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CONFORMAL DIMENSION AND CANONICAL SPLITTINGS OF
HYPERBOLIC GROUPS

MATIAS CARRASCO PIAGGIO

Abstract. We prove a general criterion for a metric space to have conformal dimension
one. The conditions are stated in terms of the existence of enough local cut points in
the space. We then apply this criterion to the boundaries of hyperbolic groups and show
an interesting relationship between conformal dimension and some canonical splittings
of the group.
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1. Introduction

In this article we give sufficient conditions on a compact metric space (X, d) to have
conformal dimension one. The conformal dimension is a fundamental quasisymmetry in-
variant, introduced by Pansu in [Pan89]. Its original motivation is in the study of the
quasiconformal structure of the boundary at infinity of a negatively curved space. For
instance, any quasisymmetry invariant of the boundary of a hyperbolic group is a quasi-
isometry invariant of the group. The understanding of the conformal dimension is essential
and has already given many applications in geometric group theory, in particular to the
boundary characterization of Kleinian groups and to Cannon’s conjecture [BonK05b]. See
also [B06, Haïss08, Haïss12, Kle06, LP04, MT10] for other applications.

There are different related versions of this invariant; in this article we are concerned
with the Ahlfors regular conformal dimension, a variant introduced by Bourdon and Pajot
in [BP03]. It is defined by

dimAR(X, d) := inf {dimH(X, θ) : θ is AR and θ ∼qs d} ,
where AR means Ahlfors regular, dimH denotes Hausdorff dimension, and θ ∼qs d means
that θ is a distance on X quasisymmetrically equivalent to d. That is, there exists an
increasing homeomorphism η : R+ → R+ such that

θ(x, a)

θ(y, a)
≤ η

(
d(x, a)

d(y, a)

)
,

for all distinct points x, y, a ∈ X. We recall that a distance θ on X is Ahlfors regular of
dimension α > 0 if there exists a Radon measure µ on X and a constant K ≥ 1 such that:

K−1 ≤ µ (Br)

rα
≤ K,

for any ball Br of radius 0 < r ≤ diamθX. In that case, µ is comparable to the α-
dimensional Hausdorff measure and α = dimH(X, θ) is the Hausdorff dimension of (X, θ).
We write dimARX when there is no ambiguity on the metric d.

This kind of deformations can distort the Hausdorff dimension, and one can always
quasisymmetrically deform the distance d to obtain a distance of arbitrarily large Hausdorff
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dimension. The conformal dimension measures the best shape of X, and it is in general
difficult to compute. It is always bounded from below by the topological dimension dimT X.
In particular, when the space is connected, dimARX ≥ 1 holds.

This article deals with the problem of under which conditions we can quasisymmetrically
deform the distance d to obtain AR distances with Hausdorff dimension arbitrarily close
to the topological dimension of the space. This question is of particular interest for the
boundaries of hyperbolic groups. For instance, dimAR ∂G = dimT ∂G = n ≥ 1 and is
attained by a distance in the gauge if and only if ∂G is quasisymmetrically equivalent
to the Euclidean sphere Sn [BonK02b]. For n = 1, the same is true under the weaker
hypothesis of ∂G being homeomorphic to S1 [CJ94, Gab92, Tu88]. But the problem is
far from being understood in the general case, even for low topological dimension. In this
paper we address the case when dimT X = 1.

Previously known non-trivial examples of spaces of conformal dimension one were very
few, due to Bishop and Tyson [BT01], Pansu (see [BonK05b, Bu05, CMT99] for comments
and generalizations), and Laakso (see Tyson andWu [TW06] for generalizations). Although
the techniques of proof are specific to each particular example, they are all related to the
existence of local cut points. A point x ∈ X is a local cut point if there is a connected
open set x ∈ U ⊂ X such that U\{x} is not connected. We also recall that X is a doubling
space if there exists a constant N such that every ball can be covered using N balls of half
its radius; and, that X is linearly connected if there exists a constant C such that for all
x, y ∈ X, there exists a continuum J containing x and y of diameter less than or equal to
Cd(x, y). This is also known as the bounded turning condition. The following condition
gives a scale invariant bound on the amount of local cut points needed to disconnect the
space into small pieces.

Definition 1.1 (The UWS condition). We say that a connected and compact metric space
X has uniformly well spread local cut points —UWS for short— if there exists a constant
C ≥ 1 such that for any point x ∈ X and r > 0, there is a finite set P ⊂ B(x, r) verifying:

(1) #P ≤ C, and
(2) no connected component of X\P can intersect both B

(
x, r2

)
and X\B(x, r).

We remark that one can always assume that the points of the subset P are local cut
points of X; this justifies the terminology. We obtain the following general criterion for
conformal dimension one.

Theorem 1.2 (General criterion for conformal dimension one). Let X be a doubling and
compact metric space. If X is linearly connected and satisfies the UWS condition, then the
(AR) conformal dimension of X is equal to one.

The main ingredient of the proof is a result of S. Keith and B. Kleiner stating an equality
between the conformal dimension and the critical exponent associated to the combinatorial
modulus (a proof of this result is given in [Ca12]). A similar unpublished result to Theorem
1.2 was known by S. Keith and B. Kleiner; one of the motivations of the present article is
to provide an accessible proof of this criterion and some of it consequences in the context
of hyperbolic groups.

Note that Theorem 1.2 provides a large class of examples. On the opposite, a result of J.
Mackay ensures that when the space X verifies a quantitative analogue of the topological
conditions of being locally connected and without local cut points, then the conformal
dimension is greater than one [Mac10]. Both criteria provide a clear conceptual picture of
the relationship between conformal dimension and local cut points.
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The rest of the paper is devoted to the boundaries of hyperbolic groups. They are part
of a larger class consisting of quasiselfsimilar spaces (see Section 2.2). For this class, the
hypotheses of Theorem 1.2 are equivalent to the following topological conditions: the space
X is compact, connected, and verifies the well spread local cut points condition —WS for
short: there exists a sequence of finite sets Pn ⊂ X such that

δn = sup {diamA : A ∈ Cn} → 0, when n→ +∞, (WS)

where Cn denotes the set of connected components of X\Pn.
It is a remarkable fact that the topology of the boundary is reflected in the splittings of

the group [Bow98a]. This motivates the problem of characterizing the hyperbolic groups
whose boundary at infinity has conformal dimension one in terms of the properties of its
canonical splittings.

If G is a hyperbolic group, we can decompose G repeatedly over finite and virtually
cyclic subgroups, until (at least if there is no 2-torsion) all subgroups are finite, virtually
Fuchsian, or one-ended without local cut points on the boundary [DP01, Va08]. Therefore,
the candidate groups G for dimAR ∂G = dimT ∂G = 1 are essentially obtained as repetitive
amalgamated products or HNN-extensions of virtually Fuchsian and finite groups over
elementary subgroups.

A maximal decomposition of G over finite subgroups is given by an action of G on a
simplicial tree T , without edge inversions and of finite quotient, such that the stabilizers of
the edges are finite, and the stabilizers of the vertices have at most one end [Dun85, Sta68].
We call this action a DS splitting of G. It describes the connected components of ∂G. Our
first result regarding the boundary of a hyperbolic group is the following.

Theorem 1.3 (Stability under splittings over finite groups). Let G be a hyperbolic group,
and let T be the tree associated to the DS splitting. We denote by {v1, . . . , vM} a set of
representatives of the orbits of the vertices of T , and by G(vi) their respective stabilizers.
Then

(1) dimAR ∂G = 0 if all the G(vi) are finite, or
(2) dimAR ∂G = max {dimAR ∂G(vi) : G(vi) is infinite} otherwise.

We remark that Theorem 1.3 is the analogue, in the broader context of hyperbolic groups,
of a result proved in [CMT99] for hyperbolic 3-manifolds (see Theorem 2.7 therein).

Assume now that G is one-ended (∂G is connected). If G is not virtually Fuchsian, then
∂G has a local cut point if and only if G splits over a virtually cyclic subgroup [Bow98a],
and if G has no local cut points, then dimAR ∂G > 1 [Mac10]. In the latter case, if in
addition dimT G = 1, then ∂G is homeomorphic to the Sierpiński carpet or the Menger
sponge [KK00]. Therefore, the question can be formulated as follows: is dimAR ∂G = 1
if ∂G does not contains a Sierpiński carpet or a Menger sponge? Or even: is it true
that if ∂H has a local cut point for every one-ended quasiconvex subgroup H of G, then
dimAR ∂G = 1? Whether or not under this hypothesis the ∂G verifies the WS condition
highly depends on how are embedded (in G) the one-ended quasiconvex subgroups of G.

We apply Bowditch’s work [Bow98a] on the structure of local cut points of the boundaries
of one-ended hyperbolic groups, by relating the JSJ splitting of G with the WS property,
to deduce the following partial answer:

Theorem 1.4 (All rigid are virtually free is equivalent to WS). Let G be a one-ended
hyperbolic group and suppose that G is not a cocompact virtually Fuchsian group. Then
∂G satisfies the WS property if and only if all the rigid type vertices in the JSJ splitting of
G are virtually free. In particular, in this case we have dimAR ∂G = 1.
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We refer to Section 3 for precise definitions. Note that if G satisfies the hypotheses
of Theorem 1.4, then the AR conformal dimension is never attained by a distance in the
gauge. An interesting reformulation of Theorem 1.4 is the following: let E be the union of
all limit sets of the stabilizers of the edges of the JSJ splitting of G. For each x ∈ ∂G, we
define the set E(x) as the set of points y ∈ ∂G such that x and y are in the same connected
component of ∂G \ P , for any finite subset P of E , not containing x nor y. We call E(x)
the fiber of x. Denote by TR the set of rigid vertices of the JSJ decomposition of G, and
by Λv the limit set of the stabilizer of a vertex v. If x ∈ Λv, with v ∈ TR, denote by Cv(x)
the connected component of Λv containing x. Define

C(x) :=
⋃
{Cv(x) : x ∈ Λv, v ∈ TR} .

In Section 2 we prove that the WS condition is equivalent to the triviality of all the fibers,
i.e. E(x) = {x} for all x ∈ ∂G. Moreover, the proof of Theorem 1.4 implies:

Corollary 1.5 (Fibers). Let G be a one-ended hyperbolic group which is not a cocompact
virtually Fuchsian group, and let x ∈ ∂G. Then the fiber E(x) is equal to either C(x) if
there exists v ∈ TR with x ∈ Λv, or the singleton {x} otherwise.

