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Abstract—In this paper, we address the issue of the presence
of malicious and selfish nodes in Vehicular Ad Hoc Networks
(VANETs). Malicious nodes spread false and forged messages,
while selfish nodes only cooperate for their own interest. To deal
with this, we propose DTM

2, a Distributed Trust Model inspired
by Spence’s Job Market model from Economics. In our model,
a sender node transmits a signal with its message. This signal
represents a guarantee of the truthfulness of the message for
the potential receivers. In order to use the signal, the sender
node has to pay a cost, which depends on the value of the
signal and its own behavior. Therefore, the worse the behavior of
the sender node, the more expensive the signal cost. This model
deters the sender nodes from acting as malicious nodes. Similarly,
cooperation of the sender nodes is rewarded proportionally to the
signal’s value. We validated DTM

2 via extensive simulation in
an urban scenario. We show that our approach is able to detect
and evict gradually all malicious nodes in a network composed of
25%, and 50% of them. Moreover, our solution greatly decreases
the ratio of corrupted and false data sent through a network to
levels as low as 0%, and it increases the participation ratio of
selfish nodes by 20%.

I. INTRODUCTION

Vehicular Ad Hoc Networks (VANETs) are collaborative

networks having several particular properties, such as high

mobility, predefined mobility scenarios, frequent topology

changes, and few operational limitations (e.g. memory, pro-

cessing, energy,...). They offer a wide variety of applications,

ranging from driver and passenger comfort applications to

road safety applications. In the latter, nodes broadcast their

collected data, and relay other’s messages in order to inform all

participants about traffic conditions, and alerting them in case

of accidents [1]. In this work, we are interested in this kind

of applications when they are deployed in VANETs without

any communication infrastructure, and requiring advanced

dissemination algorithms, such as [2] and [3].

Certain safety applications, such as advanced driver assis-

tance systems, are very important, and may cause unsafe sit-

uations on road traffic in case of misappropriation. Therefore,

a node should never accept any safety information without

guarantee on its truthfulness. Moreover, since safety applica-

tions are time sensitive, a node has to quickly make a decision

about the validity of a received message. This task becomes

even more challenging when the VANET infrastructure is

scattered or non-existent, because it is impossible to validate

any information beforehand.

In this work, we focus on two issues. First, we propose an

effective solution that filters out the nodes that introduce false

information or retransmit distorted information in a VANET.

These nodes are called malicious nodes. In a VANET, some of

the nodes can be strictly malicious, while others can alter their

behavior from good to bad (e.g. sending false information) and

vice-versa. Second, we tackle the problem of selfish nodes.

Selfish nodes act to serve their own interests and use their

resources only for their own needs. Thus, their cooperation

rate is low. Unlike malicious nodes, these selfish nodes are

rational, which means that they can cooperate if it is in their

interest.

In a collaborative network such as a VANET, any node

dissociation is difficult because of the significant number of

nodes composing the network. On top of that, because of

high mobility and extended deployment areas, asymmetric

information regarding the behavior of each node is widely dis-

seminated. Therefore, establishing direct connections between

nodes becomes challenging, thus encouraging the emergence

of malicious and selfish nodes. In order to deal with node

scattering, we allocate each node a credit account, which can

increase and/or decrease according to its behavior. This credit

is useful to obtain advantages in the network, such as receiving

other nodes’ messages. Holding credits allows a node to take

part in the network by sending or receiving messages. On the

other hand, a node that runs out of credits is evicted from the

network.

In order to manage the nodes’ credit, we based our solution

on an economics model called the Job-Market model [4],

belonging to the signaling models [5]. These models intervene

in the case of asymmetric information [6], and thus can be

used to have a global view of nodes’ behavior in VANETs.

