified into
VeeT, T, f(x) = f(v(2,y,9)) (25)

Similarly to what we have done in Lemma 7, we begin by computing the adjoint 7 Js of Ty s in
L2(\), for any fixed y € T and s € R, small enough.

Lemma 12 Assume that s € [0,7/2). Then for any bounded and measurable function g, we have,
for almost every x € T (identified with its representative in (y — m,y + 7)),

TJ,S[Q] (LE) = ]l(ywars,yfs) (x)g<x - 3) + ]l(yfs,ers) (x)<g(x - S) + g<x + S))
+]l(y+s,y+7rfs) (x)g(z + 3)

Proof
By definition, we have, for any bounded and measurable functions f, g,
Y+
277] gTysfdx = f g(z) f(x + sign(y — x)s) dx
T y—T

Let us first consider the integral

Y+ Y+
f o) f(z + sign(y — 2)s)dz = f 9(@) (@ - 5) du

Y Y

Yy+m—s
- f oz + ) (z) da

yy_-:7r—s y+s
_ f g(x + s)f(x) dx + f 9(x + s)f (z) dx
y+s y=s

The symmetrical computation on (y — 7, y) leads to the announced result.

It is not difficult to adapt the proof of Lemma 8, to get, with the same notations,

Lemma 13 For o > 0 and 8 = 0 such that a3 € [0,7), the domain of the mazimal extension of
Lo on L2(ug) is D. Furthermore the domain of its dual operator LY 5 in L%(ug) is D* and we
have for any f € D¥,

Liol = pep(BU0Pexp(—000 1+ 5 [T oty -

where

T s [f] = eXP(ﬁUﬂTJ s [exp(—=BUL) f]

Y7y 12

In particular, if v admits a continuous density, then D* = D and the above formula holds for any
feD.

To be able to consider L; gL, we have thus to assume that v admits a continuous density, so that
1 € D* = D. Furthermore we obtain then that for almost every z € T,

52

Ligl(z) = 7(U{(:c))2_§ () +é<jT;%ﬁ[]l](x)y(dy) _1>

By expanding the various terms of the r.h.s., we are to show the equivalent of Proposition 10:
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Proposition 14 Assume that v admits a density with respect to \ satisfying (18). Then there
exists a constant C(A) > 0, only depending on A, such that for any 8 = 1 and o € (0,7872), we
have

HL;B]IHOO < C(A)max(aﬁ4,a“61+“)

Proof
From (12) and Lemma 6, we deduce respectively that for all z € T,
Uite) = ~ [ (o.0.0)vla)
= vz —mz)) —v((z,z+ ) (26)
Ul(x) = (v(z)—v()/x (27)

On the other hand, from Lemma 12 we get that for all s € [0,7/2) and for almost every = € T,

| 7@ v
= v((z+s,z+7m—3))exp(B(Ui(x) — Ui(x — s)))
+v((z —s,2 + 5))[exp(B(Ur(z) — Ur(z — 5))) + exp(B(Ur(x) — Ur(z + 5)))]
+v((x — 7+ 8,2 — s))exp(B(Ur(z) — Ur(x + s)))
= v((z,z+m)exp(B(Ur(x) — Ur(z — 5))) + v((z — 7, z)) exp(B(U1(z) — Ur(z + 5)))
+v((z —s,z)) exp(B(Ur(z) — Ur(z — 5))) + v((z, 2 + s)) exp(B(U1(z) — Ur(x + 5)))
—v((2’ = 5,2")) exp(B(U1r(2) — Ur(x — 5))) — v((¢', 2" + 5)) exp(B(U1r(z) — Ur(x + 5)))

This leads us to define s = af3/2 € (0,7/2), so that we can decompose
2

“Lipl@) = hies) + ha@.s) + (o)
with
hins) %(WV((a:—z,x—ks) _V(x)> ‘%(”V«x,_jxlﬂ) _V(x,)>
bias) = 2SN Z0 0D ey (500 (2) — Vo~ ) 1]
A2 D =T oy (0 2) — U+ 5)) 1]
o) = v+ my SR~ Urla = ) 1= 90
=) SPOCAE) = il + )~ L+ 90

Assumption (18) enables to evaluate I1(z, s), because we have for any z € T and s € (0,7/2),

j(:v—s,:c+s) v(z) —v(z) dz

|z — x|" dz

1
2s
A
2s (z—s,x+5)
As®

1+4+a

As®

7TV((gn - z,x +s) ()

N
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By considering the Taylor’s expansion with remainder at the first order of the mapping s —
exp(B[Ur(z) — Ui(x — s)]) at s = 0 and by taking into account (26), we get for any x € T and

s € (0,7/(28)),

L@s)| < 2= e, 98Ul s

2
< 1o exp(fBs)Bs
T
1 A
< 2 Rl exp(m/2) s

The term I3(z, s) is bounded in a similar manner, rather expanding at the second order the previous
mapping and using (27) to see that U7, < A.

oo

[ |
We finish this subsection with the a variant of Lemma 11:

Lemma 15 There exists a universal constant k > 0, such that for any s > 0 and 8 = 1 with
Bs < 1, we have, for any f € C(T),

[ 1) — s ) < kst (@ + [ £2ans)

where Ty ; is the adjoint operator of Ty s in L2(ug) and where for any fived y € T,

{gy(w) = f(2)i(z,9,0)

vV zeT\{y'}, -
gy<x) = ﬂ(yAvnyAS)u(y+sg4wO(x)gy<x)

Proof

As remarked at the beginning of the proof of Lemma 11, it is sufficient to deal with the case
y = 0. To simplify the notations, we remove y = 0 from the indices, in particular we consider the
mappings g and g defined by g(r) = —sign(x)f(z) and §(z) = 1(_r _g),(s,m)(2)g().

Taking into account that § vanishes on (—s,s), we deduce from Lemmas 12 and 13 that for a.e.
ze(—m+s,m—s),

T3[g)(x) = exp(BUa(x))T-s[exp(—pU2)g](x)

This observation leads us to consider the upper bound

f U ) - g(@)? psldr) < 2+ 20,

—T+s

where

mT—S

1= f (exp(B[Ua(2) — Un( + sign(x)s)]) — 1)*(T-s[g])? g (dx)

—T+s

no= | L] - 9% dus

—T+S

The arguments used in the proof of Lemma 11 to deal with J; and Jy can now be easily adapted
(even simplified) to obtain the wanted bounds. For instance one would have noted that

0 T—S
T = f_ (ol —s) = 9(2))? pp(dz) +L (9(z + 5) = 9(2))* ps(da)
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3.3 Estimate of L; ;[1] in the cases 1 <p <2

In this situation, for any fixed y € T and s > 0, the definition (15) must be replaced by
VaeT, Tysf(x) = fOy(z,y sd  (z,y))) (28)
It leads us to introduce the function z defined on (y — m,y + 7) by

Z(.’L’) — ‘T—S<x_y)p ) if x e [y7y+7T)
Tl ztsy—ap !t ifze(y—my]

—1
(29)

To study the variations of this function, by symmetry, it is sufficient to consider its restriction to
(y,y + 7). We need the following definitions, all of them depending on y € T, s > 0 and p € (1,2):

1 1
up = y+(p—1)2rs»
1
'174_ = y+ s§2-p
p—1 1 1
vy = oy — ((p —1)2r —(p— 1)2*1)) §2-p
wy = y+r—7ls

Let o(p) be the largest positive real number in (0,1/2) such that for s € (0,0(p)), we have u; <
y+m, vy >y—mand wy —y > y—v;. One checks that for s € (0,0(p)), the function z is decreasing
on (y,uy) and increasing on (u4,y + 7). Furthermore vy = z(uy), wy = z(y + 7) and @y is the
unique point in (u4,y + 7) such that z(u;) = y. Let us also introduce @, the unique point in
(Wy,y + ) such that and z(u4) = —v4. All these definitions, as well as the symmetric notions
with respect to (y,y), where the indices + are replaced by —, are summarized in the following
picture (drawn by our colleague Sébastien Gadat):

z(x)

Figure 1: The function z

Thus for s € (0,0(p)), we can consider ¢, : [vy,y] — [y,us] and ¥ : [vy,wi] = [uy,y+ 7]
the inverses of z, respectively restricted to [y,uy] and [u4,y + 7]. The mappings ¢_ and ¥_
are defined in a symmetrical manner on [y,v_]| and [w_,v_]. These quantities were necessary to
compute the adjoint TJ,S of T, s in L%(\), for any fixed y € T and s > 0 small enough:
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Lemma 16 Assume that s € (0,0(p)). Then for any bounded and measurable function g, we have,
for almost every x € T (identified with its representative in (y —mw,y + 7)),