One remarkable consequence of Theorem 1.4 is the existence of convex cocompact
Kleinian groups for which the conformal dimension is not equal to a well known geo-
metric invariant in the context of hyperbolic 3-manifolds. The analogy of Theorem 1.3
with the results in [CMT99] does not hold for Theorem 1.4. More precisely, let G be a
one-ended convex cocompact Kleinian group (whose limit set is not the entire sphere) and
let M be the hyperbolic 3-manifold with boundary whose interior is H3/G; here H3 is the
real hyperbolic space. Consider the space TT (M) of all complete hyperbolic 3-manifolds
N which are homeomorphic to the interior of M [CMT99]. Each N is uniformized by a
Kleinian group GN so that N is isometric to the quotient H3/GN . Define d(N) to be the
Hausdorff dimension of the limit set of GN (note that this dimension only depends on N),
and let

D(M) = inf{d(N) : N ∈ TT (M)}.
In [CMT99] the authors completely characterize the hyperbolic 3-manifolds for which
D(M) = 1. This is the case if and only if M is a generalized book of I-bundles. When
M is a generalized book of I-bundles, there is no rigid vertex in the JSJ decomposition of
π1(M). And therefore we obtain the following:

Corollary 1.6. Let M be a hyperbolizable 3-manifold as before. If all the rigid vertices of
the JSJ decomposition of π1(M) are virtually free, and there exists at least one rigid vertex,
then dimAR ∂π1(M) < D(M).

See Section 3.6 for a concrete example. For such a group, we have D(M) > 1 =
dimAR ∂π1(M); in other words, restricted to Kleinian deformations, the infimum of Haus-
dorff dimensions is greater than the conformal dimension of the group. The inequality
D(M) > 1 is a consequence of Thurston’s relative compactness theorem. See [Bou97]
Theorem 1.2 for a similar type of result for hyperbolic buildings.
Remark. Many of the ideas of this paper can also be applied to the study of conformal
dimension for the repellors of dynamical systems induced by a certain class of expanding
branched coverings, namely, the topologically cxc maps (see [HP09] for their definition and
basic properties). A dynamical sufficient condition for conformal dimension one also holds
in this context [Ca13].
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Outline of the paper. The paper is divided into two parts. In the first part, Section 2,
we treat the problem in the general setting and we prove Theorem 1.2. Next we give a
local version of the WS condition in terms of fibers, Lemma 2.2. Finally, we show that the
WS property is equivalent to the hypotheses of Theorem 1.2 in the quasiselfsimilar case,
this corresponds to Lemma 2.3.

The rest of the paper is devoted to the second part. We start Section 3 by improving some
well known facts about quasiconvex splittings of hyperbolic groups, see Section 3.1. This
results are then used to prove that the AR conformal dimension is stable under splittings
over finite groups, Theorem 1.3. We then prove some general lemmas about virtually free
hyperbolic groups in Section 3.3. We apply Bowditch’s work on the structure of local
cut points of the boundaries of one-ended hyperbolic groups to deduce Theorem 1.4. We
end by showing how to construct explicit examples of groups verifying the hypotheses of
Corollary 1.6 in Section 3.6.

2. A general criterion for conformal dimension one

2.1. Proof of Theorem 1.2. We start by remarking that the UWS property is equivalent
to the following: there exists a function C : (0, 1) → R+ such that for all x ∈ X and
0 < s < r ≤ diamX, there is a finite set P ⊂ B(x, r) of cardinality bounded from above
by C(s/r), and such that no connected component of X\P can intersect both B (x, s) and
X\B(x, r). In fact, suppose the UWS condition is satisfied, and take 0 < s < r ≤ diamX.
Let

n :=

[
2

r − s

]
+ 1, and ε =

1

4n
.

Consider the compact set K = B
(
x, r − n−1

)
\ B

(
x, s+ n−1

)
. For every y ∈ K, the ball

B(y, 2ε) is contained in B(x, r) \ B(x, s). By the doubling condition, we can cover K by
less than M balls B(yi, ε), with yi ∈ K. Since diamK ≤ 2r, the constant M can be chosen
depending only on

ε

r
� 1

nr
� 1− s/r

2
.

For each of the centers yi ∈ K, consider a set Py ⊂ B(y, 2ε), with #Py ≤ C, given by the
UWS condition. Then it suffices to take P =

⋃
i Pi, which is contained in B(x, r) and of

cardinal number less than or equal to M · C.
We must show that if X is a doubling, compact metric space satisfying LC and UWS,

then dimARX = 1. The main ingredient of the proof is the combinatorial modulus.
Using an appropriate sequence of finite coverings of X whose mesh tends to zero, we can
define combinatorial versions of conformal moduli, from which we are able to compute the
conformal dimension of the space.

Consider {Xi} a sequence of maximal a−i-separated sets, with a > 1 a big enough
constant. We associate the coverings Si by the balls B(x, a−i) where x ∈ Xi. We write
S :=

⋃
k Sk. The combinatorial modulus is defined as follows. Let n, k ≥ 1, for every

ball B ∈ Sk, we consider the family of curves Γ(B) in X that “join” the ball B with the
complement of the ball 2B, i.e. γ ∩B 6= ∅ and γ ∩X \ 2B 6= ∅. Here 2B denotes the ball
with the same center as B and twice its radius. Given p > 0, we define the p-combinatorial
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modulus of the “annulus” (B, 2B) by

Mp,n(B) := inf
ρ

Volp(ρ), where Volp(ρ) :=
∑

A∈Sk+n

ρ (A)p ,

and where the infimum is taken over all weight functions ρ : Sk+n → R+ which are Γ(B)-
admissible, i.e. for any curve γ ∈ Γ(B), we have

`ρ (γ) =
∑

A∩γ 6=∅

ρ (A) ≥ 1.

Therefore, for each p > 0, we obtain a sequence {Mp,n}n, whereMp,n is the p-combinatorial
modulus of X at scale n:

Mp,n := sup
B∈S

Mp,n(B).

In other words, the modulus Mp,n takes into account all the “annuli” of X with a fixed
radius ratio equal to 2.

We look at the asymptotic behavior of the sequence {Mp,n}n, and its dependence on p.
For example, for fixed p, {Mp,n}n verifies a sub-multiplicative inequality, see [Ca12]. It is
therefore natural to consider the critical exponent Q defined by

Q := inf
{
p > 0 : lim inf

n
Mp,n = 0

}
.

Recall that X is said to be uniformly perfect if there exists a constant c > 0 such that
diamBr ≥ cr for all ball Br of radius r > 0 in X. For instance, X is uniformly perfect if
it is connected. If A ⊂ X and r > 0, then Vr(A) denotes the r-neighborhood of A. We
derive Theorem 1.2 from the following result.

Theorem 2.1 ([Ca12] Theorem 3.12 and Corollary 3.15). Let X be a doubling, uniformly
perfect, compact metric space. Suppose that X also verifies the following two conditions:

(1) (Uniform linear connectivity of components) There exists a constant K` ≥ 1 such
that any connected component of X is K`-linearly connected.

(2) (Uniform separation of components) There exists a constant Ks ≥ 1 such that: for
all 0 < r ≤ diamX, there exists a covering Wr of X, by open and closed sets, such
that for all W ∈ Wr, we have dist (W,X \W ) ≥ r/Ks and there exists a connected
component Y of X with Y ⊂W ⊂ Vr(Y ).

Then Q = dimARX. This is the case, in particular, when X is linearly connected.
If in addition, X is quasiselfsimilar (with linear distortion function) and verifies

(3) (Diameter of the connected components tends to zero) For all δ > 0, there are only
finitely many connected components of X which have diameter greater than or equal
to δ,

then dimARX = sup {dimAR Y : Y is a connected component of X}. We remark that, by
convention, we set dimAR Y = 0 if Y is a point.

Therefore, we must prove that Q = 1. For this, we will prove that Mp,n . ηp−1n for
all p > 1, where ηn is a sequence of positive real numbers that tends to zero as n → ∞.
Indeed, let x ∈ Xk and write r = a−k. Recall that Γ(B) is the family of curves of X joining
B(x, r) and X \ B (x, 2r). We denote by P = P (B) ⊂ 3/2 · B the finite set given by the
UWS property, which verifies that γ ∩ P 6= ∅ for any γ ∈ Γ(B), and that #P ≤ C, where
C is a uniform constant.
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We have Γ(B) ⊂
⋃
z∈P Γz, where Γz is the family of curves γ in X such that z ∈ γ and

γ ∩X \B(z, s), where s = r/3. In particular, we obtain

Mp,n(B) ≤
∑
z∈P

Modp (Γz,Sk+n) ≤ C max
z∈P
{Modp (Γz,Sk+n)} .

We must bound from above the combinatorial modulus of Γz. We take m ≥ 1, and for
i = 0, . . .m− 1, we set

Ai = B (z, 2−is) \B
(
z, 2−(i+1)s

)
.

By the UWS property, for each z ∈ P and each i = 0, . . . ,m − 1, there exists a finite set
Rz,i ⊂ Ai, with cardinal number bounded from above by a universal constant K, such that
any curve γ of X verifying γ ∩ B(z, 2−(i+1)s) 6= ∅ and γ ∩ B(z, 2−is) 6= ∅, must pass by
Rz,i. For n ≥ 1 such that a−(k+n) ≤ 2−ms, consider the set

U = {A ∈ Sk+n : A ∩R 6= ∅} ,

where

R :=
m−1⋃
i=0

Rz,i.

We define ρ : Sk+n → R+ by

ρ(A) :=

{
1
m if A ∈ U
0 otherwise.

On the one hand, since any curve γ ∈ Γz must cross each Ai for i = 0, . . . ,m− 1, we have
that ρ is Γz-admissible. On the other hand, there exists a constantM , which depends only
on the doubling constant of X and a, such that

#U ≤M ·#

{
m−1⋃
i=0

Rz,i

}
≤ (MK) ·m := K ′m.

Therefore,

Volp(ρ) =
#U

mp
≤ K ′

mp−1 .

This shows that Modp (Γz,Sk+n) ≤ K ′m1−p. Thus, it suffices to take

ηn :=

[
n log a− log 3

log 2

]−1
.

This ends the proof of Theorem 1.4.

Remark. The UWS condition fails when there is a infinite number of definite diameter
pairwise disjoint curves in the space. Therefore, it is not difficult to find examples of spaces
of conformal dimension equal to 1, but not verifying the UWS property. However, the LC
and UWS assumptions are in some sense optimal. One can construct an example of a
compact connected space which verifies WS and LC, but not UWS, and has AR conformal
dimension strictly bigger than 1; and, also a space which verifies UWS, but not LC, and
of Ahlfors regular conformal dimension strictly bigger than 1.
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2.2. Equivalence between the different conditions. The goal of the next subsections
is to relate the three different conditions on the existence of local cut points mentioned in
the Introduction; i.e. the UWS, the WS, and the triviality of the fibers conditions.