In addition, the high mobility of vehicles and their large

deployment area, cause sporadic connections in the network,

and infrequent meeting intervals among nodes [7]. Moreover,

since reputation models need stable connections to obtain

actual reputation values, and may take a long time to eradicate

one misbehaved node, a reputation model for VANET is not

enough. The main concept behind signaling models is to

exchange signals between nodes. The signal is a characteristic

of the node’s truthfulness. It has a cost corresponding to the



actual behavior of the node. Thus, this cost is a guarantee of

the node’s truthfulness. If a sent message is considered as false

and thus refused by the neighbors, the emitting node loses its

signal cost and incurs an eviction from the network.

To summarize, the contributions of our work are:

• A distributed trust model for VANETs, inspired from the

Job Market Signaling model.

• A prevention mechanism, in order to detect and evict

malicious nodes from the network.

• An incentive mechanism, to increase the selfish nodes’

cooperation.

The remainder of this paper is organized as follows: In

Section II we present the related works dealing with trust

models in literature. In Section III we present our solution.

Section IV presents our performance study and our simulations

results. Finally, Section V concludes this paper and presents

our future works.

II. RELATED WORK

There are many solutions proposed in literature dealing with

trust models for mobile ad-hoc networks as presented in the

survey [8]. These solutions cope either with malicious nodes

or selfish ones, but rarely with both of them at the same time.

To improve the cooperation in a network, existing solutions

propose rewards in return of a node’s participation, which

is the general concept of incentive cost/reward models, as

presented in [9], [10] and [11]. These solutions use nuggets

or virtual money as method of payment to incite nodes to be

more cooperative.

Buttyàn et al. propose two schemes to estimate a node’s

reward for a retransmission, the packet purse model and the

packet trade model [9]. The first scheme estimates rewards

according to the number of intermediate nodes. However, be-

cause of the propagation speed of information in VANETs [12]

and the high mobility of vehicles, underestimation and over-

estimation of the reward occur, which leads the solution to

be ineffective. In the second scheme, the destination node has

to reward all intermediate nodes for their forwarding actions,

which represents an expensive cost if there are many of them.

Furthermore, both these schemes deal only with selfish nodes.

The second solution [10] proposes different levels of co-

operation for network’s nodes. These levels can make the

participation turn into a quantitative one and not necessarily

a constant one, thus leading to declines in the network’s

connectivity. The third solution is based on the presence of

a Credit Clearance Service to verify the receipts of all the

actions in the network, and then reward the participants [11].

The use of this method can increase the network delays, and

negatively impacts its performance.

Another kind of solutions based on the use of a reputation

model for vehicles, is proposed by Minhas et al. [13]. The

basic idea is to add a criterion about the category of the driver,

setting apart, for instance, a law enforcement agent from a

regular citizen. To validate a received message, a node asks

its neighbors about its validity, and it takes it into consideration

only if the received responses reach a majority consensus. The

limitations of this solution concern performance due to the

generated overhead, and the time that it can take to validate

received data. Another solution uses fairness as criterion for

cooperation by computing reputation values, so that nodes

cooperate with each other in a reciprocal way [14]. However,

this solution involves huge costs caused by the monitoring as

demonstrated in [15].

Our solution, DTM2, is able to cope with the presence of

both malicious and selfish nodes in a VANET without any

infrastructure. The computation of signaling costs and reward

values are not based on estimation, which leads our approach

to handle more easily the high mobility of a VANET. DTM2

creates an auto-selection among the nodes to evict malicious

nodes and to increase the cooperation of selfish ones, without

impacting the performance of the network.

III. DTM2: DISTRIBUTED TRUST MODEL INSPIRED FROM

JOB-MARKET

DTM2, is a solution inspired from the Job-Market model

proposed by Spence [4], which belongs to the signaling

models [5]. These models are used in asymmetric information

cases, and bring solutions mainly in the form of equilibriums.

In the economics market of labor, asymmetric information

concerns the employees and employers during a hiring. In

this case, an employer has no way to ascertain the produc-

tive capacity of an employee before hiring him, while an

employee is fully aware of it. Spence addresses this problem

by transforming the communication between both parts into a

signaling game. An employee uses his academic degrees as a

signal to an employer, in order to distinguish himself from the

other employees, thus influencing the employer to hire him.