TJ,s[g](‘T) = ]]-(w,,v+)<x)w (33)9(1/1—(95))+1(v,,w+)($)¢ﬁr($)g(¢+($)
., ) (@)W (2)g (V- (@) + ¢ (2)g(
(o) (@)W (2)g(¥-(2)) + ¥ (2)g(¢

X

Proof

The above formula is based on straightforward applications of the change of variable formula. For
instance one can write for any bounded and measurable functions f, g defined on (y — m,y + 7),

f 9(2) f(Tya(x)) dz = f F(2g(es ()|, (2)] da
(y,ut) (v4,y)

Since we are more interested in adjoint operators in L?(ug), let us define for any fixed y € T,
€ (0,0(p)) and any bounded and measurable function f defined on (y — 7,y + m),

Tys[f] = exp(BU)T) [exp(—pUp) f] (30)
Then we get the equivalent of Lemmas 8 and 13:

Lemma 17 For a > 0 and 8 > 0 such that s := paf/2 € (0,0(p)), the domain of the maximal
extension of Lo g on L?(ug) is D. Furthermore the domain of its dual operator L g in L2(ug) is
D* and we have for any f € D*,

Lol = 5e(BUPlep(-BU) + 5 [Tl vlay) - L

a

In particular, if v admits a continuous density, then D* = D and the above formula holds for any
feD.

Once again, the assumption that  admits a continuous density enables us to consider L B]l’ which
is given, under the conditions of the previous lemma, for almost every = € T, by

L) = GO@F - S0+ 2 ([ T2l vian) - 1) (31)

« Y3
We deduce:

Proposition 18 Assume that v admits a density with respect to \ satisfying (18). Then there
exists a constant C(A,p) > 0, only depending on A > 0 and p € (1,2), such that for any f > 1 and
€ (0,0(p)/B*), we have

|L: 51, < C(A,p)max (aB*, a1 3P o3 ta)

Proof
We first keep in mind that from (12) and Lemma 6, we have for all x € T,

o) = o ([ @t - [ e vtan) (32)

r—T T

Ula) = p<p—1>dep2<y,x>u<dy>—mp2u<x’> (33)

20



Taking into account (31), our goal is to see how the terms /3 (U}’)(w))2 and —U) () cancel with some
parts of the integral

L[ 17.00)(@) - Lv(ay
where s = pa3/2 € (0,0(p)/B) < (0,0(p)), and to bound what remains by a quantity of the form
C'(A,p)(B%s + BsP~! + s%), for another constant C’(A,p) > 0, only depending on A > 0 and
pe(1,2).

We decompose the domain of integration of v(dy) into six essential parts (with the convention
that —m < y — < 7 and remember that the points w_,v;,v_ and w; depend on y):

Jo= {yeT:ry—nm<zx<w_}
Jy = {yeT:w_<z<wvi}
J3 = {yeT: vy <z<y}
Jy = {yeT:y<z<uv_}
Js = {yeT:v_<z<wy}
Jo = {yeT:ws<zx<y+mn}

The cases of J; and Jg are the simplest to treat. For instance for Jg, we write that

» » ' +mP~ g
P me e - <2
6 z’
_ p jx’Jrﬂpls V(y) @
S Jyr 2
pﬂ.p72 P /7P~ 1lg
- T v(z') - Irs . v(y) —v(az')dy

A similar computation for J; and the use of assumption (18) lead to the bound

r(1+a)(p—1)—1
1+a
< 2mAs? (34)

p LluJ6 Ty [1](z) — 1v(dy) + prP2v(2’)

a

< Ap
s

The most important parts correspond to Jo and Js. E.g. considering J5, which can be written
down as the segment (x_,x), with

- = z—m+mPls
1

p-1 1N L
Ty = x— <(p —1)z=r — (p— 1)2*1’) $2-p
we have to evaluate the integral

2™ gt () exp(B[Up ) — Uplths (2))]) — 1w(dy) (35)

S Ja_

(y is present in the integrand through ¢ (x) and ¢/, (z)). Indeed, in view of (32) and (33), we
would like to compare it to

T

(z — 9)" v(dy) + plp — 1>f (& — y)P2 w(dy) (36)

T —

Ty

—BU,(2) f

xT—

21



To do so, we will expand the terms ¢/, (z) and exp(B|Up(z) — Up(4(x))]) as functions of the
(hidden) parameter s > 0. Fix y € J5 and recall that it amounts to = € (v_,wy). Due to (29) and

to the definition of 1, we have for such =,
Wo(@) = : (37)
i 1—s(p—1)(Y4(z) —y)p—2

Let us begin by working heuristically, to outline why the quantities (35) and (36) should be
close. From the above expression, we get

Wo(x) = 1+ s(p—1)(0y(z) —y)P?

By definition of 1, we have

z—y = p(x) —y— sy (x) —y)P
(W (2) = y)(1 — s(vhy () —y)P~2) (38)

so that x —y ~ ¢, () — y and
P(e) =~ 1+s(p—1)(z—yP?
On the other hand,

exp(B[Up(z) — Up(¥+(2))]) ~ 1+ BUp(x) — Up( +(@))]
~ 1+ 5UI/;(33)(33 Vi (z))
= 1-spU,(x

(@) (Y4 () — )pil
1 —spU,(x

)
)@ —y)"”

10

Putting together these approximations, we end up with

vy (@) exp(B[Up(2) = Up(ds (@)]) =1~ sl(p = D(x — )P~ = BU(x)(z — y)'~]

suggesting the proximity of (35) and (36), after integration with respect to v(dy) on (z_,x).
To justify and quantify these computations, we start by remarking that ¢, (z) — y is bounded

below by @, —y, itself bounded below by 1, —y = sﬁ. But this lower bound will not be sufficient
n (38), so let us improve it a little. By definition of @, we have

v_—y = a-—y—s@—yP?

1
so that 4 —y = kps2-r where k, is the unique solution larger than 1 of the equation

bR = oD (- (39)
It follows that for any y € .J5,
1 < ! < !
T l-s(g(a) —yp? T 1= s(ay —y)p?
_ Uy —y
-y
= K, (40)

where the latter quantity only depends on p € (1,2) and is given by




In particular, coming back to (37) and taking into account (38), we get that for y € Jf,

(5(p = D4 (@) )
T (- (@) -0
1242 (¢4 () — y)*P~2
R TR R
(z —y)*r—2)
@ - )

< (p— 1PEZ 2 (a - )20

[ (2) = 1= s(p— 1)(¢s (2) =yl 72| =

IN

To complete this estimate, we note that in a similar way, still for y € Js,

(g (2) =P = (@ =y = (@—y)P 21— (1 —s@(z)—y)P >
< (z—y)P 1= (1= s(yy(x) —y)P2)
= s(@—y)P (i) —y)P?
= s(z—y)? P21 - sy (x) —y)P )P
< s(x— y)2(pf2)

so that in the end,
V@) =1 —sp =D -y < [(p-DEF ™ +p—1]s* @z —y)*r?  (41)
We now come to the term exp(B8[Up(z) — Up(14(x))]). First we remark that

Up(z) = Up(vs (@) < U], l2 — v+ ()]
prt s (s (2) — y)P !

<
< p7T2(p71)S
<

o2m2s
It follows, recalling our assumption s < o(p), that

exp (8L (@) — V(s @) ~ 1~ BlU(@) ~ Upws (@) < A= DT o gz

< 21t B%exp(2rPo(p))s?

IN

In addition we have,

|Up(2) = Up(v+ () = Up(a) (@ — ¥ (2))| < — ¢ (2))°

In view of (33) and taking into account that §{ U} d\ = 0, we have

du
uP~?

U
2 —1 T —
o= 1) vl | 02 52

= 2pnP (1 4 wA)

n"
HUP Hoo

IN

So we get,

|Up(2) = Up(¢4 () = Up(a)(z — ¢4(2))] < 2m(L+mA)(x — ¢y (2))?
27 (1 + A)s* (1 () — y)*® Y

<
< 273(1 + mA)s?
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namely

[Up() — Up(or (@) + sU (@) (s () — '] < 20%
Finally, using the inequality

Vuov=0,Ype(l,2), ‘u”_l—v”_l‘ < Ju—ofPt

it appears that

(W (@) =) = (@ =y < eela) — e
= (@) =y P
< gl D?grl (42)

so we can deduce that
|exp(B[Up(2) — Up(vs (2))]) = 1 + BsUp () (z — )P~
< prPK,Bs? + 213 B(1 + 1A + mexp(2r20(p))B)s?