Let X be a connected and compact metric space, and let E be a countable subset of
local cut points of X. Recall that for each x ∈ X, we define E(x) (the fiber of x) as the
set of points y ∈ X such that x and y are in the same connected component of X \ P for
any finite subset P of E not containing x and y. If X verifies the WS condition, we can
consider E to be the union of the sets of local cut points Pn given by the definition. In
that case, all fibers are trivial. When X is locally connected, the converse also holds.

Lemma 2.2 (Trivial fibers and WS). Let X be a compact connected metric space. Then
the following statements are equivalent:

• X satisfies the WS property.
• X is locally connected and there is a countable subset E of local cut points of X
such that E(x) = {x} for all x ∈ X.

Note that since X is compact, local connectivity implies local arcwise connectivity. It
is clear that if X satisfies UWS, then it verifies also WS. The converse is true in the
self-similar case. Recall that X is quasiselfsimilar if there exist a distortion function
η : R+ → R+ and constants c0 > 0 and r0 > 0, such that for any 0 < r ≤ diamX and any
x ∈ X, there exists an open η-quasisymmetric embedding φ : B(x, r)→ U where U ⊂ X,
with U ⊃ B(φ(x), r0), and with diamB(φ(x), r0) ≥ c0. This definition implies that X is
doubling and uniformly perfect, and that if X is connected and locally connected, then
X is LC (see [Ca11] Chapter 2, Prop. 2.9). The boundaries of hyperbolic groups, when
endowed with visual metrics, provide an important class of quasiselfsimilar spaces (with
linear distortion function η), see Section 3.

Lemma 2.3 (UWS and WS for self-similar spaces). Let X be a compact connected quasi-
selfsimilar space. Then the following statements are equivalent:

• X satisfies the WS property.
• X satisfies the LC and UWS properties.

We obtain the following corollary of Theorem 1.2: if X is a compact connected quasi-
selfsimilar space, and satisfies the WS property, then dimARX = 1. It is important to
note that the WS condition can be stated without using a metric, only with the uniform
structure of the compact set X. It is therefore, a topological property.

2.2.1. Proof of Lemma 2.2. The arguments involved in the proof are rather elementary,
we include them for clarity and completeness of presentation. See also [Ca11] Chapter 5,
Prop. 5.2 for more details.

WS implies local connectivity. We can assume that the sequence {Pn}n in the definition
of WS is increasing. We denote by Cn the set of connected components of X\Pn, and for
δ > 0,

Cn(δ) = {C ∈ Cn : diamC ≥ δ} .
Note that the set Cn(δ) is always finite. Indeed, we have #Cn(δ) ≤ #Pm for m large
enough so that δm < δ. This implies that if {Cm}m is a sequence of different connected
components in Cn, then

diamCm → 0, when m→ +∞. (2.1)
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Note that X \ Pn is an open set and its topological boundary coincides with Pn. Then,
the Boundary Bumping Theorem (see Chapter 5 of [Na92]) implies that C ∩Pn 6= ∅ for all
C ∈ Cn.

Let x ∈ X and ε > 0. We take n ≥ 1 such that δn < ε/2. We set

U :=
⋃{

C : C ∈ Cn, x ∈ C
}
∪ {x}.

Then U is connected. Moreover, U contains x in its interior by (2.1). Since diamU ≤
2δn < ε, we obtain the local connectivity at x.

Trivial fibers implies WS. Let x be a point in X, and suppose E(x) = {x}. We claim that
for any radius r ∈ (0, diamX), there exists a connected open set U containing x, which is
contained in the ball B(x, r), and whose frontier is a finite subset of E .

Indeed, write E \ {x} = {pn : n ≥ 1}. Let En = {pi : 1 ≤ i ≤ n} for each n ≥ 1,
and define Un to be the connected component of X \ En containing x. Then {Un} is a
decreasing sequence of open connected sets containing x. For each n, the frontier of Un is
finite and is contained in En. Since E(x) = {x}, one checks that⋂

n

Un =
⋂
n

Un = {x}.

This proves the claim. In particular, when E(x) = {x} for all x ∈ X, we can find for all
r ∈ (0,diamX), a finite open covering U of X such that for all U ∈ U : the frontier of U
is a finite subset of E and diamU ≤ 2r. Finally, X satisfies the WS property: consider
Pr the union of the frontiers ∂U , with U ∈ U . Then Pr is a finite set, and all connected
components of X \ Pr have diameter less than or equal to 2r.

2.2.2. Proof of Lemma 2.3. We prove now that for quasiselfsimilar spaces, the WS condi-
tion is equivalent to LC and UWS. Since when X verifies WS, it is locally connected, by
self-similarity it is also LC. We now prove UWS.

For each x ∈ X and 0 < r ≤ diamX, let φ : B(x, 2r) → U ⊂ X be a η-quasisymmetric
homeomorphism given by the definition of self-similarity. Let {Pn} be the sequence of
finite sets given by the definition of WS. We claim that there exists n ≥ 1 such that for
all x ∈ X and 0 < r ≤ diamX, a connected component of X\Rn cannot intersect both
B
(
x, r2

)
and X\B(x, r), where Rn := φ−1 (Pn ∩ U). Since the cardinal number of Rn is

bounded from above by that of Pn, this shows that X verifies UWS.
Suppose by contradiction that the claim is false. Then for each n, there exists xn ∈ X,

0 < rn ≤ diamX and a connected component Yn of X \ Rn intersecting both B(xn, rn/2)
and X \ B(xn, rn). Since X is locally connected and every Rn is finite, the component
Yn is arcwise connected. Let γn be a curve in Yn satisfying γn ∩ B(xn, rn/2) 6= ∅ and
γn ∩X \B(xn, rn) 6= ∅. Then diamγ ≥ rn/2, and therefore (see [Hei01], Prop. 10.8)

diamφn(γn)

diamφ(B(xn, 2rn))
≥ 1

2
· η
(

diamB(xn, 2rn)

diamγn

)−1
≥ 1

2η(8)
:= δ. (2.2)

The connected components of X \Pn have their diameter bounded from above by δn, which
tends to zero as n tends to infinity. In particular, for n large enough, φn(γn) ∩ Pn 6= ∅.
But this is a contradiction, since γn ∩Rn = ∅. This ends the proof.

3. The WS property for hyperbolic groups

In this section we give the proofs of Theorem 1.3 and Theorem 1.4. We begin by recalling
some definitions and establishing some notations and properties which will be useful in the
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sequel. Let G be a Gromov-hyperbolic group and Z = C(G,S) be a Cayley graph with
respect to some finite symmetric generating set S. Equip Z with the length distance
which makes each edge of Z isometric to the interval [0, 1], so that the action of G by left
multiplication on Z is a geometric action. See [CDP90, GH90] for an introduction to the
subject. We can identify the boundary of G with ∂Z. Consider the canonical conformal
gauge associated with the boundary of Z, induced by the visual metrics. In the following,
we fix such a distance θ = θ on ∂Z, with ε > 0 small enough, and we recall that it satisfies

θ(x, y) � exp(−ε(x|y)), ∀x, y ∈ ∂Z,
where (x|y) denotes the Gromov product of x and y viewed from the identity element of
G. This metric is Ahlfors regular of dimension h/ε whenever G is non-elementary; here h
is the volume entropy of the action of G on Z [Coo93]. In particular, (∂Z, θ) is a doubling
uniformly perfect compact metric space.

Recall also that if a, b, c, d ∈ ∂Z are four distinct points, their cross-ratio is defined by

[a, b, c, d] :=
θ(a, b)

θ(a, c)
· θ(c, d)

θ(b, d)
.

A homeomorphism f : ∂Z → ∂Z is η-quasi-Möbius if for all distinct a, b, c, d ∈ ∂Z, we
have

[f(a), f(b), f(c), f(d)] ≤ η ([a, b, c, d])

(see [Väis84]). When G is a hyperbolic group, there exists a constant C = C(ε) such that
the group G acts on ∂Z by η-quasi-Möbius homeomorphisms with η(t) = C · t (see for
example [Haïss08] Theorem 3.1).

By the work of P. Tukia and B. Bowditch, G acts properly discontinuously and cocom-
pactly on ∂3Z, the space of triples of distinct points of ∂Z. Cocompactness on triples
means that there is δ > 0 such that for any triple {x1, x2, x3} of distinct points of ∂Z,
there exists g ∈ G such that θ(gxi, gxj) ≥ δ, i 6= j. This property implies that G is a
uniform convergence and uniformly quasi-Möbius group.

Quasi-Möbius and quasisymmetric maps are closely related: if f : B(x, r) → U ⊂ ∂Z
is a η-quasi-Möbius homeomorphism, and if there is a constant λ > 0 and three points
x1, x2, x3 ∈ B(x, r), such that

θ(xi, xj) ≥
diamB(x, r)

λ
and θ(f(xi), f(xj)) ≥

diamU

λ
, (3.1)

then f is ηλ-quasisymmetric, with ηλ(t) = 2λη(2λt).
Finally, note that this properties imply the quasi-selfsimilarity of ∂Z (see also [Haïss08]

Prop. 4.6): suppose G is a non-elementary hyperbolic group, then there exists r0 > 0,
c0 > 0 and a distortion function η(t) = C ′ · t such that for any x ∈ ∂Z and any radius
r > 0, there exists g ∈ G such that g (B(x, r)) ⊃ B (g(x), r0), diamB (g(x), r0) ≥ c0
and g|B(x,r) is η-quasisymmetric. This is also known as the Sullivan conformal elevator
principle [Sul82].

3.1. Quasiconvex splittings and the boundary. We recall the definition of quasicon-
vex subgroup. A subset Y of a geodesic metric space Z is quasiconvex if there exists a
constant K ≥ 0, such that any point on any geodesic of Z joining two points of Y is at
distance less than or equal to K from Y . We say that a subgroup H of G is quasiconvex
if H is a quasiconvex subset of Z. This definition is independent of the generators consid-
ered to construct the distance on Z, and is indeed, equivalent to: the inclusion H ↪→ Z
is a quasi-isometric embedding. So H is also a hyperbolic group and the boundary ∂H is
canonically identified with the limit set ΛH ⊂ ∂Z. The limit set is by definition the set
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Figure 3.1. The set Q(e).

all of accumulation points of H in ∂Z. If H1 and H2 are two quasiconvex subgroups of G,
then H1 ∩H2 is also quasiconvex and ΛH1∩H2 = ΛH1 ∩ ΛH2 (see [Sho90], [BH99]).