Spence’s model differs from other signaling models because,

unlike other models, a signal has no other purpose but to be

used for the signaling function.

A signal has a cost. In Spence’s model this cost has to

be negatively correlated with the production capacity of a

signaler. This allows an auto-selection of the members in a

group. Each member uses the signal value, which maximizes

its benefits; and because signaling costs are cheap for highly

productive members, they use a great signal value. Moreover,

the model prevents low-productive members from cheating by

establishing expensive signaling costs for them, thus disabling

them from imitating highly productive members.

A. Problem Formulation

Spence’s model is adaptable to a VANET, since nodes in

this kind of networks also suffer from asymmetric informa-

tion regarding the behavior of each one of them. Because

of long and infrequent meeting intervals, it is difficult to

establish valid and truthful links between nodes only by using

a reputation model. Also, this model increases cooperation

among nodes, by offering them rewards positively correlated

with their behavior. This represents a strong incentive to the

selfish nodes. Regarding malicious nodes, they are detected

and evicted when they run out of credit, which happens after

a number of malicious actions.



Fig. 1. Message exchange using DTM2

Our solution replaces the academic signal of Spence’s model

by a value signal, observable by all, and used when sending

a message as a guarantee of its truthfulness. The signal cost

depends on the remaining credit of each node. Upon their

first connection to the network, each node receives the same

amount of credit. This credit is used to pay the signaling cost

when sending a message, and to decrypt received messages.

It increases when a sent message is approved by a majority of

recipient nodes.

B. DTM2 Process

In order to secure this mechanism, we assume that each

node has a Trusted Platform Module (TPM) [16]. A TPM

is a secure hardware that is able to generate keys, and to

encrypt messages. In this way, a node is able to encrypt

its sensitive information. The TPM manages the credit count

of nodes. It stores the credit in its shielded location, then

it computes and deducts the signaling cost, in the case of

sent messages; or deducts the price of a received message

in case of it is validated by the receiver. It also increases

the credit count when a sent message is accepted by the

majority of its recipients. Finally, the TPM stores a fingerprint

of the application it is responsible for (e.g. an advanced driver

assistance system), which leads it to detect any changes to the

application made by an attacker.

Fig. 1 illustrates the general functioning of DTM2. In this

example, node A broadcasts a message that is received by

node B. First, node A chooses a signaling value YA. This

value is attached to its message MsgA, and both of them are

sent to its TPM. TPMA uses the credit count of node A, θA,

to compute the corresponding cost, CA, of its signal value

YA, and then subtracts it from the credit count. To ensure the

integrity of the mechanism, the TPM signs the message, MA,

which contains both the signal value YA and the data to share,

MsgA, using its private key, and then returns it to node A.

When node A broadcasts message MA, node B receives it

and asks its TPM, TPMB , to decrypt the signal value for it

in order to evaluate its coherence with the reputation value it

holds on node A, Rt
B(A). If the reputation is coherent, then

node B accepts the message and asks TPMB to decrypt the

Fig. 2. Signaling cost values for different signal values and nodes’ credit

rest of the message, which contains the data. Then, its TPM

subtracts the cost of receiving a message, Cmsg , fixed by the

application; and delivers the decrypted data, while returning

a signed acceptance message about the received information

to node B, which will be sent to the source node. In case B

refuses the message, a signed refusal message from TPMB

is sent to the source node A.

In both acceptance and refusal cases, the reputation values

of both nodes A and B are updated, for the sent message

for A, and for the acceptance or refusal message for B, as

described in [17]. Finally, if node A receives a majority of

positive returns from its recipients, then TPMA increases its

credit count by a reward, WA, proportional to its used signal

value YA.

In the following subsections, we detail the signaling cost and

reward functions, and the incentive and preventive mechanisms

of the trust model with respect to the net benefit of a node.

