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On the conservativity of cell centered Galerkin methods

Daniele A. Di Pietro∗

January 23, 2013

Abstract

In this work we investigate the conservativity of the cell centered Galerkin method of [4] and
provide an analytical expression for the conservative flux. The relation with the SUSHI method
of [10] and with discontinuous Galerkin methods is also explored. The theoretical results are assessed
on a numerical example using standard as well as general polygonal grids.

1 Introduction

Cell centered Galerkin (ccG) methods have been recently introduced in [3, 4] combining ideas from the
SUSHI method of Eymard, Gallouët, and Herbin [10] and discontinuous Galerkin methods, cf., e.g., [5]. A
complete convergence analysis for a pure diffusion problem has been carried out in [4] using finite element
techniques. The goal of this work is to revise ccG methods in the spirit of finite volume methods and
show that they enjoy a local conservation property analogous to the SUSHI method provided (i) interface
unknowns are kept rather than eliminated by the local procedure described in [4, Section 2.3]; (ii) only
the lowest-order part of the jumps is penalized and cell unknowns are used in the approximation of the
right-hand side. These modifications can be interpreted as using reduced quadratures; cf. [6, Remark 2.3].
As is the case for the SUSHI method, we show that face unknowns can be interpreted as the Lagrange
multipliers of the flux continuity constraint. For the sake of simplicity, the discussion is based on the
homogeneous Poisson problem,

−4u = f in Ω, (1a)

u = 0 on ∂Ω. (1b)

where Ω ∈ Rd, d ≥ 2, denotes an open bounded connected polygonal or polyhedral domain and f ∈
L2(Ω). The arguments below can be easily extended to anisotropic heterogeneous problems with more
general boundary conditions,

Let Th = {T} denote a family of disjoint open polygonal or polyhedral elements such that
⋃

T∈Th T =

Ω. The (planar) faces of the elements in Th that lie on the boundary of Ω are collected in the set Fb
h ,

while we denote by F i
h the set of interfaces, that is to say, connected portions of (planar) element faces F

such that there exist T1, T2 ∈ Th with F ⊂ ∂T1 ∩ ∂T2. Mesh faces are collected in the set Fh := F i
h ∪Fb

h

and, for all T ∈ Th, we let FT := {F ∈ Fh | F ⊂ ∂T}. We also define N∂ := maxT∈Th card(FT ). For all
F ∈ Fh, we define the set TF := {T ∈ Th | F ⊂ ∂T}. For all F ∈ F i

h we choose an arbitrary but fixed
orientation of the unit normal vector nF , while, for all F ∈ Fb

h , nF is taken outward to Ω. For all T ∈ Th
and all F ∈ TF we denote by nT,F the unit normal vector to F outward to T . Finally, for all F ∈ Fh,
we let xF :=

∫
F
x/|F |. By definition, card(TF ) = 2 if F ∈ F i

h while card(TF ) = 1 if F ∈ Fb
h . The mesh

Th is assumed to satisfy the regularity requirements of [4, Section 2.1], which are not detailed here for
the sake of conciseness. For the purposes of the present work it suffices to recall that this assumption
implies the existence of a family of cell centers (xT )T∈Th such that every cell T ∈ Th is star-shaped with
respect to xT and, for all F ∈ FT , the F -based pyramid of apex xT is non-degenerated.

In their hybrid versions, both the SUSHI and the ccG methods are based on cell- and face-unknowns
collected in the vector space of degrees of freedom (DOFs) Vh := RTh×RFh . To identify the components
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of a generic DOF vector vh ∈ Vh we note vh = ((vT )T∈Th , (vF )F∈Fh
). The homogeneous Dirichlet

condition (1b) is strongly enforced by defining the subspace Vh0 := {vh ∈ Vh | vF = 0, ∀F ∈ Fb
h}.

Following [10, Section 2.4], the SUSHI bilinear form can be expressed as follows:

∀wh, vh ∈ Vh0, asushi
h (wh,vh) =

∑
T∈Th

∑
F∈FT

|F |Φsushi
T,F (wh)(vT − vF ). (2)

We refer to the cited work for an explicit expression for Φsushi
T,F depending on (local) geometric quantities

(and on the diffusion field when it is does not coincide with the unit tensor). Consider the discrete
problem:

Find uh ∈ Vh0 such that asushi
h (uh,vh) =

∑
T∈Th

|T |〈f〉T vT for all vh ∈ Vh, (3)

with 〈f〉T :=
∫
T
f/|T |. Setting vF = 1 for F ∈ F i

h with F ⊂ ∂T1 ∩ ∂T2 and vT = 0 for all T ∈ Th in (3)
one can infer the following flux continuity relation:

Φsushi
T1,F (uh) = −Φsushi

T2,F (uh). (4)

In addition, for all T ∈ Th, taking vT ′ = δTT ′ for T ′ ∈ Th and vF = 0 for all F ∈ Fh, there holds,

∀T ∈ Th
∑

F∈FT

|F |Φsushi
T,F (uh) = |T |〈f〉T . (5)

We emphasize that a key point to obtain (4) is that only cell-unknowns appear in the approximation
of the right-hand side of (3). The goal of this work is precisely to show that results analogous to (3),
(4), and (5) hold for the hybrid version of the ccG method of [3, 4] and variants thereof. In proving
these properties, we relate the conservative flux for the ccG method with the numerical flux of the
corresponding dG formulation based on full piecewise polynomial spaces. We show, in particular, that
the two numerical fluxes differ by a asymptotically consistent perturbation expressed in terms of discrete
gradients and jump lifting operators.

