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ABSTRACT

In this paper, we explore the use of optical correlation-based recognition to identify and position underwater
man-made objects (e.g. mines). Correlation techniques can be defined as a simple comparison between an
observed image (image to recognize) and a reference image; they can be achieved extremely fast. The result
of this comparison is a more or less intense correlation peak, depending on the resemblance degree between
the observed image and a reference image coming from a database. However, to perform a good correlation
decision, we should compare our observed image with a huge database of references, covering all the appearances
of objects we search. Introducing all the appearances of objects can influence speed and/or recognition quality.
To overcome this limitation, we propose to use composite filter techniques, which allow the fusion of several
references and drastically reduce the number of needed comparisons to identify observed images. These recent
techniques have not yet been exploited in the underwater context. In addition, they allow for integrating some
preprocessing directly in the correlation filter manufacturing step to enhance the visibility of objects. Applying
all the preprocessing in one step reduces the processing by avoiding unnecessary Fourier transforms and their
inverse operation. We want to obtain filters that are independent from all noises and contrast problems found
in underwater videos. To achieve this and to create a database containing all scales and viewpoints, we use as
references 3D computer-generated images.

Keywords: Automatic target recognition, underwater optical images, fast correlation-based methods, composite
filter.

1. INTRODUCTION

In underwater mine warfare, unmanned underwater vehicles (UUVS) are used as a complement to divers,
to detect mines and eventually destroy them. Currently, Remotely Operated Vehicles (ROVs) are used. They
typically have a sonar and a camera. They require the constant attention of an operator and they have a short
range since they are tethered to a mothership. Thus the planed evolution to ROVs are Autonomous Underwater
Vehicles (AUVs). In a typical mine hunting scenario, the mothership uses its sonars to study an area in order to
detect and classify mines. Once mines have been detected, ROVs are launched to confirm the classification and
eventually destroy the mine. During the transit to the target, the vehicles are guided by their sonar. When close
to the mine, video can be used. Because of the reduced visibility in the underwater medium, the range at which
video is usable is limited to a few meters only. Video is used to detect, localize and identify the underwater
object. The specificities of the underwater medium such as light absorption and scattering lead to images with
noise, no contrast and unusable color information. Depending on the location and the recording environment
(like water turbidity), these effects can be more or less accentuated in the images. For these reasons, and because
correlation is sensitive to these problems, images need preprocessing. Our studies concern a system that is able
to perform detection, localization and identification at same time while preprocessing images. Moreover, we add
a constraint on the processing time: we want a real-time process.
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Research on pattern recognition has been carried out for various purposes like handwritten, fingerprint or
face recognition, to name only a few well-known ones. Recognition is a difficult problem since there are many
objects to identify and lots of points of view of them and imaging conditions can modify their appearance. In
this article, we compare a few methods, selected according to criteria like the processing time and the number
of required operations, the idea being to provide elements justifying the choice behind our own approach.

Our paper is organized as follows. First, we present the setting, the studied targets and the context of under-
water optical imaging. Then we expose the state of the art and discuss our choice of using optical correlation-
based methods to recognize underwater objects. We explain our integrated preprocessing features to improve
target images without increasing processing time, our filter manufacturing and our decision of trying the use of
computer-generated images instead of underwater images. Finally we present first results obtained with data
acquired at sea that seem to validate our approach.

2. CONTEXT OF STUDY

2.1 Use of video in the underwater environment

Video is used in several applications. Some are briefly developed here.

A first category is visual servoing. For some biological surveys applications, it is required to follow fishes.
The fish must be kept in the center of the image recorded by the camera.1 This application needs to have a
robot that is able to adapt to the speed of the fishes and to their orientation changes. Cables and pipes following
is another example.2

A last example is station keeping:1 the robot modifies its position depending on the chosen feature displace-
ment, which is measured in comparison with its initial position.

Target recognition is the second application of video, as in the case with mine warfare, but also the retrieval
of lost objects, such as flight recorders.

2.2 Underwater image

In underwater imaging, visibility is a major problem. It varies from about 30 m in very clear water to about
0.75 m in very turbid water like a harbor water.