Let T be a simplicial tree, we denote by T0 and by T1 the vertices and the edges of T . We
equip the geometric realization of T with the length distance that makes each edge isometric
to the interval [0, 1]. Consider a simplicial action of G on T , without edge inversions and
such that the quotient T/G is finite, so that G is isomorphic to the fundamental group of a
graph groups. Assume also that the action is minimal, i.e. there is no proper G-invariant
sub-tree of T . Given v ∈ T0 and e ∈ T1, we denote by G(v) and by G(e) the stabilizers of
v and e respectively. We also let Λv and Λe be the limit set of G(v) and G(e) respectively.
Thus, if e ∈ T1 and v, w ∈ T0 are the endpoints of e, then G(e) = G(v) ∩G(w).

3.1.1. Estimating the diameter of Λe and Λv. The estimates that follow are improvements
of some results proved in [Bow98a, Bow98b]. Our aim is to deduce some topological
properties of ∂Z from the action of G on T . Suppose now that G(e) is quasiconvex for
every edge e ∈ T1.

Definition 3.1. We define an equivariant continuous function φ : Z → T by setting
φ(1) = v0, where v0 ∈ T0 is any vertex, and φ(g) = g · v0 for all g ∈ G. This determines
φ on G, the vertices of Z. If e = (g, h) is an edge of Z, we extend φ so that φ sends e
linearly to the unique arc of T that joins φ(g) and φ(h).

The image of an edge of Z is either a vertex or an arc of T . In particular, the image of φ
is a G-invariant subtree of T , and since the action of G is minimal, φ is surjective. For each
s ∈ S, we let Is = (1, s) be the edge between 1 and s, and vs = s · v0, so φ(Is) = [v0, vs] is
the unique arc of T joining v0 and vs. Therefore, if I = (g, gs) is an edge of Z, with g ∈ G
and s ∈ S, then φ(I) = g · [v0, vs]. Since S is a finite set,

L := max {length ([v0, vs]) : s ∈ S} <∞,
so φ is indeed Lipschitz continuous with constant L.
Notation. In the sequel, distH denotes the Hausdorff distance between closed subsets of
Z. If A is a closed subset of Z, we denote by ∂A the set A \A, where the closure is taken
in the space Z ∪ ∂Z. Let e ∈ T1, we denote by m(e) its mid-point and Q(e) := φ−1(m(e)).
For v ∈ T0, let Tv(e) be the connected component of T \ {m(e)} which does not contain v,
and Zv(e) := φ−1 (Tv(e)). For v = v0, we simply write T (e) and Z(e), and we also denote
by −T (e) the the other component of T \ {m(e)} and −Z(e) := φ−1(−T (e)).

We denote by N(v) the set of edges of T which are incident to v. Let M(v) be the
connected set formed by v and all the segments joining v to m(e), with e ∈ N(v), and
consider Q(v) := φ−1(M(v)). Note that Q(e) and Q(v) are respectively G(e) and G(v)
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invariant, and for every edge e ∈ N(v), we have Q(e) ⊂ Q(v). For every vertex v 6= v0 of
T , there exists exactly one edge ev ∈ N(v) such that ∂Zv(ev) = −∂Z(ev), i.e. such that
∂Zv(ev) contains v0. Let N∗(v) = N(v) \ {ev}.

Lemma 3.2. For each edge e ∈ T1, there exists a constant K = K(e) > 0 such that

distH (Q(e), G(e)) ≤ K. (3.2)

In particular, ∂Q(e) = Q(e) \Q(e) = Λe.

Proof. Let e ∈ T1. We first show that every point of Q(e) is at distance less than or equal
to Ke from G(e), where Ke is a constant that depends on e. Indeed, if I = (g, gs) is an
edge of Z with g ∈ G and s ∈ S, then Q(e) ∩ I has at most one point. For fixed s ∈ S,
consider the set

Hs,e =
{
g ∈ G : ∃ e′ ∈ [v0, vs] s.t. g · e′ = e

}
.

Then Q(e) ∩ I 6= ∅ if and only if g ∈ Hs,e. If for e′ ∈ [v0, vs] we choose arbitrarily —if
any— ge′ ∈ Hs,e such that ge′ · e′ = e, then all the others g ∈ Hs,e sending e′ to e are of
the form g = hge′ , with h ∈ G(e). So for any g ∈ Hs,e there exists e′ ∈ [v0, vs] such that

dist(G(e), g) ≤ d(h, g) = d(h, hge′) = d(1, ge′)

(see Figure 3.1.1). Since the cardinal number of S and that of the edges in each [v0, vs] is
finite, it suffices to take

Ke := 1 + max{d(1, ge′) : e′ ∈ [v0, vs], s ∈ S} <∞.

By surjectivity of φ, there exists at least one s ∈ S such that Hs,e 6= ∅ (i.e. there exists
an edge e′ ∈ [v0, vs] such that one can choose ge′ as above). Since for all h ∈ G(e), the
element gh = hge′ ∈ G satisfies gh · e′ = e, we have Q(e) ∩ (gh, ghs) 6= ∅. That is, for all
h ∈ G(e), we also have dist(h,Q(e)) ≤ Ke, and therefore, distH(Q(e), G(e)) ≤ Ke. �

The following lemma is proved in Section 1 of [Bow98a]. We include the proof because
we need a uniform control on the constants involved.

Lemma 3.3. The sets {Q(e) : e ∈ T1} are uniformly quasiconvex. In addition,

diam Λe = diam ∂Q(e) . exp (−εdist (1, Q(e))) . (3.3)

Proof. Let {e1, . . . , en} be a set of representatives of edge orbits. First, note that Q(ei)
is quasiconvex because it is at bounded Hausdorff distance Ki from G(ei). Moreover,
the quasiconvexity constant Kqc(i) of Q(ei) depends only on Ki and the hyperbolicity
constant of Z. But since Q(g · e) = g · Q(e) for any g ∈ G, the sets Q(e) are in fact
uniformly quasiconvex, with constant

Kqc = max{Kqc(i) : i = 1, . . . , n}.

Finally, this implies that for any geodesic γ joining two points of Q(e), we have

dist(γ, 1) ≥ dist(Q(e), 1)−Kqc.

This shows (3.3). �

Notation. If f : A → [0,∞) is a real function defined on a set A, we say that f(a) → 0
for a ∈ A, if the set {a ∈ A : f(a) ≥ ε} is finite for all ε > 0. We define similarly f(a)→∞
for a ∈ A: for all N > 0, the set {a ∈ A : f(a) ≤ N} is finite.
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Lemma 3.4. The sets {Z(e) : e ∈ T1} are uniformly quasiconvex of constant Kqc. In
particular,

diam Z(e) . exp (−εdist (1, Z(e))) . (3.4)
In addition,

dist (1, Z(e)) = dist (1, Q(e))→∞ for e ∈ T1. (3.5)

Proof. If γ is a geodesic joining two points of Z(e), then, since T is a tree, the connected
components of γ \ Z(e) joins two points of Q(e). But Q(e) ⊂ Z(e), so the sets Z(e), with
e ∈ T1, are Kqc quasiconvex. Inequality (3.4) is proved in a similar way as (3.3).

Note that mid-points of different edges are at distance at least one. So if x ∈ Q(e) and
y ∈ Q(e′) for e and e′ two different edges of T , then

d(x, y) ≥ L−1 · d(m(e),m(e′)) ≥ L−1.
Since in each edge I of Z there is at most one element of Q(e), the number of edges e such
that Q(e)∩ I 6= ∅ is bounded from above by L. Therefore, there is at most a finite number
of sets Q(e) which intersects the ball B(1, n) of Z. That is, dist(1, Q(e))→∞ for e ∈ T1.

Finally, since every geodesic γ which joins 1 to a point of Z(e) has to pass through Q(e),
we obtain dist(1, Z(e)) ≥ dist(1, Q(e)). The other inequality follows from Q(e) ⊂ Z(e). �

Remark. Lemma 3.3 still holds, and the proof is analogous, if we replace in its statement
the set Q(e) by Q(v). Also {Q(v) : v ∈ T0} is a locally finite cover of Z by Kqc-quasiconvex
sets, and ∂Q(v) = Λv.

If γ is a geodesic of Z, we let γ+ = γ(+∞) and γ− = γ(−∞). We say that γ is
asymptotic to γ+ and γ−. Denote by C0 ≥ 1 a uniform constant, that depends only on
the hyperbolicity of Z, such that for any pair of points x and y of ∂Z and any geodesic γ
asymptotic to x and y, we have

C−10 exp (−εdist(1, γ)) ≤ θ(x, y) ≤ C0 exp (−εdist(1, γ)) . (3.6)

In the following lemma, we show that any geodesic asymptotic to a point of ∂Z(e) and to
a point of −∂Z(e) must pass uniformly close to Q(e).

Lemma 3.5. There is a uniform constant K, which depends only on the hyperbolicity of
G, such that

dist (γ,Q(e)) ≤ K, (3.7)
for each edge e ∈ T1, any two points x, y ∈ ∂Z with x ∈ ∂Z(e) and y ∈ −∂Z(e), and any
geodesic γ of Z with γ+ = x and γ− = y.

Proof. We consider σx : [0,+∞)→ Z and σy : [0,+∞)→ Z two geodesic rays from 1 ∈ Z
such that [σx] = x and [σy] = y. We denote by {Ik}k and {Jk}k the sequence of edges
belonging to σx and σy respectively. By hyperbolicity, there exists a uniform constant K,
and a constant T < +∞ which depends on x and y, such that if t ∈ [T,+∞), then

max {dist (γ(t), σx) ,dist (γ(−t), σy)} ≤ K.
For t ≥ T , we consider the curve

γt = σty ∗ δty ∗ γ|[−t,t] ∗ δtx ∗ σtx,

where δtx (resp. δty) is a geodesic segment of length less than or equal to K, joining γ(t)

(resp. γ(−t)) with a point σx(ut) (resp. σy(vt)); the curve σtx (resp. σty) is the restriction
of σx (resp. σy) to the interval [ut,∞) (resp. (−∞, vt]). See Figure 3.2.

Note that φ(γt) joins a point in −T (e) to a point in T (e). In particular, m(e) belongs
to φ(γt), so γt ∩ Q(e) 6= ∅. Let p be a point of intersection of Q(e) with γt. We take t
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Figure 3.2. Proof of Lemma 3.5.

large enough so that p does not belong to σtx ∪ σty. In this case, either p belongs to γ or
to δtx ∪ δty. Therefore, we get a point in γ which is at distance smaller than or equal to K
from p ∈ Q(e). �

3.1.2. Description of ∂Z from the action on T . One can associate to T an ideal boundary
∂T , formed by the geodesic rays from v0. We are interested in ∂T only as a set. See
[Bow98a] Proposition 1.3, for a proof of the following proposition.