From the latter bound and (41), we obtain a constant K (p, A) > 0 depending only on p € (1, 2)
and A > 0, such that

P v esp(Blvn o) - Uyt o)) - (14 Sl - pstya)(e - o) vl
< K(pA) (58”1 + 5% + 5 f+ (z —y)**=? V(dy)> (43)

This leads us to upper bound

ZB+ ZB+
f (z—y)?P D u(dy) < ] f (x —y)*P=2) ay

T_ 2m T_

y2P=2) gy

1+ Ax (™S
2 L

1
ps2P
with

1

k= (=15 —(p—1)77 (44)

An immediate computation gives, for p € (1,2), a constant s, > 0 such that for any s € (0,0(p)),

m—mP1s 1 ’ lfp > 3/2
[0 < ) msotys) L ifp=3p (15)
e s2p L if p < 3/2

Since 1 + 22%_;’ >p—1,3>1and s € (0,0(p)), we can find another constant K’'(p, A) > 0 such

that the r.h.s. of (43) can be replaced by K'(p, A)(BsP~! + 32s). It is now easy to see that such
an expression, up to a new change of the factor K’(p, A), bounds the difference between (35) and
(36). Indeed, just use that



and resort to (45).
There is no more difficulty in checking that the cost of replacing z_ and z respectively by x — 7
and z in (36) is also bounded by K”(p, A)(Bs?/(=P) 4 sp=1/C=P)y < 2K"(p, A)BsP~L, for an
appropriate choice of the factor K”(p, A) depending on p € (1,2) and A > 0.

Symmetrical computations for J, and remembering (34) lead to the existence of a constant
K" (p, A) > 0, depending only on p € (1,2) and A > 0, such that for 8 > 1 and s € (0,0(p)/3), we
have

By - vyt + 2 (| T3 @) ~1)| < K7 A+ 54 5
S NJhududsulds

It remains to treat the segments .J3 and J4 and again by symmetry, let us deal with J4 only: it

is sufficient to exhibit a constant K4 (p, A) > 0, depending on p € (1,2) and A > 0, such that for

B =1andse (0,0(p)/B),

o[ mme - 1| < KO
S Ju ’
(-1
(since the r.h.s. is itself bounded by K®(p, A)(o(p)) = sP~1), or equivalently
KW(p,A) 1
UJ Ty [1](z) — 1 V(dy)‘ < %s;p (46)
4

The constant part is immediate to bound:

lvl f
lv(dy) < —=2| 1ldy
J:L; ( ) 27 Ja

1 A [*
< + 7 J 1 dy
2w o kipsl/(2=P)
_ (1+ FA)/stﬁ
27
For the other part, we first remark that for y € Jy, we have
1
y < x < Y+ Kps2r
1 1
y+s2r < y(z) < y+kpszr
1 1
y—(p—-1)%rs¥7 < ¢ (z) < y
1 1 1
y—s¥r < ¢P(x) < y—(p—1)=rs>>

(recall that ;. = y+ kpsﬁ with k,, defined in (39)). It follows that we can find a constant «; > 0,
depending only on p € (1,2), such that for s € (0,0(p)),

max (U (z) — Up(to4 (2))] [Up(z) = Up(eo— (@)] [Up(2) = Uplp-@)]) < nps77

< K(o(p)Ers

In particular, we can find another constant Hg’ > 0, such that under the conditions that 8 > 1 and
Bs € (0,0(p)),

exp (B max ([Up(x) — Up(ths (@) Up(@) = Up(wr—(@))],|Up(@) — Uplp-@))) < w2
Thus, denoting 9 one of the functions 14, ¢_ or ¢_, and remembering the bound [v| , <1+ 7A,
it is sufficient to exhibit another constant /il(,A‘) > 0 such that

1

L [ (z)| dy < /41(,4)35 (47)
4
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Let us consider the case ¢ = 1), the other functions admit a similar treatment. We begin by
making the dependence of 14 () more explicit by writing it ¢4 (z,y). From the definition of this
quantity (see the first line of (38)) and from (37), we get

_ sl D)W y) — )P
5y7/)+(517ay) = 1—s(p— 1)y (z,y) — y)p*2
= —s(p— V(s (z,y) — )P 20ty (z,7)

so that the L.h.s. of (47) can be rewritten

1 9_ 1 -
T ), e 0o e dy < o [ s e )] dy
ky P
< mL4|ay¢+($,y)|dy

1 1
Checking that Jy = (x — kps2-7, z), the last integral is equal to ‘¢+ (x,x) — Y4 (z,x — Kpsz?)|. By
1
definition of ¢, we have 14 (x,x) = x and it appears that the quantity ¢ = ¢4 (2,2 — kps2—») —
is a positive solution to the equation

¢ =5(C + mpsT7)P!

It follows that ¢ = k;,sﬁ where k/, is the unique positive solution of k), = (k, + £,)P .
Thus (47) is proven and we can conclude to the validity of (46).
|

To finish this subsection, here is a version of Lemma 15 for p € (1,2), which is a little weaker, since
we need a preliminary integration with respect to v(y):

Lemma 19 Under the assumption (18), there exists a universal constant k(p, A) > 0, depending
only on p € (1,2) and A > 0, such that for any s >0 and B = 1 with Bs < o(p), we have, for any

feci(r),
ja(dwj (T2, [3,](x) — g,(2)? us(dx)
T B(y,m—mP—1s)

< kA0 4 525 ([0 dus + [ aus) (48)
where T)} ; is the adjoint operator of Ty s in L2(ug) and where for any fived y € T,

gy(x) = flx)d’~(z,y)¥(x,y,0)
vz e T\{y'}, N

gy(z) = 1 (#)gy (z)

1 1
(y—my—s27P)u(y+s2=P y+m)

Proof
We begin by fixing y € T and by remembering the notations of the proof of Proposition 18 (see

1 1
Figure 1). Due to fact that g, vanishes on (u_,uy) = (y — s¥ 7,y + sZ7), we deduce from
Lemma 16 and (30) that for a.e. z € (y — 7 + 7P~ s,y + ™ — 7P~ ls),

Tys[g,](@) = ¢i(x) exp(B[Up(x) — Up(vhe(2))])Gy (¢ (7))

where € € {—, 4} stands for the sign of x — y with the conventions of the proof of Proposition 18.
Thus we are led to the decomposition

L% _pﬂ)@;J%Kx%—gwmyMme < 301(y) + 3Ja(y) + 3J5(y)
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where

Ny = jB( (DI (x) = Uyl = 1P @ () sl
y,m—mP~1

Ioly) = jB( WL Ge2) — 92 )
y,m—mP~1ls

Ji(y) = jB( W) = 17550 sl
y,m—mP~1s

We begin by dealing with Ji(y), or rather with just half of it, by symmetry and to avoid the
consideration of e:

y+m—mP~1
j (exp(B[Up () = Up(vo+ (2)]) = 1)* (W ()7 (¢+(2)))? n(de)

Y

Let us recall that © = ¢ (z ) — 5(¢y(z) —y)P~! and that ¢ (z) —y = 577 . From (37) we deduce
that for z € (y,y + 7 — 7P~ 1s), 1 <4y (x) < 1/(2—p). Thus it is sufficient to bound

y+m—mP~1
J (exp(B[Up() = Up(th (2))]) = 1)*(Fy (¢+(2)))? ns(de)

Y

Furthermore, for z € (y,y + m — 77~ !s), we have
|z —i(z)] < smPT (49)

so under the assumption that sg € (0,1/2), we can bound (exp(8[Up(z) — Up(¥ (x )]) 1)2 by a
term of the form k3?s? for a universal constant k > 0. It remains to use g7 (:17) < w2 f%(x) to get
an upper bound going in the direction of (48).

We now come to Jo(y) and again only to half of it:

[ @ @P@ o) - g @) sl

Y

Due to the upper bound on 1, seen just above, it is sufficient to deal with

y+m—mP~1
f (@) (4 (2)) — gy (2))? ps(da)

Y

1
But for @ € (y,y + 7 — 7~1s), we have . (x) € (y + 577,y + ), 50 that §, (s (x)) = g, (s ()
and the above expression is equal to

[ @) - @) s

Y

Coming back to the definition of g,, it appears that for z € (y,y + ™ — 7P~!s), both ¢, (z) and
belong to the same hemicircle obtain by cutting T at y and 7/, so

(9y(¢+( )) gy( ))2

(@ (y, s () f (g () — "y, @) f(2))?