The received image IR is the addition of the attenuated image IA, the forward scattered image IFS and the
backscattered component IBS :3

IR = IA + IFS + IBS (1)

The light attenuation increases exponentially with distance (according to the Beer-Lambert law) and limits
visibility. The backscattered component corresponds to the light that has been reflected by particles towards the
video camera (see Figure 1). This hides objects present in the scene. The forward scattered component is the
light reflected by the object that has been diffused by particles on its way back to the camera, which produces
blurred images (see Figure 1).

Figure 1. Diagram of the light propagation in an underwater medium

It is possible to add artificial lighting in the scene; this increases the visibility range but it produces a
non-uniform lighting. Video detects also particles on which light is reflected, called marine snow.1

These consequences of the underwater medium are annoying, especially backscattering that is the most
important effect. Thus underwater images need preprocessing.



2.3 Studied targets

The studied targets are underwater mines (Figure 2). There are many kinds of mines. In this work we focus
on three of them: spherical mines (Figure 2-a), cylindrical mines (Figure 2-b) and Manta mines (Figure 2-c) (the
Manta mine is a truncated cone).

Figure 2. Grayscale images representing three studied targets that come from underwater videos: a spherical mine (a), a
cylindrical mine (b) and a Manta mine(c)

3. IMAGE RECOGNITION METHODS: A BRIEF STATE OF ART

Pattern recognition is a problem which has received a great deal of attention in the literature. The purpose
of this paper is not to give an exhaustive review of all existing methods. In this paragraph, we expose a few
methods selected according to criteria like short time processing and the ability to provide the location and/or the
orientation of the mine. First we expose methods that have already been used for underwater target recognition
purposes. Then we expose some other methods used in other fields, which could have the potential of being
adapted for the underwater environment.

Some methods applied on underwater images are based on contours analysis. Thales’s module for underwater
mine detection preprocesses images before applying segmentation to extract contours.4 These contours are
compared with lines and ellipses, to keep only man-made object contours. The center of contours determines the
mine location. To identify a mine, they compare the mine shape with reference shapes and they correlate this
information with navigational information, in order to obtain a measure of match quality. We do not use this
method because it needs contours extraction and processing of these contours: in the underwater environment,
the contours may be too faintly visible for the match to be good.

In their article,5 Olmos et al. suggest and validate a method that consists in distinguishing man-made objects
from natural objects in underwater videos. Therefore, they extract edges with a Canny detector and a measure
of uniformity which consists in comparing the uniformity of the intensities of each side of the contour. Assuming
that man-made objects have straight edges, they use lengths, regularity and the number of found contours to
classify natural and man-made objects. As the previous method, this one needs a Canny edge detector. This
detector may not be able to find all the interesting contours in very noisy images.

Bazeille et al. identify known objects with color analysis.6 They base their studies on the Beer-Lambert
law and showed that a color has a set of compatible colors in the underwater medium. Their algorithm has a
training step to find the compatible color range of a known object (through a logarithmic transform and principal
analysis component). Then it analyzes image pixels to search objects. Since we have color and grayscale images,
we cannot use exclusively color-based methods.

Underwater imaging is also used for tracking. Trucco et Plakas made a review of some recent papers.2 We can
note that developed methods are essentially applied to mosaics, cables and pipes following or positioning. These
methods are based on Hough transforms, on corner detection, and on correlation-based algorithms. Hough
transform-based methods need another processing to analyze results that may complicate a system. Hough
transforms are essentially based on contours, which, as we said above, may be too faintly visible in the image.
Corner detectors “lock” on any feature of the image where the gradient is strong in any direction. Any feature
such as text painted on the object will be caught by the corner detector. Since the presence of such features is
unpredictable, it makes corner detectors hard to use for image recognition.

All existing pattern recognition methods have not yet been applied to underwater target recognition. There-
fore, we look after some other methods from terrestrial applications.



In a recognition application for vehicles in terrestrial images, Olson et al. proposed an approach based on
the use of both edge maps of images and references.7 They compare the position and the gradient of pixels from
the input image to the position and the gradient of pixels from references. The decision is based on a threshold
on the number of corresponding pixels. This method has two drawbacks: it needs a good edge detection method
and it does comparison on a per-pixel basis.

In another approach, Cole et al. proposed a method adapted to Lego pieces recognition.8 Therefore, they
have a database divided in classes. Each class represents one Lego piece and contains an average image and a
cluster image. Each image to identify is compared to average images with a normalized cross correlation and a
threshold. Then the image is compared to clusters with which there might be a match to obtain the name of the
Lego piece. This method needs two comparisons: the first one with a huge database and the second one with a
reduce database that leads to the decision.