C. Computation of the Signaling Cost

In highly mobile environments, such as the one under

consideration, the signal Y used by a source node acts as

a guarantee about the validity of its messages and its honest

behavior. An optimal signal value maximizes the net benefit

of a node. This occurs when a signal corresponds to the real

behavior of the node, which is unavailable to the network

and unknown by its TPM. As the credit count value does not

change with mobility, this information can be used as a hint

on its behavior, since the more a node cooperates well, and

the more recipients accept its messages, the more its credit

increases thanks to rewards and vice-versa. This information is

stored by the node’s TPM. The signaling cost, C, is negatively

correlated to the credit count, θ, but positively correlated to

the signaling value according to the two conditions of the Job-

Market model, as shown in (1). The first condition is met when
∂C
∂Y

> 0; and the second when ∂C
∂θ

<0 and ∂2C
∂Y ∂θ

< 0.
{

C(Y1, θ) > C(Y2, θ) For Y1 > Y2,

C(Y, θ1) < C(Y, θ2) For θ1 > θ2,
(1)

The signaling cost computation is presented in equation (2).

It uses two positive real coefficients β and α, in order to



Fig. 3. Cost and reward curves for different signal values

normalize the signal value regarding the credit count of a

node. The values of β and α are fixed by the VANET

application from the start. Fig. 2 illustrates the behavior of

the signaling cost for various values of both the signal and

node’s credit, using β=5 and α=2.3. We can clearly notice

that the fluctuations of the node’s credit has a larger impact

on the cost than the signal value.

C(Y, θ) =
β × Y

θα
(2)

where β, α, θ >0
To demonstrate the negative and positive correlations re-

quired by the model, the derivatives of the cost function with

respect to the signal value, the node’s credit, and the second

derivative, are given in (3).










∂C
∂Y

= β
θα

> 0
∂C
∂θ

= −α×β×Y
θα+1 < 0

∂2C
∂Y ∂θ

= −α×β
θα+1 < 0

(3)

To avoid cheating or security problems when a node pays a

signaling cost, the TPM calculates the cost and deducts it from

the node’s credit. It then encrypts the message containing both

the data to share and the signal value by using its secret key,

and returns it to the node.

D. Computation of the Reward Value

To motivate nodes to cooperate, DTM2 proposes incentive

rewards to truthful nodes for their sent messages. A reward

value depends on the signal used by the source node. The

secondary goal of this reward is to obtain an auto-selection

of the nodes, which we name a separating equilibrium, by

inciting them to maximize their benefit by not cheating on

their used signal value. The advantage of an auto-selection is

that it copes with frequent changes to the topology, as often

found in VANETs.

In this model, a reward W is always greater than the

cost paid by a node, provided that the node uses a signal

corresponding to its credit. The two conditions given in (4),

concern the reward on this model. The first condition concerns

the rationality of a node. Each node chooses to use a signal Y

to maximize its net benefit. This is found when the derivative

of the wage is equal to the derivative of the cost with respect

to the signal value. The second condition, sets the initial wage

value, which has to be known beforehand by the nodes. Since

the credit count of a node hints the real behavior of a node,

Fig. 4. Net benefit curves for different signal values

the initial wage value depends on it to make it proportional

to the real behavior of the node. The initial wage is set by

dividing the credit of a node by a coefficient σ, such that the

more σ is high, the more the application is strict regarding the

final wage.
{

∂W
∂Y

= ∂C
∂Y

(Y, θ)

W = θ
σ

(4)

where σ>0
The resolution of this system, obtained by integrating Y ’s

value assuming that the minimum value of W and Y is equal

to 0, gives us the final equation of the wage shown in (5):
{

∂W
∂Y

= β
θα

θ = W × σ

∂W
∂Y

= β
(W×σ)α

Wα
×

∂W
∂Y

= β
σα

∫

∞

0
Wα

×
∂W
∂Y

∂Y =
∫

∞

0
β
σα

∂Y
[Wα+1]
α+1 = β

σα
× [Y ]

Wα+1

α+1 = β×Y
σα

W = [β×(α+1)×Y

σα
]

1
α+1 (5)

The reward value is added to the credit count of a source node

by its TPM, providing that its sent message is validated by the

most of the recipients. To verify this, each recipient notifies

its own TPM about its decision regarding a received message,

and an encrypted message about its decision of acceptance or

not is sent to the source node. The message is encrypted to

avoid case where a node accepts the received information but

sends the refusal message to sabotage the source.