20”0V (y, 4 (2)) (f (W4 () — f(2))? + 202 (2) (@ (y, 1 () — &7 (y, 2))>
22V (f (1 (x)) — f(x))? + 2020717 207D £2(y)

<
<
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where we have used (42) to majorize the last term. From (49), we deduce that

x+smP~ 1

(f@4(2)) = f(2))* < 25”]’1[ (f'(2))? dz

r—smP—1

As usual, the assumption 0 < s < 1/2 enables to find a universal constant & > 0 such that for
any z € (z — swP~ 1,z + snP~ 1), we have pug(z) < kug(z). From the above computations it follows
there exists another universal constant &’ > 0 such that for any y € T,

B(y) < K (s“l"” f fdug + s° f (f")? dw)

< stV (f F*dug + f(f’)z du/s)

Finally we come to J3(y), which will need to be integrated with respect to v(dy). From (37),
we first get that

s(p — 1)d" (e (@), y)
)

2
B) = f A 1s><1—s< i 2<¢€<x,y>> 9y(@) 13(d)
(v
@2

=15 202 (4 (), 1) g2 () 11 (d)
) B(y,m—mP~1s)

&(92 2(p—2) T 2 . .
(2-p)? JB(yn ﬂpﬂs)d (=(2),y) f* () ps(dz)

1
Next, recalling that |v|,, < 1+ 7A and that d(v-(z),y) = s2# for any z € B(y,m — 7P~ 1s), it
appears that

f Js(y) v(dy) <
T

N

1+ 7A 21 _1
2 dej . e (ORI

1+7TA7T(p 1>( —1) QJ ) f )
< S dz z)| 1 ?P=2) x),y)d
2 (2-p)? el £ | {awe@=s77 | (We(@) ) dy

But for any fixed z € R/(27Z), we compute that

T 1
1 d*P=2) dy = 2 f ——d
Lr {d(z,y) 1”} B o e Y
1 Lifp > 3/2
k) In(1/s) ,ifp=3/2
2p-3
s2p ,if p < 3/2

N

for s € (0,1/2) and for an appropriate constant k; > 0 depending only on p € (1,2). It is not
difficult to check that as s — 0., we have

2 Jif p>3/2

21 s?In(1/s) ,if p=3/2
2p—3

s25 2 p ,if p < 3/2

It follows that for any p € (1,2), we can find a constant k’(p, A) > 0, depending only on p € (1, 2)
and A > 0, such that

f Js(y)v(dy) < K(p,A)s?®~ ffz ) pig(de)
T

This ends the proof of the estimate (48).
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3.4 Estimate of L; ;[1] in the cases p > 2

This situation is simpler than the one treated in the previous subsection and is similar to the case
p = 2, because for y € T fixed and s > 0 small enough, the mapping z defined in (29) is injective
when p > 2. Again for any fixed y € T and s > 0, the definition (15) has to be replaced by (28),
namely,

VaeT, Tysf(x) = f(z(x)) (50)

With the previous subsections in mind, the computations are quite straightforward, so we will just
outline them.

The first task is to determine the adjoint 7, Js of T, s in L?(\). An immediate change of variable
gives that for any s € (0, o), for any bounded and measurable function g, we have, for almost every
x € T (identified with its representative in (y — m,y + 7)),

Tyalgl(@) = Dy @)Y (2)g((x))

where o == 727P/(p — 1) and ¥ : (2(y — 7),2(y + 7)) — (y — 7,y + ) is the inverse mapping of
z (with the slight abuses of notation: z(y — ) =2 — 7 + 7~ ls, z(y + 7) == + 7 — 7P~ 1s). The
adjoint Tjj s of T 5 in L%(ug) is still given by (30). As in the previous subsections, this operator is
bounded in L?(ug). It follows, if v admits a continuous density with respect to A and at least for
a >0 and 8 > 0 such that s = (p/2)af € [0,0), that the adjoint L} 5 of Ly 5 in L%(ug) is defined
on D. In particular we can consider LZ’ 5L, which is given, for almost every x € T, by

2
Litle) = S - 5oy + 2 ([T via - 1) 61)

From this formula we deduce:

Proposition 20 Assume that v admits a density with respect to \ satisfying (18). Then there
exists a constant C(A,p) > 0, only depending on A > 0 and p > 2, such that for any f = 1 and
ae (0,0/(pB?)), we have

HLZ,ﬁ]lHOO < C(A,p)max(aﬁ4,a“ﬁl+“)

Proof

The arguments are similar to those of the case Js in the proof of Proposition 18, but are less
involved, because the omnipresent term 1 — s(p — 1)(z)(z) — y)P~2 is now easy to bound: for any
s€]0,0/2], we have for any y € T and = € (2(y — 7), 2(y + 7)),

1 _
5 S 1=@-D@ -y s < 1

In particular we have under these conditions,

ey — 1
YO e s ¢

Following the arguments of the previous subsection, one finds a constant K (p, A), depending only
on p> 2 and A > 0, such that for any 5> 1, s € [0,0/(28)] and z € (z2(y — 7), z(y + 7)),

Wel@) =1 == Dler@) — ol s < K(pA)s?

exp(BUy(2) — Up(s (2))]) — 1+ fsign(e — y)Up(a) [z —y" ' s| < K(p, A)525°
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This bound enables us to approximate T ;1(z) — 1 up to a term O, 4(B%s%) (recall that this

designates a quantity which is bounded by an expression of the form K’(p, A)3%s? for a constant
K'(p, A) > 0 depending on p > 2 and A > 0), by

(= Dl (@) — 9P~ = Bsign(e — »)Up() lo —yP~']) s

Next we consider

J = {yeT:ze(z(y—m),z(y+m))}
= T\[2' —snP~ L2’ + swP71] (52)
in order to decompose
b [ Tt — v = B e - 1ot = B - s s ) (53)

According to the previous estimate, up to a term O, 4 (825?) the first integral is equal to

-~ 2
w L 4”2 (y, z) v(dy) — IEU’( )L sign(z —y)d”~ (z,y) v(dy)

In view of (52), up to an additional term O, 4(3%s), we can replace J in the above integrals by T.
Thus putting together (51) and (53) with (32) and (33) (which are also valid here), it remains to
estimate

' —snPl 2 4 smP T

pB
2

1
P 2u(2)) — —v[x
s

and this is easily done through the assumption (18).

We finish this subsection with the equivalent of Lemma 11:

Lemma 21 For p > 2, there exists a constant k(p) > 0, depending only on p > 2, such that for
any s € (0,0), with o == w27P/(p—1), and B = 1 with Bs < 1, we have, for anyy € T and f € C*(T),

jB(yﬂr SWH)(T;s[gy] (z) = 9y(@))* ps(dw) < k(p)sp* (j(ﬁff dpg + Jf2 du/f)

where Ty ; is the adjoint operator of Ty s in LQ(,ug) and where for any fized y € T,

VeeT\{y'}, gy(x) = fla)d" '(z,y)7(x,y,0)

S

Proof

We only sketch the arguments, which are just an adaptation of those of the proof of Lemma 11.
Again it is sufficient to deal with the case y = 0, which is removed from the notations, and
consequently with the function g(x) = —sign(z) |z|P~* f(z). As seen previously in this subsection,
we have for s € (0,0) and z € (—7,7),

T:[g](l’) = ]l(—7r+s7rP*1,7r—s7rP*1)<x) exp(/ﬁ[UP(‘T) - Up(¢($))])¢/($)g(¢(m))

where 1 is the inverse mapping of (—m,7) 3 2 — z — sign(z) |z[P~!. Recall that for € (-7 +
stP~l m — spP~1),
1

Y Ty wer s o
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Considering the decomposition

T [9l(x) — g(x)
= (exp(B[Up(x) = Up(¥(2))]) — D' (x)g (v () + ¢ (2)(g9(eh(x)) — g(x)) + ('(x) — D)g(x)

we are led, after integration with respect to 1(_ g1 7—spo-1)(2) pig(dx), to computations sim-
ilar to those of Subsections 3.1 and 3.3, and indeed simpler than in the latter one, due to the
boundedness property described in (54).

[

Let us summarize the Propositions 10, 14, 18 and 20 of the previous subsections into the
statement:

Proposition 22 Assume that (18) is satisfied and for p > 1, consider the constant a(p) > 0
defined in (7). Then there exists two constants o(p) € (0,1/2) and C(A,p) > 0, depending only on
the quantities inside the parentheses, such that for any o > 0 and 8 > 1 such that a8 < o(p), we
have

pal(LE 41)%] < C(A,p)a®) g

Despite this bound is very rough, since we have replaced an essential norm by a L? norm, it will
be sufficient in the next section, when a®® g% is small, as a measure of the discrepancy between
pp and the invariant measure for L, g.

4 Proof of convergence

This is the main part of the paper: we are going to prove Theorem 2 by the investigation of the
evolution of a L2 type functional.