In the Ref. 9, Schiele and Crowley use color histogram matching to recognize objects. The first step is to
calculate the color image histograms. Then they compare them to reference histograms with a χ2 test. Different
tests9 prove that this method is robust to orientation change, scale change, partial occlusion and viewing point
change. This method is a simple, robust, and has a short processing time. But it depends on color and light
intensity, that are underwater image problems.

SpikeNet is a real-time method, developed by Thorpe et al.10,11 They have developed a very fast program
that simulates neuron network with very few parameters, to recognize faces. The first version of their algorithm
has four steps: a step to know at which state the image pixel correspond to (by analogy with the retina which
have two states of its cells: on and off), two steps to recognize contour orientations and then specific features that
the program had learnt and a final step to analyze results. Following this version, they proposed an optimized
version that is able to recognize all kinds of objects if learnt specific features contain oriented structures. This
method needs a good contour visibility and objects from which we can extract specific features. In our case, this
means specific features for each mine, each orientation and each scale and as a consequence a huge database of
reference features.

In the same category, Viola and Jones used the AdaBoost classifier to rapidly detect faces in grayscale
images.12 They select some classifiers that they assemble in a cascade. Thus they achieve a low error rate on
their training database. The drawback to this approach is that AdaBoost, like neural-network-based methods,
is of the black box kind: it is hard to debug.

4. THEORETICAL JUSTIFICATION: WHY CORRELATION?

4.1 Choice

As shown in part “context of study” (part 2, p. 2), in the water medium, color is attenuated and objects’
color changes on each video. Moreover, in our studies, we have color images as well as grayscale images. Thus
color methods6 cannot be used. Schiele and Crowley’s method9 is not able to provide orientation information.
We do not use methods based on edge maps7 and/or binary images.5 Indeed, noise present in images affects
object contours. These are not clear in all images, which can perturb recognition results.

For these reasons, we chose the correlation method. It compares an image to a reference image. The presence
of a correlation peak indicates the resemblance and therefore the mine’s orientation with respect to the video
camera. The correlation peak location also gives the location of the mine in the image. This method mainly
recognizes contours that can be obtained from grayscale images. Recognition can be obtained even if entire
contours are not visible in the studied image.

4.2 Correlation

Correlation is a signal and image processing method that compares a target image with a reference image.
The result of this comparison is a more or less intense correlation peak, depending on the resemblance degree
between these two images. Mathematically, correlation can be written:

c(x0, y0) = h(x0, y0) ∗
c s(x0, y0) (2)



c(x0, y0) =

∫ ∫ +∞

−∞

h∗(x, y)s(x + x0, y + y0)dxdy (3)

where “c” is the result of the correlation operation, “∗c” is the correlation product,“∗” is the complex conjugate
operator, “h” is a filter or reference, “s” is the image to analyze, “(x0, y0)” are spatial coordinates and “(x,y)”
are integration variables. The correlation operation can be expressed with a Fourier transform:

C(µ, ν) = H∗(µ, ν).S(µ, ν) (4)

where µ and ν are the coordinates in the frequency plane, C, S and H∗ are the respective Fourier transforms
of functions c, s and h∗.

The classical matched filter13 has been modified by introducing information in order to obtain some robustness
to noise or orientation change for instance.14 Here we develop only three filters: classical matched filter,13 phase
only filter (POF)15 and optimal trade-off filter (OT filter).16 Other filters have been developed, in the literature,
like the binary phase only filter17 and the inverse filter.18 These filters, expressed in the Fourier plane, may then
replace “H∗” in equation 4.

The most known filter is the classical matched filter (FCMF ) defined in the Fourier plane as:13

FCMF (µ, ν) =
αS∗(µ, ν)

B(µ, ν)
(5)

where “S∗(µ, ν)” denotes the complex conjugate of the reference, “B” the spectral density of the background
and “α” is a constant. This filter is robust but has a low discriminating power.14

The phase only filter (FPOF ) is defined in the Fourier plane as:15

FPOF (µ, ν) =
S∗(µ, ν)

|S∗(µ, ν)|
(6)

where “|S∗(µ, ν)|” is the module of the reference spectrum. This filter gives a sharp correlation peak, it is
very discriminative15 but also noise sensitive.