Proposition 3.6. Assume that the stabilizers G(e) of the edges e ∈ T1 are quasiconvex.
Then there exists a natural G-invariant partition ∂G = ∂∞G ∪ ∂0G with

∂0G =
⋃
v∈T0

Λv, (3.8)

and ∂∞G = {rays γ : φ(γ) is unbounded}. Moreover, there exists a bijection

j : ∂∞G→ ∂T.

We merely describe the function j. Let γ : [0,∞) → Z be a geodesic ray from 1. We
denote In = (gn, gn+1) the edges of γ, where gn = γ(n) for n ≥ 0. Let v ∈ T0, and
suppose that n ≤ m are such that φ(In)∩M(v) 6= ∅ and φ(Im)∩M(v) 6= ∅. Since Q(v) is
quasiconvex, γ([n,m]) is at uniformly bounded distance from Q(v). Therefore, if there is
an infinite number of n such that φ(In) ∩M(v) 6= ∅, then limn γ(n) ∈ Λv.

Suppose now that for every v ∈ T0, the set of edges In ∈ γ such that φ(In)∩M(v) 6= ∅ is
finite. We have φ(Is)∩M(v0) 6= ∅, because γ(0) = 1 ∈ G and φ(1) = v0. Then there exists
a sequence of edges {ei} of T , and an increasing sequence of positive integers {ni}, such
that for all i ≥ 0, we have φ(γ([ni,∞))) ⊂ T (ei), where ei = (vi, vi+1) and T (ei+1) ⊂ T (ei).
The sequence of edges {ei} defines a geodesic ray r from v0 in T , and therefore, a point of
∂T . This ray depends only on the class [γ], and we can define j([γ]) = r.

Let r : [0,∞) → T be a ray from v0, and let {ei = (vi, vi+1)}i≥0 be the edges of r.
Lemma 3.4 implies that ⋂

i≥0
Z(ei) = {x} ⊂ ∂Z,

and one checks that j−1(r) = x.
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3.2. Proof of Theorem 1.3. Recall that the DS splitting of G is given by a simplicial
action of G on a simplicial tree T , without edge inversions and with finite quotient, such
that the stabilizers of the edges of T are finite, in particular quasiconvex, and the stabilizers
of the vertices have at most one end [Dun85, Sta68]. Since G is a hyperbolic group, this
means that for every vertex v ∈ T0, either the stabilizer G(v) is finite and its limit set Λv
is empty or G(v) is infinite and Λv is connected.

Let φ : Z → T and v0 be as before. Let ±∂T (e) be the set of rays of T which eventually
are contained in ±T (e). Note that in this case Λe = ∅ for any edge e ∈ T1, so

−∂Z(e) ∩ ∂Z(e) = Λe = ∅,
and the sets ∂Z(e) are open and closed in ∂Z. The proof of Theorem 1.3 is divided into
several lemmas.

We note that the DS splitting describes the structure of connected components of ∂Z.
More precisely, the components of ∂Z are either points, or of the form g(Λvi) for some
g ∈ G and some i ∈ {1, . . . ,M} with G(vi) infinite. From Theorem 2.1, Theorem 1.3
follows from the following three properties:

• (Uniform linear connectivity of components) There exists a constant K` ≥ 1 such
that any connected component of ∂Z is K`-linearly connected.
• (Uniform separation of components) There exists a constant Ks ≥ 1 such that: for
all 0 < r ≤ diam ∂Z, there exists a covering Wr of ∂Z, by open and closed sets,
such that for all W ∈ Wr, we have dist (W,∂Z \W ) ≥ r/Ks and there exists a
connected component Y of ∂Z with Y ⊂W ⊂ Vr(Y ).
• (Diameter of the connected components tends to zero) For all δ > 0, there are only
finitely many connected components of ∂Z which have diameter greater than or
equal to δ.

Since G is a uniform quasi-Möbius group, it follows that each connected component of
∂Z is linearly connected with uniform constant. Also since G is a uniform convergence
group we also have that the diameter of connected components tends to zero, see also
Corollary 3.8. Therefore, we must show that ∂Z satisfies the uniform separation condition
on the components.
Notation. For any element g ∈ G we set |g| = d(1, g). Let E0 = {e1, . . . , eN} be a set
of representatives of edges orbits. For each edge e ∈ T1 we choose, and fix for the sequel,
ge ∈ G such that e = ge · ei. If g and g′ are two elements of G such that e = g · ei = g′ · ei,
then d(g, g′) ≤ η, where

η = max {|h| : h ∈ G(ei), i = 1, . . . , N} .
Then the set of elements g ∈ G such that e = g · ei is contained in B(ge, η). This implies
that for each edge e ∈ T1, the number |ge| does not depend, up to an additive constant,
on the choice of ge.

Recall that for each g ∈ G and ei ∈ E0 with e = g · ei, we have Q(e) = g ·Q(ei). Since
from Lemma 3.2, the Hausdorff distance between Q(ei) and G(ei) is finite, each Q(ei)
is finite and there exists a radius Ri such that Q(ei) ⊂ B(xi, Ri), with xi ∈ Q(ei). If
R := max{Ri}, then for any e ∈ T1, there exists xe ∈ Q(e) such that Q(e) ⊂ B(xe, R). In
addition, we have the following estimate:

Lemma 3.7. For each edge e ∈ T1, we have dist(1, Q(e)) = |ge|+O(1).

Proof. Let di = dist(1, Q(ei)) for i = 1, . . . , N . We set d = max{di}. Then for each edge
e ∈ T1, we have dist(ge, Q(e)) = dist(1, Q(ei)) = di for some i ∈ {1, . . . , N}. So Q(e) is
contained in the ball of radius R+ d centered at ge. This ends the proof. �
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We obtain by Lemma 3.4 the following corollary:

Corollary 3.8. For each edge e ∈ T1, we have diam ∂Z(e) . exp(−ε|ge|).

Remark. Similar arguments show that we can suppose the constant R to be large enough,
so that for every vertex v ∈ T0 of finite stabilizer, Q(v) is contained in a ball of radius R.
For each edge e ∈ N(v), we have Q(e) ⊂ Q(v). And therefore dist(1, Q(v)) = |ge| + O(1)
for any edge e ∈ N(v). Furthermore, we see that N(v) is finite.

We use Lemma 3.6 to bound from below the distance between ∂Z(e) and −∂Z(e).

Corollary 3.9. For each edge e ∈ T1, we have dist(∂Z(e),−∂Z(e)) & exp(−ε|ge|).

Proof. Consider a geodesic γ asymptotic to x ∈ ∂Z(e) and y ∈ −∂Z(e). By inequality
(3.7), dist(w, γ) ≤ K for some w ∈ Q(e). So we have

dist(1, γ) ≤ dist(γ,w) + d(w, 1) ≤ K +R+ d+ |ge| := |ge|+ C.

Since (x|y) = dist(1, γ) +O(1), we obtain

θ(x, y) � exp (−εdist(1, γ)) & exp (−ε|ge|) .
This proves the lemma. �

A general property of uniformly perfect spaces allows us to improve the previous esti-
mate. We denote by CP the constant of uniform perfectness.

Lemma 3.10. Let X be a uniformly perfect metric space. For any nonempty subset W of
X, we have

dist(W,X \W ) ≤ CP min{diamW, diam(X \W )}. (3.9)

Proof. There is nothing to prove if diamW ≥ diamX/CP , so suppose that W is a subset
of X of diameter smaller than diamX/CP . We let r = diamW , and consider x ∈W . Since
W ⊂ B(x, r) and B(x,CP r) \B(x, r) 6= ∅, there exists y ∈ B(x,CP r)∩X \W . Therefore,

dist(W,X \W ) ≤ d(x, y) ≤ CP r = CPdiamW.

The lemma follows by symmetry. �

Corollary 3.11. For each edge e ∈ T1, we have

dist(∂Z(e),−∂Z(e)) � exp(−ε|ge|).

Proof. By Corollary 3.9 it suffices to show the upper bound. But since ∂Z(e) is the
complement of −∂Z(e), and since we have diam∂Z(e) . exp(−ε|ge|), we get the result
from (3.9). �

Lemma 3.12. Let v be a vertex of T0 of finite stabilizer. Then for every pair of edges
e, e′ ∈ N∗(v), we have

dist(∂Zv(e), ∂Zv(e
′)) � exp(−ε|ge|). (3.10)

Proof. We know from the remark following Corollary 3.8, that |ge| = |ge′ |+O(1). Moreover,
since ∂Zv(e′) ⊂ −∂Zv(e), by Corollary 3.11 we have

dist(∂Zv(e), ∂Zv(e
′)) ≥ dist(∂Zv(e),−∂Zv(e)) � exp(−ε|ge|).

Let us show the upper bound. Let x be a point of ∂Zv(e) and y a point ∂Zv(e′). The
geodesic rays from 1, σx and σy, representing respectively x and y, must pass through
xv ∈ Q(e) and yv ∈ Q(e′) respectively. Since these two sets are contained in Q(v), which
is contained in a ball of radius R, there exists a geodesic σv of length less than 2R that
joins xv and yv. Let γx,y := σy ∗ σv ∗ σy be the concatenation of these geodesics. By
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hyperbolicity of Z, there exists a constant K and a geodesic γ of Z, asymptotic to x and
y, such that distH(γ, γx,y) ≤ K. Then

dist(1, γ) ≥ dist(1, Q(v))− (2R+K) = |ge|+O(1).

Therefore, θ(x, y) . exp(−ε|ge|). This proves the lemma. �

We will need the following fact (see [BonK02a] Lemma 3.2): if φ : ∂Z → ∂Z is a η-quasi-
Möbius homeomorphism, then there exists an increasing homeomorphism η̂ : R+ → R+,
which depends only on η, such that for all compact disjoint subsets E and F of ∂Z, we
have

∆ (φ(E), φ(F )) ≤ η̂ (∆(E,F )) , (3.11)

where

∆(E,F ) =
dist(E,F )

min {diamE,diamF}
is the relative distance between E and F . In particular, since G acts by η-quasi-Möbius
homeomorphisms on ∂Z, the inequality (3.11) is true if we replace φ by any g ∈ G. Finally,
we can prove the main estimate of this section.

Lemma 3.13. For every vertex v ∈ T0 with nonempty limit set Λv, and every e ∈ N(v),
we have

dist (Λv, ∂Zv(e)) . min {diamΛv, diam∂Zv(e)} . (3.12)

Proof. Recall that E0 = {e1, . . . , eN} is a set of representatives of T1/G. Since for all i, the
compact sets Λvi and ∂Zvi(ei) are disjoint, where vi is an endpoint of ei, if Λvi is nonempty,
we obtain

δ(ei, vi) := ∆ (Λvi , ∂Zvi(ei)) ∈ (0,+∞).