On T consider the algorithm X := (X;);>o described in the introduction. We require that the
underlying probability measure v admits a density with respect to A which is Holder continuous:
a € (0,1] and A > 0 are constants such that (18) is satisfied. For the time being, the schemes
a: Ry — R% and B : Ry — R, are assumed to be respectively continuous and continuously
differentiable. Only later on, in Proposition 27, will we present the conditions insuring the wanted
convergence (4). On the initial distribution my, the last ingredient necessary to specify the law of
X, no hypothesis is made. We also denote m; the law of Xy, for any ¢ > 0. From the lemmas given
in the appendix, we have that m; admits a C' density with respect to \, which is equally written
myg. As it was mentioned in the previous section, we want to compare these temporal marginal
laws with the corresponding instantaneous Gibbs measures, which were defined in (9) with respect
to the potential U, given in (1). A convenient way to quantify this discrepancy is to consider the
variance of the density of m; with respect to pg, under the probability measure pg,:

Vit>0, s(p)ly = j (— — 1)2 dug, (55)

Our goal here is to derive a differential inequality satisfied by this quantity, which implies its
convergence to zero under appropriate conditions on the schemes « and 3. More precisely, our
purpose it to obtain:

Proposition 23 There exists two constants c1(p, A), ca(p, A) > 0, depending onp =1 and A > 0,
and a constant ¢(p) € (0,1/2), depending on p = 1, such that for any t > 0 with 5 = 1 and
0 < a8 < s(p), we have

I < —a(p, A B exp(=bUy)B) — af W 8 — B L + ealp, A) (™ B + |8V
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where b(Up) was defined in (5), a(p) in Proposition 22 and

B 1 yifp=1orp=3/2
(p) = {Z(p—l) ,ifpe(1,3/2)

At least formally, there is no difficulty to differentiate the quantity I; with respect to the time
t > 0. But we postpone the rigorous justification of the following computations to the end of the
appendix, where the regularity of the temporal marginal laws is discussed in detail. Thus we get
at any time ¢ > 0,

my 6tmt my
2]( —1> d,ut—2f<——1> LorIn(ug,) dus,
1 no po, ) pe, P

<_ - 1> at ln(/‘ﬁt) d/‘ﬁt
My

-t 1> Ormy d\ — J <— - 1> O¢In(pp,) dug, — QJ (ﬂ _ 1> OrIn(pp, ) dpg,
264 K3, wa,

- (mt _ 1) Oymy d) + Hatln(,uﬁt)”oo f(mt — 1) dug, ~I—2f —_— — 1’ dug,
Bt luﬁt /’[/ﬁt

e 1> dymy dX + |0: In(pg, )| (It + 2\/17)
115,

a

I

<

where we used the Cauchy-Schwarz inequality. The last term is easy to deal with:

Lemma 24 For any t > 0, we have

l0cn(pg,) |, < P[5

Proof

Since for any ¢ > 0 we have

VoeT i) = ~AUye) ~in  [es(-6U,00) M)
it appears that

VoeT,  amn(u) = A [U) - Uplo) il

so that

< osc(Up) |4

[0 (g, )l

The bound osc(Up) < 7P is an immediate consequence of the definition (1) of U, and of the fact

that the (intrinsic) diameter of T is 7.
|

Denote for any ¢t > 0, f; = m¢/ug,. If this function was to be C?, we would get, by the
martingale problem satisfied by the law of X, that

f <;nt — 1) 8tmt d)\ = JLat,ﬁt [ft — 1] dmt
B

JLatyﬁt [ft - 1] ft d/‘ﬁt
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where L, g,, described in the previous section, is the instantaneous generator at time ¢t > 0 of X.
The interest of the estimate of Proposition 22 comes from the decomposition of the previous term
into
fLat,ﬁt [fe — 1] (fe — 1) dug, + JLat,ﬁt [fe — 1] dpg,
= [ Lo U= 1= D + [ = DL, (1)

< [ Lo U= 1 G = Vs, + Vo[22, [0

It follows that to prove Proposition 23, it remains to treat the first term in the above r.h.s. A first
step is:

Lemma 25 There exist a constant cs(p, A) > 0, depending on p = 1 and A > 0 and a constant
5(p) € (0,1/2), such that for any o > 0 and 3 = 1 such that af? < &(p), we have, for any
fec(T),

[Lasti= 11t =Ddus < = (5. 05) [@17dus + calp. A5 [ (- 12

where a(p) is defined in Proposition 23.

Proof

For any o > 0 and 3 > 0, we begin by decomposing the generator L, g into
Lap = Lp+ Rap (56)

where Lg = (0% — U,0)/2 was defined in (8) (recall that U} is well-defined, since v has no atom)
and where R, g is the remaining operator. An immediate integration by parts leads to

Lot == nam = =5 [@r -1 dus
— 5 @nraus

Thus our main task is to find constants c3(p, A) > 0 and 7(p) € (0,1/2) such that for any o > 0
and 8 > 1 with a3? < &(p), we have, for any f € C*(T),

[Reslr-110-0dus| < catp. 008 ([0 dns+ [7-17 ) 67

By definition, we have for any f € C?(T) (but what follows is valid for f € C!(T)),

B

Vael,  Raslfl@) = o | 0 @2)as0 @) - f@)vidy) + S0 @) (o)

To evaluate this quantity, on one hand, recall that we have for any x € T,

Vi) = = | @ @i 0) viay)

and on the other hand, write that for any z € T and y € T\{x},
1
1O 2)as® wa)) = 1@) = Bas [ 76t (p/2)asdle. ) )3 e,.0) du
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Writing s = (p/2)af and considering again the operators introduced in (28) (now for any p > 1),
it follows that

[ Baslr =107 = s
1
- %ﬁf i [ () [ )Ty 1) = ST @) = D )i 0.1,0)
1
- %ﬁf du [ vldy) [ 1p(d0) (Tl £)(0) — F'@))gy 0

where for any fixed y € T,

VeeT\{y}, gy() = (fl&)— D& (z,y)3(z,y,0) (58)
(with e.g. the convention that g,(y’) := 0). Let us also fix the variable u € [0,1] for a while.

We begin by considering the case where p > 2. By definition of T)},, (discussed in Section 3),
we have

f (Tyoaal 1) — £'(2))gy () ps(dr) f @) (T lo)@) — gy@) ps(dz)  (59)
= Il(yv )+I2(y7 )

where for any y € T,

L <y7 u)

f P @) (T s [9)(2) — gy (1)) s (d)
B(y,m—surr=1)

Liyu) = — fB( @) sl (60)
y ,sumP—1

(recall from Subsections 3.1 and 3.4 that for any measurable function g, T, [g] vanishes on
B(y', surP~1)). The first integral is treated through the Cauchy-Schwarz inequality,

Ly < f ()2 dyss f (T2 sulgs] — 9% s
B(y,m—surP—1)

and Lemmas 11 and 21, at least if s > 0 is smaller than a certain constant &(p) € (0,/12). It
follows that for a universal constant k& > 0, we have

1
[ Il vdnde < ks (f(af)zdﬂﬁJrf(f—l)Zduﬁ) [ w2
Tx[0,1] 0

k
= 5 ([@r s + [ 12 dus)
k
20 ([@r2 s+ [ £aus )
bound going in the direction of (57).

Next we turn to the integral I5(y,u). We cannot deal with it uniformly over y € T but we get
a convenient bound by integrating it with respect to v(dy). Recalling that under the assumption
(18) the density of v with respect to A is bounded by 1 + A, it appears that

N

1+ Anm
|t van < [ ) dy (61)
1+A7T
< f f (@) 19y (@)] 15(d)
B(y',surP—1)
1+A7T _
< 2 f ua(dx)!f’(w)!\f(x)—l\f 1 dy
2 T B(x!,sumrpP—1)

_ a+Aﬂﬁp%gLVMf—u@%
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The Cauchy-Schwarz inequality and integration with respect to 1y ;j(u)du lead again to a bound
contributing to (57).
It is time to consider the cases where p € [1,2). We will rather decompose the Lh.s. of (59)
1
into three parts. Let us extend the notation %4 =y + (su)2=? from Subsection 3.3 to all p € [1,2).
Next we modify the definition (58) by introducing g,(z) = Ljy_ra_jufws y+rx](7)gy(z). Then we
write

J(Ty,su[f/](iﬂ)—f/(iﬂ))gy(x)l‘ﬁ(dfn) = i(yu) + Ia(y, u) + I3(y, u)

where

~
Ju

—~
s
<

~—
Il

f £ @)(TE [5,)() — gy () pp(da)
B(y,m—surr=1)
Liyu) = - fB( @) sl
y ,sunP—1
Lyw) = f[ Tl @) ()

The treatment of I; (y,u) is similar to that of I1(y, u), with Lemmas 15 and 19 (where a preliminary
integration with respect to v(dy) was necessary) replacing Lemmas 11 and 21.