The optimal trade-off filter (FOT ) is defined in the Fourier plane as:16

FOT (µ, ν) =
S∗(µ, ν)

αB(µ, ν) + (1 − α)|S∗(µ, ν)|2
(7)

From now on, in this article, we will use only the POF filter. Since we need a discriminative filter. We don’t
use the OT filter because in order to obtain good performances we have to know the spectral density of the
background which must be very close to the one in the actual images.19 In underwater applications, it is very
difficult to know the spectral density of the background because of the ocean floor, turbidity and all noises that
perturb an image and vary throughout the video.

Correlation is extremely fast. The fast Fourier transform takes O(n log(n)) arithmetical operations20 and
each image multiplication takes O(n2) arithmetical operations, where n is one of the two size of the image to
analyze (here, we suppose that image is a square image).

To perform a good correlation decision, we should compare our image with a huge database of references,
covering all the appearances of mines. Using the filter defined previously, this operation takes a lot of time
(proportional to the number of references). To overcome this problem, we use at first the classical composite
filter techniques14 and the POF technique. In future works, we plan to use an optimized version of the composite
filter called the segmented composite filter.21 The classical composite filter technique used in this work consists
in linearly adding several references (Figure 3): first each reference image is Fourier transformed. Then we add
all the reference spectra to obtain a composite filter in the Fourier domain.

One problem we can meet when using this technique, is a saturation problem. The values stored in the filter
are quantized in a fixed amount of values, e.g. 255 for 8-bits images. If there are too many references, this



Figure 3. Composite filter technique

maximum value will be reached and adding another reference to the filter will not allow to recognize it in an
image. To overcome this problem, we can use the segmented filter technique. In this latest method, the fusion
of different references is performed according to a segmentation criterion. This criterion consists in dividing the
Fourier plane into separate areas: a first area is common to the different spectra, where the different images have
similar spectra (these areas being more or less important depending on the degree of resemblance between the
reference images), and other areas are specific to the reference image spectra (for each area, specific information
to the reference image spectrum is introduced).

The correlation method has some drawbacks, which can be annoying like the non-robustness to noise, rotation
and scale modifications or the fact that it considers only one point of view. Objects can be seen with any point
of view and they can have any scale, depending on distance between the object and the video camera. therefore,
we have a huge database of references. Composite filter techniques allow reducing the database size and therefore
the number of needed operations. The result of the correlation indicates the resemblance degree between the
object and the reference image thus we obtain orientation information. The location of the correlation peak
gives the location of the object in the image. The method also allows for inserting information in filters. Indeed,
in the algorithm, we multiply the target image spectrum and the filter spectrum in the Fourier domain. The
“context of study” section of this paper (part 2, p. 2) shows that underwater images cannot be used in the
raw state and need preprocessing. Many of preprocessing we need have to be performed in the Fourier domain.
It is possible to integrate them directly into filters and reduce the whole processing time by avoiding several
Fourier transforms. Moreover, the correlation method has some advantages like its small computation time and
robustness to translation.

The optical correlation is an efficient technique, thanks to the decision reliability (it is the aim of all developed
filters), cheap but efficient. In addition to digital implementation, it is also possible to use opto-electronic
interfaces and for applications that need a rapid identification (for instance person identification). However, for
general public applications, the optical implementation will be expensive and may complicate the whole system.
Thus, we chose to implement the Vander Lugt setup13 numerically, which consists in the multiplication of the
image spectrum and the complex conjugate filter spectrum. We could have digitally implemented the Weaver
and Goodman setup22 but this setup need the image and the reference in the same input plane. Therefore, the
system has to work with large matrix and this takes more processing time. Moreover, this configuration needs
some additional processing in the correlation plane. In the correlation plane, there are two cross-correlation
peaks (in case of resemblance) and an autocorrelation peak that could perturb the decision.

5. CORRELATION APPLIED TO UNDERWATER MINE RECOGNITION

Our algorithm is divided in several steps (Figure 4).

We have an offline part that consists in preprocessing reference images and compositing them to create filters.
The second part of our algorithm consists in preprocessing images. Then we perform correlation by multiplying
filters and the preprocessed image. We apply the PCE criterion to decide if searched mines are in the studied
image.