We set δ = max{∆(ei, vi)}, where the maximum is taken over all edges ei ∈ E0 and all
endpoints vi which have nonempty limit set. Let e be an edge of T1 and v be an endpoint
of e. There exists ei ∈ E0 and an endpoint vi of ei, such that ge · ei = e and ge · vi = v.
Note that ge · Λvi = Λv and ge · ∂Zvi(ei) = ∂Zv(e). Then, from inequality (3.11), we have

∆ (Λv, ∂Zv(e)) = ∆ (ge · Λvi , ge · ∂Zvi(ei)) ≤ η̂ (∆ (Λvi , ∂Zvi(ei))) ≤ η̂(δ).

Finally, this implies

dist (Λv, ∂Zv(e)) ≤ η̂(δ) ·min {diamΛv,diam∂Zv(e)} .

This ends the proof. �

We can now finish the proof of Theorem 1.3.

Lemma 3.14. We let rn := exp(−εn) for each n. There exists a constant C1 ≥ 1, such
that for all n ≥ 1, there exists a covering of ∂Z

Un := {W1, . . . ,WN},

such that for all j ∈ {1, . . . , N}, we have:

• dist(Wj , ∂Z \Wj) ≥ C−11 rn, and
• either there exists a vertex vj ∈ T0 with Λvj ⊂ Wj ⊂ VC1·rn(Λvj ), or there exists a
point xj ∈Wj such that Wj ⊂ B(xj , C1rn)
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W (v0)v0

v

W (v)

rn

∂ZTn

Figure 3.3. Construction of the covering in the proof of Lemma 3.14.

Proof. From Corollary 3.8, and Lemmas 3.11 and 3.13, for all v ∈ T0 with nonempty limit
set, and every edge e ∈ N∗(v), we have

diam∂Zv(e) . exp (−ε|ge|) . dist (∂Zv(e),−∂Zv(e))
≤ dist (∂Zv(e),Λv) . diam∂Zv(e),

i.e. all these quantities are comparable. Similarly, by Lemma 3.12, if v is a vertex with
finite stabilizer, then for any pair of edges e, e′ ∈ N∗(v), we have

dist(∂Zv(e), ∂Zv(e
′)) � exp(−ε|ge|).

We denote by C a uniform constant that bounds from above all the comparison constants
which appear in the above inequalities. For n ≥ 1, we write Bn := BZ(1, n) the ball in Z
centered at 1 and of radius n. We consider the set T1(n) of edges e ∈ T1 such that ge ∈ Bn,
and let Tn be the convex hull of T1(n). Then Tn is a finite subtree of T .

Suppose first that v0 /∈ Tn; i.e. that for every edge e ∈ N(v0), we have |ge| > n. If Λv0
is nonempty, we obtain

max {diam∂Z(e),dist (∂Z(e),Λv0)} ≤ C exp (−ε|ge|) ≤ Crn. (3.13)

But this implies that for every edge e ∈ N(v0), we have ∂Z(e) ⊂ V2Crn(Λv0), so ∂Z =
V2Crn(Λv0). If G(v0) is finite, then N(v0) is finite, and for every edge e ∈ N(v0), we have
diam∂Z(e) ≤ Crn. In this case it suffices to take W (e) = ∂Z(e) for each e ∈ N(v0) to
obtain the desired covering.

Assume now that v0 ∈ Tn, so for every vertex v of T , the edge ev belongs to Tn, and
N(v)\(Tn)1 ⊂ N∗(v). In particular, for any edge e ∈ N(v)\(Tn)1, we have ∂Zv(e) = ∂Z(e).
We claim that for every edge e of Tn, we have |ge| ≤ n + O(1); or equivalently, that
diam∂Z(e) & rn. Indeed, if e is an edge of Tn which does not belong to T1(n), then there
exists an edge f ∈ T1(n) ∩ T (e). Since ∂Z(f) ⊂ ∂Z(e), we obtain

C−1rn ≤ C−1 exp (−ε|gf |) ≤ diam∂Z(f) ≤ diam∂Z(e) ≤ C exp (−ε|ge|) ,

and therefore, |ge| ≤ n+ 2ε−1 log(C).
For each vertex v of Tn, denote by (Tn)1(v) the set of edges of Tn which are incident to

v. We set
W (v) := Λv ∪

⋃
e∈N(v)\(Tn)1(v)

∂Zv(e) = ∂Z \
⋃

e∈(Tn)1(v)

∂Zv(e).
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First case: Suppose Λv 6= ∅. For each edge e ∈ N(v) \ (Tn)1(v), as in (3.13), we have

max {diam∂Zv(e), dist (∂Zv(e),Λv)} ≤ C exp (−ε|ge|) ≤ Crn,
because ge /∈ Bn. Then, ∂Zv(e) ⊂ V2Crn(Λv), and since e ∈ N(v) \ (Tn)1(v) is arbitrary,
we have W (v) ⊂ V2Crn(Λv).
Second case: Suppose Λv = ∅. Let e ∈ N(v) \ (Tn)1(v) be any edge. For any other edge
e′ ∈ N(v) \ (Tn)1(v), we have

dist(∂Zv(e), ∂Zv(e
′)) � diam∂Zv(e) � diam∂Zv(e

′) . rn.

So if we choose any point xv ∈ ∂Zv(e), we obtain W (v) ⊂ Bε(xv, 2Crn). Also, since for
each edge e ∈ (Tn)1(v), we have

distε (∂Zv(e),−∂Zv(e)) ≥ C−1 exp(−ε|ge|) ≥ C−3rn,
and W (v) ⊂ −∂Zv(e), it is true that dist (W (v), ∂Z \W (v)) ≥ C−3rn.

Therefore, we construct a finite covering

∂Z =
⋃
v∈Tn

W (v),

where for each v ∈ Tn, if the limit set Λv is nonempty, we have Λv ⊂W (v) ⊂ V2C·rn(Λv), or,
that there exists a point xv ∈W (v) such that W (v) ⊂ Bε(xv, 2Crn) otherwise. Moreover,
the distance between each element of this collection and its complement, is bounded from
below by C−3rn. This ends the proof. �

3.3. Some general lemmas on virtually free groups. We prove in this section some
lemmas on virtually free groups that will be useful in the proof of Theorem 1.4. Neverthe-
less, we start by the following general remark. Let x and y be two different points on ∂Z,
and suppose that the stabilizer Stab ({x, y}) is infinite —it is then a two-ended quasiconvex
subgroup of G. We claim that for fixed δ > 0, there exists a finite set {g1, . . . , gN} ⊂ G
such that if g ∈ G verifies θ(g · x, g · y) ≥ δ, then it can be written as

g = gih, for some i ∈ {1, . . . , N} and h ∈ Stab ({x, y}) . (3.14)

Indeed, let γ be a geodesic asymptotic to x and y, and fix any point w0 ∈ γ. By assumption,
dist (1, g · γ) ≤ K for some constant which depends only on ε, the hyperbolicity constant
of Z and δ. Suppose g · w is the nearest point of g · γ to 1. Since the stabilizer of
{x, y} is quasiconvex, there exists a uniform constant C, and hw ∈ Stab({x, y}), such that
d(hw · w0, w) ≤ C. This implies that

ghw · w0 ∈ BZ (1,K + C) ,

and therefore, that ghw belongs to a finite subset of G.
We suppose now that G is a virtually free group. Let T be the simplicial tree associated

to the DS splitting of G, so in particular edge and vertex stabilizers are all finite subgroups
of G. We take as before a continuous equivariant map φ : Z → T , where Z is any locally
finite Cayley graph of G. In this case, the map j defined in Proposition 3.6 provides
a bijection between ∂Z and ∂T ; i.e. for every geodesic ray γ in Z, the image φ(γ) is
unbounded in T .

Let H := {H1, . . . ,Hk} be a finite collection of two-ended subgroups of G. For each
i ∈ {1, . . . , k} the limit set Λi of Hi consists of exactly two points of ∂Z, which we denote
by h+i and h−i . Define the decomposition space associated to H by D := ∂Z/ ∼, where two
points x and y of ∂Z are identified if and only if, either x = y, or there exists g ∈ G such
that {x, y} = g · Λi. We denote by p : ∂Z → D the projection defined by ∼ and we equip
D with the quotient topology. Note that any point of D has at most two pre-images under
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p. By (3.14), D is a compact Hausdorff topological space. In the sequel, we will always
suppose that D is connected. We recall that a saturated set A in ∂Z is by definition a
subset of ∂Z such that if A ∩ p−1(y) 6= ∅ for some y ∈ D, then p−1(y) ⊂ A.

Lemma 3.15. If e is an edge of T , then there exist i ∈ {1, . . . , k} and g ∈ G such that
g · h±i ∈ ∂Z(e) and g · h∓i ∈ −∂Z(e).

Proof. If not, the sets ∂Z(e) and −∂Z(e) are open, closed and saturated sets in ∂Z, and
therefore, the set U := p(∂Z(e)) is a proper open and closed subset of D. �

Notation. Let e be an edge of T . We set

He :=
{
g ∈ G : ∃ i ∈ {1, . . . , k} s.t. g · h±i ∈ ∂Z(e), g · h∓i ∈ −∂Z(e)

}
.

By Lemma 3.15, for any edge e of T the set He is not empty. Let

He :=
⋃
g∈He

g · Λi,

and let Pe = p (He) be its projection onto D.

Lemma 3.16. For any edge e of T , the set He is finite and D \ Pe is disconnected.

Proof. Fix e an edge of T . Let us first prove that Te is finite. Indeed, if g ∈ G and
i ∈ {1, . . . , k} are such that g · h±i ∈ ∂Z(e) and g · h∓i ∈ −∂Z(e), then

θ(g · h±i , g · h
∓
i ) ≥ dist(∂Z(e),−∂Z(e)) := ce > 0,

where ce only depends on e. By (3.14), there exists a finite subset Ge of G such that
g = g′h, with g′ ∈ Ge and h ∈ Stab(Λi). Therefore, g · Λi = g′ · Λi, which implies that He

is finite.
Let us show that Pe is a cut-set in D. Since He is finite, it is closed in ∂Z. Since

p(∂Z(e))∩ p(−∂Z(e)) = Pe, we see that ∂Z(e) \He and −∂Z(e) \He are open and closed
saturated sets in ∂Z. Taking the projection of these sets by p gives a non-trivial partition
of D \ Pe. �

We prove now the main lemma of this section.