Concerning I5(y,u), it is bounded in the same manner as the corresponding quantity defined in
(60).

It seems that the most convenient way to deal with I3(y,u) is to first integrate it with respect to
11o,17(u) v(dy)du. Taking into account that [v[,, < (1+ Am) and using Cauchy-Schwarz inequality,
we get

1+A7T

f T3y, 0)] Loy () v()du < f T3y, w) 10,1y (1) dydu

1+A7T

\/J i1 (2) (Ty,su L 1(2))* Lo,1) () g (d)dydu

\/ | o093 @0 (0) 15 o)y

The last factor can be rewritten under the form

\/ [mstan) [0 o i@y < wpldfuﬁ(dw)(f(w)lﬁ [ a

So it remains to consider the term

f Lo, (@) (Tysulf1(2))* Lo 1) (w) pp(de)dydu (63)
1

= o | Vi @) Tysul (F)*1 (@) () Lo, 11 (1) dyelu

(where as a function, ;g stands for the density of the measure pg with respect to A). Remember that
for any measurable function h, we have T, s,,[h](z) = h(z+sud’~(z,y)¥(z,y,0)). For x € [u_,u],

3—
we have d(z,y) < (Su)ﬁ and it follows that d(x, z + sud?~!(z,y)%(z,y,0)) < (su)?~». Taking into
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account that HUI’)HOO < P71 we can then a universal constant k > 0 such that for 0 < s < &(p) (for
an appropriate constant &(p) € (0,1/2)) and € T, we have pg(x)/us(x + sudP~(z,y)¥(z,y,0)) <
k. This leads us to consider the function h defined by

VaeeT,  hz) = (f(2) () (64)

since up to a universal constant, we have to find an upper bound of

T x+sﬁ x+sdP~ 1 (z,y) dv
| 16 s @T @t ) dedye < | o[,y LSdM(m’y) M) sy
_ f H(o)h(v) dv
T
where for any fixed v € T,
1 dxd
H<U) = ;sz ]l{d(m,y)ésrlp,d(v,m)gsdpfl(m,y)} dp_l(xy,y)

Let us furthermore fix z € T,

lf]l dy 7 2 S_(d(v,x)>z’_1
s Jr {(d(v,x>/s>ﬁ<d<w,y><s?5—p}d”‘l(:v,y) (2—p)s 5 N

The integration of the last r.h.s. with respect to dz is bounded above by

o [T 2 1
——— dr = s§2-p
2—-pJo 2—p

Thus we have found a constant k(p) > 0 depending on p € [1,2) such that (63) is bounded above

by k(p)sﬁ under our conditions on s > 0 and § > 1. In conjunction with (62) and definition
(64), it enables to conclude to the existence of a constant k(p, A) > 0, depending on p € [1,2) and
A > 0, such that

j|13<y,u>| Lo (W) v(y)du < kp, A)sﬁ\/ f (f —1)2 duﬁ\/ f ()2 dp

Putting together all these estimates and taking into account that f > 1, 0 < s < &(p) and
s2(0=1) > g1/ (2-p) it appears that

/ Bs ,ifp=1lorp>=2
< k(paA){/@S+32(p1) ,ifpe (1,2)

/ Bs Jifp=1orp=3/2
< 2k (pa A){ /83 + 32(1”71) s lfpe (173/2)

f Ty, w) + In(y, u) + Is(y, w) v(dy)du
Tx[0,1]

for another constant &'(p, A) > 0, depending on p € [1,2) and A > 0. This finishes the proof of
(57).
|

To conclude the proof of Proposition 23, we must be able to compare, for any 8 > 0 and any
f € CYT), the energy ps[(df)?] and the variance Var(f,pus). This task was already done by
Holley, Kusuoka and Stroock [4], let us recall their result:
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Proposition 26 Let U, be a C! function on a compact Riemannian manifold M of dimension
m = 1. Let b(U,) = 0 be the associated constant as in (5). For any B = 0, consider the Gibbs
measure jig given in (9). Then there exists a constant Chr > 0, depending only on M, such that
the following Poincaré inequalities are satisfied:

VB=0,Y feC (M),  Var(f,ug) < Cum[lv (B|U] )" exp(b(U)B)usl|V f[]

We can now come back to the study of the evolution of the quantity I, = Var(f;, ug,), for t > 0.
Indeed applying Lemma 25 and Proposition 26 with o = a4, 5 = B¢ and f = f;, we get at any
time ¢ > 0 such that 3; > 1 and /3% < <(p),

| Lows 1= 11 = 1)
< —045[3 exp(—b(Up)5t) <1 — 2¢c3(p, A)af(p)ﬂf’) I + es(p, A)af(p)ﬂf’[t

< —(caB P exp(=b(Up) ) — es(p, A)al P B3,

where ¢4 = (16m3C7) ™! and ¢5(p, A) = c3(p, A)(1 + 2¢4).

Taking into account Lemma 24, the computations preceding Lemma 25 and Proposition 22, one

can find constants c¢;(p, A), ca(p, A) > 0 and ¢(p) € (0,1/2) such that Proposition 23 is satisfied.
This result leads immediately to conditions insuring the convergence toward 0 of the quantity

I; for large times t > 0:

Proposition 27 Let o : Ry — RY and 8 : Ry — Ry be schemes as at the beginning of this
section and assume:

tEI.gI.loo By = +w
+00
L (1v Bt)_3 exp(—=b(Up)B) dt = 4w

and that for large times t > 0,
max {af? 5}, oV}, 8]} < exp(-b(U,)3)
(where a(p) > 0 and a(p) > 0 are defined in Propositions 22 and 23). Then we are assured of
Iim I; = 0

t—+400

Proof
The differential equation of Proposition 23 can be rewritten under the form
F < —-nFi+e (65)
where for any t > 0,
F o= I
o= alp A en(=bU)B) — " B} — |51])/2
ex(p, A) (7 5+ [B1))/2

€t

The assumptions of the above proposition imply that for ¢+ > 0 large enough, 8; > 1 and a;3? <
¢(p), where ¢(p) € (0,1/2) is as in Proposition 23. This insures that there exists 7" > 0 such that
(65) is satisfied for any ¢t > T (and also Fr < 4+00). We deduce that for any ¢ > T,

¢ ¢ ¢
F, < FPrexp (—j s ds> + j €5 €XP (—j Nu du) ds (66)
T T s
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It appears that lim;_, ., F; = 0 as soon as

+00
f nsds = 4w
T

Sl =0

The above assumptions were chosen to insure these properties.
[

In particular, remarking that a(p) < a(p) for any p > 1, the schemes given in (3) satisfy the
hypotheses of the previous proposition, so that under the conditions of Theorem 2, we get

lim I; = 0

t—+00

Let us deduce (4) for any neighborhood A of the set M, of the global minima of U,. From
Cauchy-Schwartz inequality we have for any ¢ > 0,

m—wm,—jm—u%
< VI

An equivalent definition of the total variation norm states that
— = 2 A) — A
Ime = pa. g, max [my(A) — pg, (A)]

where T is the Borelian o-algebra of T. It follows that (4) reduces to

li N) =1
W)
for any neighborhood N of M,,, property which is immediate from the definition (9) of the Gibbs
measures pg for 8> 0

Remark 28 Under mild conditions, the results of Hwang [7] enable to go further, because he
identifies the weak limit o, of the Gibbs measures pg as § goes to +00. Thus, if one knows, as
above, that

tligloo Hmt - Nﬁthv = 0

then one gets that m; also weakly converges toward pq, for large times ¢ > 0. The weight given by
poo to a point z € M, is inversely related to the value of  /U}/(z) and in this respect Lemma 6 is
useful (still assuming that v admits a continuous density).

First note that for any x € M,,, we have UI’)’ (z) = 0, since z is a global minima of U, and by
consequence v(z') < 1. Next assume that we have for any z € M, v(z') < 1. It follows that M,
is discrete and by consequence finite, since T is compact. This property was already noted by Hotz

and Huckemann [5], among other features of intrinsic means on the circle. Then we deduce from
Hwang [7] that

xr;/l «/1—1/

where Z =3, o (1= v(2'))~1? is the normalizing factor.

In this situation £(X}) concentrates for large times ¢t > 0 on all the p-means of v. Thus to find
all of them with an important probability, one should sample independently several trajectories of
X, e.g. starting from a fixed point Xy € T.
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Remark 29 Similarly to the approach presented for instance in [9, 11], we could have studied
the evolution of (E})¢~o, which are the relative entropies of the time marginal laws with respect to
the corresponding instantaneous Gibbs measures, namely

V>0, B = fm(ﬂ) dmy
1s:

To get a differential inequality satisfied by these functionals, the spectral gap estimate of Holley,
Kusuoka and Stroock [4] recalled in Proposition 26 must be replaced by the corresponding loga-
rithmic Sobolev constant estimate, which is proven in the same article [4].