E. Optimum Signal Value

This model is designed in such a way that a node makes

the maximum benefit when it uses the optimum signal value

Y ⋆ regarding its credit. The optimum signal for each node is

obtained from equation (5), by replacing W by θ
σ

. The result

is given in equation (6).

Y ⋆ =
θα+1

σ × β × (α+ 1)
(6)

Failure to respect Y ⋆ causes a shortfall or a loss in credit, as

illustrated in Fig. 3. This figure depicts two curves representing

the signaling cost of two nodes, and another curve showing

the received wage when the sent message is accepted. The



TABLE I
SIMULATION PARAMETERS

Number of nodes:100 Mac layers protocols: IEEE 802.11
Transmission range: 250 m Simulation time: 3600s

Bandwidth: 11 Mbps Area size: 3× 3 Km2

Diffusion data algorithm: ADCD [2]

Cmsg=C(Y ⋆, θinitial)/5 Speed: 30-50 km/h

β=3.5 · 104 α=2.3
σ=5 θinitial=100

first source node possesses 150 credits (i.e it has had a good

behavior), and the second source node possesses only 40 (i.e

it has had a bad behavior), given that the initial credit of the

application θinitial is 100 credits. These curves show results

for different signaling values ranging from 0 to 100, and are

obtained by setting β = 3.5 ·104, α=2.3, and σ=5 . We notice

that the wage of the first node is more advantageous. But

a shortfall is present for the two when they do not use the

optimal signal values, which are Y ⋆
1 and Y ⋆

2 , respectively.

The net benefit NB of the two nodes is observable in Fig. 3.

It is at its maximum when the signaling value equals Y ⋆.

Its equation is given in (7) and the results using the same

parameter values as before are illustrated in Fig. 4.

NB = W − C

NB = [β×(α+1)×Y

σα
]

1
α+1 −

β×Y
θα

(7)

Fig. 4 presents the curves of the net benefit for the two

source nodes. We notice that the curve of the second node,

which is less truthful than the first, decreases faster when it

does not respect its optimum signal Y ⋆. This clearly shows

that because of bad behavior, nodes quickly exhaust their credit

and are therefore evicted from the network.

F. Received Message Acceptance Process

A second way to encourage nodes to cooperate is to create

the need for holding credits and earning them. For this reason,

decrypting a received message is paid in this model. In the case

where a node is selfish, its credit decreases slowly because of

its inexistent or insufficient cooperation. To secure this part of

the model, the cost of a received message, Cmsg , is fixed by

the application, and subtracted from a recipient node’s count

by its TPM. This is only done in case of acceptance by the

recipient. A validation decision is made with respect to the

following two criteria:

• The reputation of the source node, held by the receiver.

• The used signal value by the source node.

The used reputation, Rt
r(s), belongs to [0, 1], and is

calculated at time t by the Receiver node r with respect to the

source node, s. This reputation is local and is not shared in the

network. Therefore, it is a firsthand reputation. If it is too bad,

it represents an elimination criterion for the received message.

This criterion is very important at the start of the application,

when all the nodes have the same amount of credits and thus

use the same signaling value. Its calculation can be done as

described in [17].

Fig. 5. Percentage of detected nodes: malicious and false positives

After verifying the reputation criterion, a recipient node

can base its acceptance on the signal used by the source. A

minimum accepted signal is generally fixed to the value of the

optimal signal value, Y ⋆, for a node detaining only 20% of

θinitial.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate the performance of our model by focusing on

its ability to detect and evict malicious nodes, and to incite

selfish nodes to cooperate more. In our scenario, a malicious

node is a node that creates and sends false information, and

that corrupts data before sending it during a retransmission.