Lemma 3.17. Let δ > 0. There exists a finite set Eδ of edges of T such that if we denote by
Pδ :=

⋃
e∈Eδ Pe and by Hδ := p−1(Pδ), then ∂Z \Hδ can be partitioned into a finite union

of open and closed saturated sets A with diamA ≤ δ. In particular, if U is a connected
component of D \ Pδ, then

diamp−1(U) ≤ δ.
Moreover, this implies that if for some g ∈ G and i ∈ {1, . . . , k} we have g ·Λi ⊂ ∂Z \Hδ,
then g · Λi ⊂ A for some subset A of the partition.

Proof. Let η > 0 and let E0 be the finite subset of edges of T such that diam∂Z(e) ≥ η,
and let Tη be its convex hull in T , so that Tη is a finite subtree of T . Let Eη be the set
of edges of Tη. For each vertex v ∈ Tη we denote by N0(v) := N(v) \ Eη. We can assume
without loss of generality that v0 ∈ Tη, so that for each vertex v of Tη, and each edge
e ∈ N0(v), we have ∂Zv(e) = ∂Z(e), and in particular, that diam(∂Zv(e)) ≤ η. We set

Pη :=
⋃
e∈Eη

Pe.

If v1 and v2 are two different vertices of Tη, and if ej ∈ N0(vj), j = 1, 2, then

p (∂v1Z(e1)) ∩ p (∂v2Z(e2)) ⊂ Pη.
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Let Hη := p−1(Pη). For each vertex v of Tη, let Av be the union of the sets ∂Zv(e) \ Tη
with e ∈ N0(v). Then Av is an open and closed (in ∂Z \Hη) saturated set. This provides
a partition of ∂Z \Hη by open and closed saturated sets. Therefore, if U is a connected
component of D \ Pη, there exists a vertex v of Tη such that U ⊂ p(Av). Since Av is
saturated, this implies that p−1(U) ⊂ Av.

We end by estimating the diameter of the sets Av. Indeed, by Corollary 3.8 and Lemma
3.12 we have

diamAv ≤ 2 max
e∈N0(v)

{diam∂Zv(e)}+ max
e,e′∈N0(v)

dist
(
∂Zv(e), ∂Zv(e

′)
)

. max
e∈N0(v)

{diam∂Zv(e)} ≤ Kη,

where K is a uniform constant. So it is enough to take η small enough so that Kη ≤ δ. �

3.4. The JSJ splitting and local cut points. The goal of this section is to recall
the basic properties of Bowditch’s JSJ splitting for hyperbolic groups. A non-elementary
hyperbolic group —infinite and not virtually cyclic— G is said virtually Fuchsian if it acts
properly discontinuously and by isometries on the real hyperbolic plane H2. We say that
G is cocompact virtually Fuchsian if the action is.

The action is not necessarily faithful, but its kernel is finite. By [CJ94, Gab92, Tu88], a
non-elementary hyperbolic group is cocompact virtually Fuchsian if and only if its boundary
is homeomorphic to the circle S1. More generally, if G is a virtually Fuchsian group, we
say that G is convex cocompact if the action is cocompact on its convex core, but not
cocompact on H2. Recall that its convex core is the minimal G-invariant closed convex
subset of H2. In this case, the peripheral subgroups of G are the stabilizers of the boundary
connected components of its convex core.

We recall the following theorem due to Bowditch (see [Bow98a] Theorem 0.1 and The-
orem 5.28).

Theorem 3.18 (JSJ splitting). Let G be a one-ended hyperbolic group which is not a
cocompact virtually Fuchsian group. Then there exists a minimal simplicial action of G
on a simplicial tree T , without edge inversions and with finite quotient T/G, whose edge
stabilizers are virtually cyclic. The vertices of T are of three types:

• Virtually cyclic: the stabilizer is a maximal virtually cyclic subgroup of G. Its
valence in T is finite and at least two.
• Surface or MHF: the stabilizer is a quasiconvex, non-elementary convex cocompact
virtually Fuchsian subgroup of G. Its peripheral groups are precisely the stabilizers
of its incident edges.
• Rigid: the stabilizer is quasiconvex, non-elementary and not of Surface type.

These types are mutually exclusive and are preserved by the action of G. Two adjacent
vertices are never of the same type. The splitting is quasi-isometry invariant and it is
maximal in the following sense: the rigid type vertices admit no decomposition over virtually
cyclic subgroups relative to the stabilizers of its incident edges.

To construct the simplicial tree T , Bowditch uses the structure of local cut points of
∂G. Indeed, any local cut point of ∂G belongs to the limit set Λv of a vertex v ∈ T of
virtually cyclic or surface type. The limit set Λe of e ∈ T1 consists of exactly two points
which are fixed points of any element of infinite order in G(e).

Recall that ∂Z is a locally connected metric space with no global cut points. Since
−∂Z(e)∩ ∂Z(e) = Λe, the limit set Λe separates the boundary of Z, and the two points of
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Λe are local cut points. There are only a finite number of connected components of ∂Z \Λe,
and every component has Λe as frontier. In particular, the sets ±∂Z(e) are connected.

We partition the vertices of the JSJ tree T as TC ∪ TS ∪ TR, which are respectively
the vertices of virtually cyclic, surface and rigid type. The vertices of surface type TS are
virtually free (with peripheral subgroups) and the limit set Λv a Cantor set of local cut
points. The stabilizer of Λv, for the action of G on ∂Z, is the same as the stabilizer of
v for the action of G on T , i.e. G(v). The subgroup G(v) of G is said maximal hanging
Fuchsian, or MHF for short. There is a natural bijection between the edges of T incident to
v, and the peripheral subgroups of G(v). The limit set of the peripheral subgroups are the
"jumps" of the Cantor set Λv; denote by Jv the set of jumps. For τ = {x, y} ∈ Jv, denote
by Cτ the set of connected components of ∂Z \ τ . Then the set of connected components
Cv of ∂Z \ Λv is given by

Cv =
⋃
τ∈Jv

Cτ .

This means that in order to study the WS property (or equivalently, the fibers) it is enough
to consider the local cut points which are in the limit sets of the edges of T :

E :=
⋃
e∈T1

Λe.

The vertices of rigid type TR correspond to non-elementary subgroups (and not TS) and
are characterized by the following: the limit set cannot be separated by two points of ∂Z,
and Λv is maximal for this property.

3.5. Proof of Theorem 1.4.

3.5.1. All rigid vertices are virtually free implies WS. Assume now that in the JSJ splitting
of G all rigid type vertices are virtually free. In this case, all vertices of T are either non-
elementary virtually free or virtually cyclic. Let v be a vertex in TS ∪ TR, so G(v) is
non-elementary virtually free. Recall that N(v) is the set of edges of T which are incident
to v. Since the action of G on T preserves the type of a vertex and two adjacent vertices
are of different type, the stabilizer of N(v) is also G(v). This implies that the number of
G-orbits of edges incident to v is the same as the number of G(v)-orbits, and therefore
N(v)/G(v) is finite. Let {f1, . . . , fkv} be a finite set of representatives of N(v)/G(v), and
re-denote by Hj(v) the two-ended subgroup G(fj) of G(v). We consider the decomposition
space Dv associated to v and we denote by pv : Λv → Dv the quotient map like in Section
3.3. Another equivalent way to construct Dv is by identifying the points of ∂Z which are
in the same ∂Z(e) for e ∈ N(v). Since ∂Z is connected, the same is true for Dv. Moreover,
the space Dv is either homeomorphic to the circle if v ∈ TS , or it is locally connected
without cut-points and cut-pairs if v ∈ TR [CaMa11, Haïss12]. Therefore, we can apply
the results of Section 3.3.

The subsets used in Section 3.3 to separate the decomposition space Dv were constructed
by projecting a finite union of sets of the form g · Λfj with g ∈ G(v) and j ∈ {1, . . . , kv}.
Therefore, in this case, they are the projection of a finite union of Λe with e ∈ N(v). We
can state Lemma 3.17 in the following way: for all δ > 0, there exists a finite set of edges
{e1, . . . , en} (here n = n(v, δ)) of N(v) such that if we set Hδ(v) :=

⋃n
i=1 Λei , then

Λv \Hδ(v) =
n+1⋃
i=1

Ai,
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where the sets Ai are disjoint open and closed (in Λv \Hδ(v)) saturated sets (n+ 1 is the
number of vertices of the finite tree associated to the edges, see the proof of Lemma 3.17).
Moreover, for any other edge e ∈ N(v), there exists a i ∈ {1, . . . , n+1} such that Λe ⊂ Ai.
Given such a partition, we denote by Ni(v) for i = 1, . . . , n + 1 the edges e incident to v
such that Λe ⊂ Ai. Naturally,

N(v) = {e1, . . . , en} ∪
n+1⋃
i=1

Ni(v),

is a partition of all edges incident to v. Let

Ki(v) = Ai ∪
⋃

e∈Ni(v)

∂Zv(e) for i = 1, . . . , n+ 1.

Lemma 3.19. The sets {Ki(v)}ni=1 are pairwise disjoint and closed in ∂Z \Hδ(v).

Proof. They are pairwise disjoint: the Ai are pairwise disjoint, and by definition, the
intersection of two sets ∂Zv(e) and ∂Zv(e′), with e 6= e′ in N(v), is contained in Λe ∩ Λe′ .
But if e ∈ Ni(v) and e′ ∈ Nj(v) with j 6= i, then Λe ∩ Λe′ = ∅.

They are closed: we adapt an argument taken from [Bow98b] (see Lemma 4.6). If
x /∈ Ki(v) ∪ Hδ(v), then dist(x,Ai) = η > 0 (x /∈ Ai which is closed in ∂Z \ Hδ(v)). If
e ∈ Ni(v) is such that ∂Zv(e) ∩ B(x, η/2) 6= ∅, then since ∂Zv(e) ∩ Ai 6= ∅, we obtain
diam ∂Zv(e) ≥ η/2. So, there is only a finite number of edges e ∈ Ni(v) such that
∂Zv(e) ∩ B(x, δ/2) 6= ∅. Since each ∂Zv(e) is closed, we have dist(x,Ki(v)) > 0, so Ki(v)
is closed in ∂Z \Hδ(v). �

We can partition the boundary of G as

∂Z =
n⋃
i=1

(∂Zv(ei) \Hδ(v)) ∪
n+1⋃
i=1

Ki(v) ∪Hδ(v), (3.15)

and the sets of the first and second union are closed in ∂Z \Hδ(v). Furthermore, we have

diam Ki(v) ≤ diam Ai + 2 · max
e∈Ni(v)

{diam ∂Zv(e)} , (3.16)

so we can prove the following lemma.