5 Extension to all probability measures v

Our main task here is to adapt the computations of the two previous sections in order to prove
Theorem 3. As in the statement of this result, it is better for simplicity of the exposition to restrict
ourselves to the important and illustrative case p = 2, the general situation will be alluded to in
the last remark of this section.

We begin by remarking that the algorithm Z described in the introduction evolves similarly to
the process X, if we allow the probability measure v to depend on time. More precisely, for any
K > 0, consider the probability measure v, given by

VzeM, ve(dz) = jl/(dy)Kyﬁ(dz) (67)

where the kernel on M, (y,dz) — K, (dz) was defined before the statement of Theorem 3. For
a >0, >0and k>0, let us denote by L, g, the generator defined in (11), where v is replaced
by v.. Then the law of Z is solution of the time-inhomogeneous martingale problem associated to
the family of generators (Lq, g, k. )t=0- This observation leads us to introduce the potentials

V>0 YzeM, Uy(x) = jd?(:n,y) v, (dy)
as well as the associated Gibbs measures:

VB20,Yk>0, pse(dr) = Zg, exp(—BUsx(x)) A(dz)

where Zg . is the renormalization constant.
Denote by m; the law of Z; for any ¢ = 0. The proof of Theorem 3 is then similar to that of
Theorem 2 and relies on the investigation of the evolution of

2
Vit>0, I, = f( e 1) dpg, r, (68)
KBkt

which play the role of the quantities defined in (55).

While the above program was presented for a general compact Riemannian manifold M, we
again restrict ourselves to the situation M = T.
We first need some estimates on the probability measures v, for k > 0:
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Lemma 30 For any k > 0, v, admits a density with respect to X\, still denoted v,. Furthermore
we have, for any k > 1/7,

el < 27k
<

where dv,, stands for the weak derivative (so that the last norm |||, is the essential supremum
norm with respect to \).

Proof

When M = T, for any x > 0, the kernel K. .(-) corresponds to the rolling around T of the kernel
defined on R by (y,dz) — k(1 — k|2 — y|)+ dz. In particular for any y € T, K, .(-) is absolutely
continuous with respect to A and (67) shows that the same is true for v,. If furthermore x > 1/,
from this definition we can write for any z € T,

z+1/k
ve(dz) = Kk (j (1 —rd(y,2))+ V(dy)) dz

z—1/k

namely, almost everywhere with respect to A(dz),

z+1/k
e = 2|ty 2 )
z+1/k
< 27mf v(dy)
z—1/k
< 27K

Next for almost every x,y € T, we have
ve(z) —ve(y)] < 27k JT |(1 = kd(z, 2))+ — (1 — kd(y, 2))+| v(dz)
< 277&] |1 — kd(z,2) — 1+ kd(y, 2)| v(dz)
T

< 2m? [ Jdlz,2) - dy. )] v(d)
T
< 2rkPd(z,y)
This proves the second bound.
|

An immediate consequence of the last bound is that for any « € T, the map (1/7, +0) 3 k — Us ,.(z)
is weakly differentiable and for almost every x > 1/7, |0,Us. ()| < 27*x%. But one can do better:

Lemma 31 For any x € T and any k > 1/7, we have

3
0U2,0(2)| < 3%

Proof

It is better to come back to the definition of v, to get, for x € T and k > 1/7 (where 0J,; stands
for weak derivative):

OWlanle) = o (2 [ ) o) [ (1 vy )1 v(a) )
~ on f Mdy) &2z, y) Lu(dz) (1 - rd(y, 2))s —27mf)\(dy) (2, y) fy_l/ny(dz) d(y, 2)

y—1/k
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The first term of the r.h.s. is equal to U ,(x)/k and is bounded by |Uz
value, the second term can be written under the form

/K < /K. In absolute

z—1/k z—1/k
27mfl/(dz) J MNdy) d*(z,y)d(y,z) < 2#3/{ju(dz) J Ady) |y — 2|

z—1/k z—1/k

The improvement of the estimate of the previous lemma with respect to the one given before its
statement is important for us, since it enables to obtain that if (5;)¢=0 and (k¢)¢=0 are C' schemes,
then we have

Vit=0, |0 In(pg, ), < 8] + 3B |(In(ky))| (69)

This bound replaces that of Lemma 24 in the present context. Note that for the schemes we
have in mind and up to mild logarithmic corrections, we recover a bound of order 1/(1 + t) for
10¢ In(p, . )| ., Which is compatible with our purposes.

In the same spirit, even if this cannot be deduced directly from Lemma 31, we have

Lemma 32 As k goes to infinity, Us , converges uniformly toward Us. In particular, if b(-) is the
functional defined in (5), then we have

lim b(Us.) = b(Us)

K—+00

Proof

Since |0Us k|, < 2w, for any x > 0, it appears that (Us,)x>0 is an equicontinuous family of
mappings. It is besides clear that v, weakly converges toward v as x goes to infinity, so that
Us . (x) converges toward Us(x) for any fixed z € T. Compactness of T and Arzela-Ascoli theorem
then enable to conclude to the uniform of Us ., toward Us as x goes to infinity. The second assertion
of the lemma is an immediate consequence of this convergence.

Consider for the evolution of the inverse temperature the scheme
Vit=0, By = b lln(l+1)

where b > b(Us) and denote p == (1 + b(Uz)/b)/2 < 1. Assume that the scheme (k¢);>0 is such that
lim;_, ;o0 Ky = +00. Then from the above lemma and Proposition 26 (recall that [0Us |, < 27,
for any x > 0), there exists a time T' > 0 such that for any t > T,

v feCl(T), SVar(f,pg,m) < ps,w[(0F)7] (70)

(1+1)
Like (69), this crucial estimate for the investigation of the evolution of the quantities (68) still does
not explain the requirement that k € (0,1/2) in Theorem 3. Its justification comes from the next
result, which replaces Proposition 10 in the present situation.

Proposition 33 For a > 0, 8 = 0 and k > 0, let LZ’W€ be the adjoint operator of Lag. in
L%(up). There exists a constant Cy > 0 such that for any 8 > 1, kK > 1 and a € (0,(28)7! A
(B3(B + k))™Y?), we have

|Li s, < CiaB*(B+ w7
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Proof
It is sufficient to replace U by Us, in the proofs of Section 3, in particular note that (17) still

holds. From Lemma 6 and the first part of Lemma 30, it appears that (19) has to be replaced by
V=1, U3

RHOO < 4dnk

Instead of (20), we deduce that for any x,y € T and «, 8 and k as in the statement of the
proposition,

exp (8] Vante) =V (- 1255 0-0)|) = 14 125U — 2) + 0?85 + )

Keeping following the computations of the same proof, we end up with

B 1 ' +afmT

z,ﬁ,n]l($) = I/,.@(l‘/) - Vli(y) dy + O(Oéﬁg(ﬁ + ’{))

1-— Oéﬂ 271'0(5 z'—afm

To estimate the last integral, we resort to the second part of Lemma 30: we get

' +afBm .
| ) =y

' —afrm

) ' +afmT )
< 21k f ‘x —y‘ dy

' —afT

= 2nk*(afn)?

This leads to the announced bound.

Similar arguments transform Lemma 25 into:

Lemma 34 There exists a constant Cy > 0, such that for any o > 0, § = 1 and k = 1 with
af? < 1/2, we have, for any f e C*(T),

[Lapals =17 =1 dus < = (5 o5+ ) [(01dus
+CaaB (B4 1) [ (£ = 1) dug

Proof

The modifications with respect to the proof of Lemma 25 are very limited: one just needs to take
into account the bounds HU;,’WHOO < 2w and ||vk|,, < 27k for kK = 1. Indeed, there are two main
changes:

e in (56), where the remaining operator has to be defined by

1
Raﬁ’,{ = La’ﬁﬂ — 5(82 — ,BU/J{(?)

e in (61), the factor 1 + Am must be replaced by 27k, by virtue of the first estimate of Lemma 30.
It leads to the supplementary term o2k in the bound of the above lemma.
|

All the ingredients are collected together to get a differential inequality satisfied by (Z;)>o.
More precisely, under the requirement that (70) is true for t > T > 0, as well as 8, > 1, k; > 1
and oy 32\/k; < 1/2, we get that there exists a constant C3 > 0 such that

Vt=T, I{ < _ntIt + Et\/ft
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where for any ¢t > T,

1

m = m — Cg(atﬁf(ﬁt + /it) + ‘5{‘ + Bt ‘(ln(’{t))/‘)

Cs(u 7 (BF + k7) + |BY] + By |(In(re))'])

€t

Under the assumptions of Theorem 3 (already partially used to insure the validity of (70) for some
€ (0,1)), it appears that as t goes to infinity,

1
T T op
( )
and this is sufficient to insure that
lim Z; = 0
t—400

The proof of Theorem 3 finishes by the arguments given at the end of Section 4.