Figure 4. Our algorithm diagram

5.1 Preprocessing

To save processing time, images are resized to suppress navigational information. To suppress the moiré effect,
we suppress the high frequencies corresponding specifically to the moiré pattern in the spectrum as proposed by
Sidorov and Kokaram.23 The moiré effect is due to the use of analog cameras; it can be avoided by the use of
digital cameras.

To enhance the contrast of the images, we implement the preprocessing algorithm described in Ref. 24. From
the initial image, we apply a low pass filter to create a low pass image. This low pass image will be used twice.
Firstly, it will be subtracted to the initial image to suppress backscattered light in the additive model. Secondly,
it will divide the initial image in order to suppress the illumination component in the illumination-reflectance
model. After clipping values, final image is the result of the division or the result of the subtraction function of
the gradient of each image.

Figure 5. before (left) and after (right) contrast enhancement

5.2 Phase images and filtering with a Gabor wavelet

To efficiently recognize objects, we work on grayscale images where the information is related to contours.
However, contrarily to typical contour-based methods, we do not threshold a gradient, but use the phase of the
image. Edges correspond to sharp phase change while information contained by the amplitude are not interesting
in our case.25 Using the phase is a way to avoid any thresholding: indeed, thresholding is a problem when the
signal to noise ratio for the edge strength is low, as is the case for underwater images. To achieve this, we work
on the Fourier domain. It is the processed image, once processed in the Fourier plane, that can be expressed as:
I = r.eiθ. The amplitude information is contained by r and the phase information by the exponential function.
To keep only the phase information, all values are divided by their amplitude: I = eiθ.

Since there is still some noise, we use a band pass created with a Gabor wavelet: f(x) = cos( 2πx

λ
)e−

x
2

σ
2 , where

“λ” is the wavelength and “σ” is the standard deviation of the Gaussian exponential function. This operation



remove some noise but the edges are not as straight as in the phase image. To solve this problem we combine
these two images by addition.

Figure 6. initial image (top left), phase image (top right), phase and wavelet image (bottom left), combination of phase
image and wavelet image (bottom right)

On Figure 6, there are images of different steps of our preprocessing. We can notice the apparition of contours
in the phase image. The wavelet image filters some noise but edges are not as sharp as in the phase image. The
combined image has advantages of the phase image and the wavelet image: we can see quite sharp edges and
less important noise.

5.3 Introduction of preprocessing in the filter step

Suppressing the moiré effect, normalizing the amplitude, filtering by a wavelet, is all done in the Fourier
domain. All these operations could be done one after the other before computing the Fourier transforms of the
images. But, since the Fourier transform is linear, it is much more efficient to do them in one step directly after
computing the Fourier transform of the image, which is already needed to do the correlation.

5.4 Sector filter

Composite filter techniques allow for reducing the database size by grouping several reference images in a
single filter. However, as we want to know the mine orientation, we use sector filters. This approach means
that we divide the reference database into so-called sectors: one sector contains several reference images that
represent the mine under orientations that are close to each other, and with one scale. There is one filter per
sector. Thus, the presence of the correlation peak will indicate the presence of the mine, its orientation and its
approximate location.

To create filters, we automatically assemble close reference images obtained by computing edges of reference
images. The criteria used to assemble two references are the size and the orientation of the mine shape. For
each image in the reference database, we compare the mine size and its orientation to reference mines that have
already been studied. If the values of the criteria are close to the criteria of an already processed image, we add
this image to the corresponding filter. If it does not correspond, we create a new filter. This way, it is possible
to use a huge reference database. These filters are created offline and once for all.

5.5 Decision with the PCE criterion

To measure the performance of our correlation algorithm, we need a method to evaluate the resemblance.
We have chosen the peak to correlation energy (PCE) criterion:

PCE =
correlation peak energy

correlation plane energy
(8)



This criterion evaluates energy contained in the correlation peak, in comparison to energy contained in the
correlation plane.

There are other existing criteria like the signal to noise ratio or the Horner efficiency.18

PCE criterion varies depending on each correlation plane. It needs some modifications. Indeed, the PCE
criterion is not a normalized criterion. Thus PCE values can strongly vary from one video to another and
according to the implemented algorithm. To compare different methods, some normalization is needed. This
could be done with the normalized cross correlation that use as normalization tools the local mean and the
standard deviation of the image and of each reference image.