Lemma 3.20. Let v ∈ TS ∪ TR be a vertex of T . Then for any δ > 0, there exists a finite
set of edges e1, . . . , en ∈ N(v) such that diam Ki(v) ≤ δ for all i = 1, . . . , n+ 1.

Proof. Let δ > 0. There is a finite subset N1 ⊂ N(v), such that if e ∈ N(v) \ N1,
then diam ∂Zv(e) ≤ δ/4. Also by the previous paragraph, there exists a finite subset
N2 = {e1, . . . , en} ⊂ N(v), which we can assume containing N1, such that diamAi ≤ δ/2.
Therefore, from (3.16), we have diam Ki(v) ≤ diamAi + 2 ·max {diam ∂Zv(e)} ≤ δ/2 +
2 · δ/4 = δ. �

Proposition 3.21. Let G be a one-ended hyperbolic group which is not a cocompact vir-
tually Fuchsian group. Suppose that in the JSJ splitting of G all rigid type vertices are
virtually free. Then for any δ > 0, there exists a finite set {e1, . . . , eN} of edges of H, such
that

max {diam U : U ∈ U} ≤ δ,
where U is the set of connected components of ∂Z \H, and H =

⋃N
i=1 Λei . In particular,

∂Z satisfies the WS property.
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Proof. Let δ > 0. We fix v0 any vertex in TS ∪ TR. Consider the set Eδ of edges e ∈ T1
such that diam ∂Z(e) ≥ δ. By Lemma 3.4, Eδ is a finite set.

Let Vδ be the union of {v0} and the vertices of the edges in Eδ. Let Tδ be the convex
hull of Vδ. Then Tδ is a finite subtree of T .

If w ∈ (Tδ)1 ∩ TC , since the valence of w in T is finite, we can add to Tδ all the edges
incident to w, so that Tδ is still finite. In this way, we can suppose that all the terminal
vertices of Tδ are in TS ∪ TR.

Let v be any vertex in (TS ∪ TR)∩ (Tδ)0. There is exactly one edge e in N(v) such that
Tv(e) = −T (e). It necessarily belongs to (Tδ)1 because v0 ∈ Tδ. For the others, we have
Tv(e) = T (e). By Lemma 3.20, there are edges E(v) := {e1(v), . . . , env(v)} ∈ N(v), such
that

diam Ki (v) ≤ δ, for all i = 1, . . . , nv + 1. (3.17)
Denote by Hv the union of Λei(v) for i = 1, . . . , nv. Therefore, ∂Z \Hv is partitioned as in
(3.15). We can assume that the edges of Tδ incident to v belong to {e1(v), . . . , env(v)}.

Take now e = (v, w) ∈ (Tδ)1 an edge such that d(w, v0) ≥ d(v, v0), and that w ∈
(Tδ)0 ∩ TC (thus, v ∈ TS ∪ TR). If we let {ej = (vj , w) : j = 1, . . . ,mw} := N(w) \ {e},
then

∂Z(e) =

mw⋃
j=1

∂Z(ej) =

mw⋃
j=1

∂Zw(ej). (3.18)

The intersection of two sets of this decomposition is equal to Λw (which is equal to Λej , for
j = 1, . . . ,mw, and also to Λe). This allows us to replace ∂Z(e) by the union of ∂Z(ej),
where the vj all belong to (TS ∪ TR) ∩ (Tδ)0. Note that all the vertices which are an
endpoint of an edge incident to v are in TC . For i = 1, . . . , nv denote by wi the other
endpoint of ei(v), and by fj for j = 1, . . . ,mwi the other edges incident to wi. Then, we
can decompose ∂Z \Hv as

∂Z =

nv⋃
i=1

mwi⋃
j=1

(∂Zw(fj) \Hv) ∪
nv+1⋃
i=1

Ki(v) ∪Hv, (3.19)

The argument can be repeated inductively until we reach all the terminal vertices T of
Tδ. For u ∈ T , there is exactly one edge eu of N(u) which is in (Tδ)1 (i.e. that which
verifies Tu(e) = −T (e)). Then N(u) \ {eu} ⊂ T1 \ (Tδ)1, and therefore, for all u ∈ T and
any e ∈ E(u) \ {eu}, we have

diam ∂Zu(e) = diam ∂Z(e) ≤ δ. (3.20)

Then the set ∂Z(eu) can be decomposed as

∂Z(eu) =
⋃

e∈N(u)\{eu}

(∂Zu(e) \Hu) ∪
nu+1⋃
i=1

Ki(u) ∪Hu, (3.21)

and all the sets in the first and second union are of diameter less than or equal to δ. We
obtain then a decomposition ∂Z = A ∪B ∪H, where

A :=
⋃

v∈(TS∪TR)∩(Tδ)1

nv+1⋃
i=1

Ki(v), B :=
⋃
u∈T

⋃
e∈N(u)\{eu}

(∂Zu(e) \Hu), (3.22)

and
H :=

⋃
v∈(TS∪TR)∩(Tδ)1

Hv (3.23)
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The sets in the decomposition (3.22) defining A and B are pairwise disjoint and closed in
∂Z\H, and of diameter less than or equal to δ. This implies that any connected component
of ∂Z \H is contained in one of these sets. This ends the proof. �

3.5.2. WS is not satisfied when a non-virtually free rigid type vertex exists. Suppose there
exists v ∈ TR such that G(v) is not virtually free. First, decompose G(v) over finite groups
and consider a vertex w of this decomposition such that its stabilizer in G(v), G(w), is
one-ended. We will show that Λw cannot be separated by a finite set of local cut points
of ∂Z. Note that Λw can be separated (with a finite number of local cut points) from the
other connected components of Λv: the proof follows the same arguments as in 3.5.1. In
particular, points on different connected components of Λw are not in the same fiber.

Suppose first that Λw is not homeomorphic to the circle. Consider the JSJ decomposition
of G(w) with associated tree Tw. If it is trivial, we are done because there are no local
cut points in Λw. If not, it is enough to consider the local cut points of Λw which are in
the limit set of an edge e of Tw. Denote by Ci, i = 1, . . . , n, the connected components
of Λw \ Λe. Since v is a rigid vertex of G, the set Λw \ Λe is contained in a connected
set C of ∂Z. If x ∈ Ci and y ∈ Cj , with i 6= j, then there is a curve in ∂Z avoiding Λe
and connecting x and y. Therefore, we can suppose that C =

⋃n
i=1Ci ∪ α, where α is

a curve in ∂Z \ Λe intersecting all the Ci’s. Note that Λe = {x+, x−} is the set of fixed
points of a loxodromic g, so given any δ > 0, there exists n ≥ 1 such that αn := gn ·α and
α−n := g−n · α are respectively contained in the balls B(x+, δ) and B(x−, δ). Note that
α±n intersects all the Ci’s. Therefore, given any two points of Λw ∩B(x±, δ), there exists
a curve in the ball connecting them and avoiding x±.

Let {e1, . . . , em} be any finite subset of edges of Tw. Consider a δ > 0 small enough so
that the balls centered at P :=

⋃m
i=1 Λei and of radius δ are disjoint. Let Λei := {x+i , x

−
i }

and for each i consider the curves α+
i and α−i contained in the i’s balls as before. Then

the set

(Λw \ P ) ∪
m⋃
i=1

(α+
i ∪ α

−
i )

is a connected set containing Λw \P . Since diam(Λw \P ) = diamΛw, ∂Z does not satisfies
the WS condition.

If Λw is homeomorphic to the circle, the same argument as before works. In fact, the
fixed points Fix(g) of any loxodromic g ∈ G(w) is a cut-pair of Λw.

3.6. A simple example with dimAR ∂π1(M) < D(M). In this section we give a simple
example of a one-ended convex cocompact Kleinian group G = π1(M) for which the
conclusion of Corollary 1.6 holds; namely, that dimAR ∂π1(M) < D(M) where M is the
hyperbolizable 3-manifold with boundary whose interior is isometric to H3/G.

Let H be a handlebody with boundary S a closed surface of genus g ≥ 2, and let
Γ = {γ1, . . . , γn} be a multicurve on S; i.e. the elements of Γ are disjoint simple closed
curves on S. Suppose that Γ is chosen so that the boundary of any properly embedded
disk or annulus in H intersects at least one of the curves in Γ. Consider a small smooth
neighborhood A of Γ in S so that A = {A1, . . . , An} is a collection of disjoint annuli in S.

Let Ti for i = 1, . . . , n be n copies of the solid torus D2 × S1. On the boundary Si of
Ti let AT,i be a smooth annulus whose core curve generates the π1(Ti). We glue together
each solid torus Ti to H identifying Ai with AT,i. Denote by R the 3-manifold obtained.

For each i, let Bi be a collection of mi ≥ 1 disjoint smooth annuli in Si for which
each core curve generates π1(Ti). Suppose that Bi is also disjoint from AT,i. Denote
by m = m1 + · · · + mn. Let F be an I-bundle (over a surface which is not necessarily
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β̃

α̃ γ

α

β

F2

F3

F1

H

π1(F1)

〈γ〉

〈α〉〈β〉

π1(H)

π1(F2)π1(F3)

The JSJ splitting:

Figure 3.4. This figure shows an example of a convex cocompact Kleinian
group π1(M) for which D(M) > 1 = dimAR∂π1(M). Here H is a surface
homeomorphic to the torus minus an open disk (with boundary γ). The
curves α and β generate π1(H), and we have γ = [a, b] = aba−1b−1. The lifts
of these curves to the hyperbolic plane are drawn on the left. The group
is the fundamental group of the complex obtained by gluing to H three
copies, Fi, i = 1, 2, 3, of H along the multicurve {α, β, γ}. All the vertices
of the JSJ decomposition of π1(M) are virtually free, and the conjugates
of π1(H) are rigid vertices. This also implies that M is not a generalized
book of I-bundles.

connected) with vertical boundary consisting of exactly m smooth annuli. Glue F to R
along the annuli Bi, i = 1, . . . , n, and call M the 3-manifold with boundary obtained. Let
G = π1(M).

By Thurston hyperbolization theorem, G is isomorphic to a discrete, one-ended convex
cocompact subgroup of Iso(H3). See [KK00] for a similar construction and for more details.
The JSJ decomposition of G has exactly one conjugacy class of rigid vertices which all free
groups; i.e. the conjugates of π1(H). Thus we are in the hypotheses of Theorem 1.4 and
dimAR ∂G = 1. On the other hand,M is not a generalized book of I-bundles, and therefore,
by Theorem 2.9 in [CMT99] we have D(M) > 1. See also Figure 3.4.
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