Remark 35 As it was mentioned at the end of the introduction, if one does not want to waste
rapidly the sample (Y;,)nen (especially if it is not infinite ...), one should take the exponent ¢ the
smallest possible. From our assumptions, we necessarily have ¢ > 1. But the limit case ¢ = 1 can
be attained: the above proof shows that the convergence of Theorem 3 is also valid for the schemes

o = (1 + t)_l
V0, B = b lln(l+1)
KRt = 1H(2 + t)

The drawback is that v is not rapidly approached by vy, as t goes to infinity and this may slow
down the convergence of the algorithm toward N. Indeed, from the previous computations, it
appears that the law of Z; is rather close to the set of global minima of Uy ., .

Remark 36 The cases p = 1 and p > 2 can be treated in the same manner, but for p € (1,2), one
must follow the dependence on A of the constants in the proof of Lemma 19. In the end it only
leads to supplementary factors of x, so that Theorem 3 is satisfied with a sufficiently large constant
¢, depending on p > 1 and on the exponent k entering in the definition of the scheme (k¢)i=0. But
before going further in the direction of this generalization, it would be more rewarding to first
check if the dependence on p of a, in Theorem 2 is just technical or really necessary.

A Regularity of temporal marginal laws

Our goal is to see that at positive times, the marginal laws of the considered algorithms are
absolutely continuous and that if furthermore v « A, then the corresponding densities belong to
CY(T). We will also check that this is sufficient to justify the computations made in Section 4.

Let X be the process described in the introduction, for simplicity on T, but the following
arguments could be extended to general connected and compact Riemannian manifolds. We are
going to use the probabilistic construction of X to obtain regularity results on m;, which as usual
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stands for the law of X, for any ¢ > 0. So for fixed ¢ > 0, let T} be the largest jump time of
N(@) in the interval [0,¢], with the convention that T; = 0 if there is no jump time in this interval.
Denote by & the law of (T}, X7,) on [0,¢] x T. Furthermore, let Ps(x,dy) be the law at time s = 0
of the Brownian motion on T, starting at « € T. From the construction given in the introduction,
we have for any ¢ > 0,

my(dz) — f[oﬂ 6(ds.d2) P (2.0) (71)

An immediate consequence is:

Lemma 37 Let t > 0 be fized. About the measurable evolutions o : Ry — RY and B : Ry —
Ry, only assume that infycpg s > 0. Then, whatever the probability measure v entering in the
definition of X, we have that m; is absolutely continuous.

Proof
By the hypothesis on «, 0 is the unique atom of £(-, T), the distribution of T} (its massis §({0},T) =
exp(— Sé 1/asds)) and &(+, T) admits a bounded density on (0,¢]. Since furthermore for any s > 0

and z € T, Py(z,-) is absolutely continuous, the same is true for m; due to (71).
|

To go further, we need to strengthen the assumption on v.

Lemma 38 In addition to the hypotheses of the previous lemma, assume that v admits a bounded
density and that inf o Bs > 0. Then for any t > 0, the density of m¢ belongs to cY(T).

Proof

We begin by recalling a few bounds on the heat kernels Ps(x,dy), for s > 0 and x € T. We have
already mentioned they admit a density, namely they can be written under the form ps(z,y) dy.
Since the Brownian motion on T is just the rolling up of the usual Brownian motion on R, we have
for any z € T,

exXpl(— — X 7T’I’L2 S
by = 3 SRl 2 (29) )

Vye (x—mzx+m7|, 5
TS

nez

From a general bound due to Hsu [6], we deduce that there exists a constant Cp > 0 such that for
any s > 0 and y € (x — m,x + 7], we have

10yps(z,y)] < Co <d(a;’ y) + %) ps(w,y)

To get an upper bound on ps(z,y) = ps(0,y — ), consider separately in (72) the sums of n € Z,
and n € Z_,\{0}, where o € {—, +} is the sign of y — . It appears that for s € (0,¢],

peey) < 2 Z exp(—(y — x + 27n)?%/(2s))

e 2ms
expl— — T 2 S
< 2 p( (y 27T8) /(2 )) Z exp(—(27m)2/(23))
nel 4
- Cl(t)exp(—d2(2w,y)/(28))

where C1(t) =3,z exp(—2(mn)?/t). Taking into account (71) and Lemma 37, if we were allowed
to differentiate under the sign integral, we would get for any = € T,

Oemi(x) = f[Ot] TSt(ds,dz) OxPt—s(2, ) (73)
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(where the Lh.s. stands for the density of m; with respect to 2w\). Unfortunately the usual
conditions don’t apply here, so it is better to consider the approximation of the density m; by m. 4,
where for € € (0,1),

Vol m() = [ aldsdopeo)
[0,t—€]xT

There is no difficulty in differentiating this expression under the sign sum and in the end it appears
to be smooth in z. So to get the announced result, it is sufficient to see that d,m. () converges
to the r.h.s. of (73), uniformly in z € T as € goes to 0. Let us prove the stronger convergence

=04 zeT

lim supf &(ds,dz) |0zpr—s(z, )] = 0
[t—e,t]xT

The assumptions that inf . @s8s > 0 and that v admits a bounded density imply that the latter

is equally true for &(s,-), the regular conditional law of X7, knowing that 7; = s, for any s > 0.

We can even find Ca(t) > 0 such that &(s,dz) < Ca(t) dz, uniformly over s € (0,t] (but a priori

C»(t) may depend on t > 0 through inf[o, asfBs). In the proof of Lemma 37, we have already

noticed that there exists Cs(t) > 0 such that &(ds,T) < Cs(t)ds, for s = 0. It follows that for
€ (0,2),

f €4(ds, d2) |6apr_s(,2)]
[t—et]xT

d(z,x) 1 exp(—d?(z,z)/(2(t — 5)))
< CoCi(H)CH(1)Cs(t) J[tﬁt dsj dz <(t_s)3/2 + t_g) .

] T
" ‘ < exp(—22/(2s
- 20001(t)02(t)03(t)jo dzjo ds <83W + %) %

This bound no longer depends on z and to compute the latter integral, consider the change of
variable u = 2%/s, z being fixed:

f dzf ds (W >exp( 22/(25)) f dzf% <—+u> exp(—u/2)

We conclude by remarking that by the dominated convergence theorem, the latter term goes to
zero with e.

Remark 39 More generally, but still under the assumption that v admits a bounded density,
the density my is C! at some time ¢ > 0, if we can find € € (0,¢) such that infep—e s > 0 and
infeer_c ) Bs > 0. This comes from the above proof or can be deduced directly from Lemma 38
and the Markov property of X.

[m]

The same arguments cannot be used to prove that for ¢ > 0, the density of m; belongs to C?(T).
A priori, this is annoying, since in Section 4, to study the evolution of the quantity I; defined in
(55), we had to differentiate it with respect to ¢ > 0 and the computations were justified only if
the densities m; were C?. The classical way go around this apparent difficulty is to use a mollifier.

Let p be a smooth nonnegative function on R whose support is included in [—1, 1] and satisfying
§g P(y) dy = 1. For any 6 € (0,1), define

Vt>0,YzeT, m? fmtx+y y)dy
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(where functions on T are naturally identified with 27-periodic functions on R). These functions are
smooth and what is even more important for Section 4, the mapping R¥ x T 3 (¢,z) — @%mgé) (x)

(9)

is continuous. Furthermore, the m;’ are densities of probability measures on T. More precisely,
for any ¢t > 0, mgé) is the density of £(X;) when L£(Xy) = mgs), as a consequence of the linearity

of the underlying evolution equation (i.e. V ¢t > 0, dym; = myL,, g,, in the sense of distributions).
Thus the computations of Section 4 are justified if we replace there (my)~o by (mgé))bo, for any

fixed § € (0,1). In particular the inequality (66) is satisfied for (m§5))t>0 instead of (my)i=o. It
remains to let 0 go to 04 to see that the same bound is true for the flow (m;);~¢. This proves
Theorem 2 for general initial distributions my, for instance Dirac masses. In fact, one could pass
to the limit § — 0, before (66), for instance already in Proposition 23, to see that it is also valid.
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