On the other hand, selfish nodes only participate out of self-

interest (i.e. when they do not have enough credit to decrypt

received messages). To this end, we first measure the detection

rate and average ratio of corrupted data respectively, in a

network composed of 25% and 50% of malicious nodes. Then,

the average data reception ratio is measured in a network

composed of 25% and 50% of selfish nodes.

We conduct a set of simulations on NS2 [18] using

VanetMobisim [19] as vehicular mobility model in an urban

scenario. We compare DTM2 with a network not using any

solution, and a network using a majority-based and experience-

based trust model presented in [13], which we refer to as

MEB_Trust. The basic idea in MEB_Trust is that a node

asks its neighbors, according to their categories, about the

truthfulness of a received data, and considers it only if it

reaches a majority consensus. This solution depends on the

presence of trusted entities (e.g. police cars), which always

respond correctly to nodes. For our simulation of this solution

we include 3 police cars. The other simulation parameters are

shown in Table I.

B. Result Analysis

The percentage of detected nodes for different compositions

of malicious nodes in the network is illustrated in Fig. 5. A

node is detected and evicted when it runs out of credits. The re-

sults show that the percentage of detection gradually increases,

relatively quickly according to the number of malicious nodes

in the network. Our solution is able to detect 50% of malicious

nodes at around 800s, and it reaches 100% at around 3100s
in a network composed of 25% of malicious nodes. Moreover,



Fig. 6. Average received ratio of corrupted data with 25% and 50% of
malicious nodes

the false positive percentage does not exceed 8%, which means

that a good behavior node is rarely mistakenly detected as

being malicious.

Fig. 6 presents the average ratio of received corrupted data

from malicious nodes, or retransmitted by good behavior nodes

by mistake, in a network composed of 25% and 50% of

malicious nodes. We note that when using DTM2, this ratio

quickly decreases until reaching 0 after 2500s of simulated

time for a network composed of 25%, and achieves a ratio

of around 0.05 after 3600s of simulated time in a network

composed of 50%. Moreover, while all malicious nodes have

been evicted from the network when their credit is exhausted

by using DTM2, it is not the when using MEB_Trust.

The effectiveness of our solution regarding its ability to

incite selfish nodes to cooperate is visible on Fig. 7. The

benefits of using our solution becomes evident, as the average

data reception ratio in the presence of 25% of selfish nodes

is the same that for the ideal case when no selfish nodes are

present. This is because the need of obtaining credits is created

among selfish nodes, since they need credits to decrypt their

received messages. Moreover, when in the presence of 50% of

selfish nodes, the average data reception ratio using DTM2

is greater than the case where there is no deployed solution

ratio in the presence of 25% of them.

V. CONCLUSION

In this paper, we proposed DTM2, a Distributed Trust

Model for VANETs, adapted from Job Market Signaling, a

well-known economics model used in case of asymmetric

information. DTM2 focuses on managing a tamper-proof

credit count received by nodes at the start of the application.

In order to detect and evict malicious nodes, it creates an

auto-selection among the network’s nodes and exhausts the

credit for those nodes with bad behavior. Moreover, to improve

the cooperation level of selfish nodes, it proposes inciting

rewards. We showed via simulation the achievement of these

two objectives in networks composed of 25%, and 50% of

malicious or selfish nodes. In both of these cases, DTM2 is

able to gradually detect all malicious nodes and completely

eliminate their negative effects on the network, while main-

taining a low percentage of false positives. Furthermore, our

approach is able to increase the cooperation of selfish nodes by

20% with respect to networks where no solution is deployed.

Fig. 7. Average ratio of received data with 0%, 25% and 50% of selfish
node

As future work, we aim to improve our model to be used

in different high mobility scenarios, and in combination with

more sophisticated attacker models.
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