6. IMAGES FROM VIDEOS AND COMPUTER GENERATED IMAGES

It is not advisable to use reference images extracted from videos, since those images will be corrupted by
noise and not necessarily visible from all orientations and angles. Also, the background is also present, which
is a problem when trying to correlate the reference with an observed image. As a result, we decided to use
computer-generated images as references. This choice is guided by the fact that computer-generated images are
independent from noise and provide us with all scales and all viewpoints we want. Thus, we obtain an extensible
database: for each mine we are able to create images for each scale and each point of view.

Figure 7. A computer-generated image of a Manta mine

The use of several colors and light gives more details when we perform the contour image. With more details,
it is easier to discriminate objects when these details are to be detected in videos. We first create a computer-
generated images based database representing the Manta mine. For future works, we will generate database for
the spherical and the cylindrical mines.

7. FIRST RESULTS

7.1 Results obtained with filters created with images from videos

As a first, quick experiment, we created filters with images from a video sequence to recognize the Manta
mine from image 650 to image 850. On Figure 8, we can notice that filters do indeed recognize these images.
Images around image 1700 have PCE values indicating some degree of recognition as well. This result could be
expected since the appearance of the mine in this place is close to the appearance of the mine contained in filters.
The black line represents the comparison of Manta based filters and a video of a cylinder mine. Obtained values
of PCE means that the mine is not recognized as a Manta mine.

7.2 Results obtained with filters based on computer-generated images

We created five filters with computer-generated images that represent the main mine appearances we can
see in the studied video. Each filter contains five reference images. Between two reference images there is an
angle difference of 2◦. Figure 9 shows that the mine is recognized almost everywhere it is present in the video.
However, in images located from 1200 to 1400, there is no mine but we see the video camera and it is recognized
as a mine by the system. The cylinder mine is not recognized as a Manta mine. This is explained by the fact
that the Manta mine is mainly view as a circle or a cone and there is no view of the circular side of the cylinder
in the video used to obtain these results.



Figure 8. Results obtained with filters created with images from videos

Figure 9. Results obtained with filters created with computer-generated images

7.3 Results

Our algorithm has been run using Matlab, version R2007a. The computer we use is a Intel Core 2 Quad
CPU cadenced at 2.66GHz. The recognition rate and the no detection rate correspond to the number of images
containing a mine that have been correctly or not identified in comparison to the total number of images
containing a mine. The error rate corresponds to images containing another type of mine identified as a manta
mine in comparison to the number of studied images. The false detection rate corresponds to images without
mines that have been identified as an image containing a mine, in comparison to the number of images that does
not contain a mine. In Table 1, the error rate has been obtained using a video where the circular side of the



Table 1. Results

Method Video images based sector filters Computer-generated images based sector filters

Number of filters 5 5

Execution time 0.7s per image 0.4s per image

Recognition rate 50.4% 79.5%

No detection rate 49.6% 20.5%

Error rate 6% 15%

False detection rate 0% 2.9%

cylindrical mine is presented. That is not the case of the video used to record the Figures 8 and 9. These results
are encouraging: they validate the use of the correlation method and composite filter techniques to automatic
target recognition in the underwater medium. Moreover, the use of computer-generated images to create filters
provides good recognition rates. Error rates are low since there are few images representing the spherical side
of the cylinder mine. Seen from some point of views, spherical mines, Manta mines and cylindrical mines have
almost identical appearances and this can produce errors.

8. CONCLUSION

Our aim is to realize an algorithm that is able to detect, identify and locate underwater mines with a short
processing time. Orientation information is important too. With these criteria, we chose the correlation method,
in comparison with other methods selecting on these criterion.

To obtain a short processing time we have integrated preprocessing that need a Fourier transform in the
filter step. This integration avoids several Fourier transforms and their inverse. To correlate the images with a
huge database in a short execution time, we use composite filter techniques which drastically reduce the size of
the database. First results seem to validate the use of this technique. Moreover, the use of computer-generated
images to create filters is validated by recognition of the mine in videos.

To optimize our filters and recognition, we have several opportunities like the use of a segmentation criterion
to composite our filters instead of adding reference images. We will look after a decision criterion since the PCE
criterion provides us a decision but without normalization, we cannot compare different methods.

For the guidance, we have two options. The first one is to use the correlation peak location in our algorithm.
The second option is to use Weaver and Goodman’s setup. In this case, we compare an image with the previous
image. The correlation peak locations will change according to the displacement of the mine between both
images.
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