2 Local conservation

The ccG space We briefly recall the construction of the ccG space. For all T ∈ Th we consider the
following gradient reconstruction inspired by Green’s formula:

GT (vh) :=
1

|T |
∑

F∈FT

|F |vFnT,F =
1

|T |
∑

F∈FT

|F |(vF − vT )nT,F . (6)

For an integer k ≥ 0 let Pk
d(Th) := {vh ∈ L2(Ω) | vh|T ∈ Pk

d(T ), ∀T ∈ Th} with Pk
d(T ) spanned by the

restriction to T of polynomial functions of degree ≤ k. In what follows we also need the following average
and jump trace operators defined for all F ∈ F i

h such that F ⊂ ∂T1 ∩ ∂T2 and nF points out of T1:

{ϕ} := 1
2 (ϕ|T1

+ ϕ|T2
), JϕK := ϕ|T1

− ϕ|T2
.

On boundary faces F ∈ Fb
h we conventionally set {ϕ} = JϕK = ϕ. Let Rh : Vh → P1

d(Th) be such that

∀vh ∈ Vh, Rh(vh)|T (x) = vT + GT (vh)·(x− xT ) ∀x ∈ T. (7)

The ccG space Vh i s defined as the image of the DOF space Vh through Rh, i.e., we set Vh := Rh(Vh).

IIP-ccG method It is instructive to begin by considering the following bilinear form on Vh × Vh
inspired by the IIP-dG method of Dawson, Sun and Wheeler [2]:

aiip
h (uh, vh) :=

∫
Ω

∇huh·∇hvh +
∑
T∈Th

∑
F∈FT

∫
F

φT,F (uh)〈vh|T 〉F , (8)
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where, for all ϕ regular enough, 〈ϕ〉F :=
∫
F
ϕ/|F | and, for all vh ∈ Vh,

φT,F (vh) := −{∇hvh}·nT,F +
η

hF
〈JvhK〉F εT,F , hF :=

∑
T∈TF

|F |
card(TF )2|T |

, εT,F := nT,F ·nF . (9)

Using the above expression for the linear face dimension hF , the user dependent parameter η for the IIP
bilinear form (8) (resp. SIP bilinear form (17)) should be taken strictly larger than N∂/2 (resp. N∂) to
ensure stability; cf. the discussion in [8, Section 3.2.2]. Observe that φT,F (vh) is constant over F since
we are only penalizing the lowest-order part of the jumps as in [8]. Moreover, by definition there holds

φT1,F (vh) = −φT2,F (vh). (10)

The IIP-ccG method reads

Find uh ∈ Vh such that aiip
h (uh, vh) =

∫
Ω

fvh for all vh ∈ Vh. (11)

Letting k ≥ 1 and replacing Vh by Pk
d(Th) in (11) we obtain the IIP-dG method for which there holds, for

all T ∈ Th,
∑

F∈FT
φT,F (uh) = 〈f〉T . This local conservation property is proved taking as a test function

vh = χT with χT characteristic function of T and using (10); see [5, Section 5.3.1.1] for the details.
Unfortunately, this argument breaks down for the IIP-ccG method (11) since, in general, χT 6∈ Vh.

In what follow we show, however, that the bilinear form aiip
h on Vh × Vh admits a flux formulation

analogous to (2) with a numerical flux Φiip
T,F which is a perturbation of (9). Provided the right-hand side

is approximated as in (3), this allows to prove a conservation property analogous to (5). We start by
observing that, for all T ∈ Th, all F ∈ FT , and all vh = Rh(vh) ∈ Vh, (7) yields

〈vh|T 〉F = vh(xF ) = vT + GT (vh)·(xF − xT ).

Plugging this expression into the second term in the right-hand side of (8), subtracting the quantity∑
T∈Th

∑
F∈FT

|F |φT,F (uh)vF = 0 (this equality is a consequence of (10)), it is inferred∑
F∈Fh

∑
T∈TF

|F |φT,F (uh)〈vh|T 〉F =
∑
T∈Th

∑
F∈FT

|F |φT,F (uh)(vT − vF )−
∑
T∈Th

|T |GT (uh)·GT (vh), (12)

where, for all vh = Rh(vh) ∈ Vh, we have introduced the following discrete gradient built from the dG
fluxes:

GT (vh) :=
∑

F∈FT

|F |
|T |

φT,F (vh)(xT − xF ). (13)

It is worth noting that formula (13) has a strong analogy with the gradient reconstruction used by Eymard

and Droniou [9]; cf. also [1, eq. (2.15)]. Plugging (12) into (8), letting ∆iip
T (uh) := GT (uh) −GT (uh),

and replacing GT (vh) by its definition (6) in the first term we obtain

aiip
h (uh, vh) = −

∑
T∈Th

|T |∆iip
T (uh)·GT (vh) +

∑
T∈Th

∑
F∈FT

|F |φT,F (uh)(vT − vF )

=
∑
T∈Th

∑
F∈FT

|F |∆iip
T (uh)·nT,F (vT − vF ) +

∑
T∈Th

∑
F∈FT

|F |φT,F (uh)(vT − vF )

=
∑
T∈Th

∑
F∈FT

|F |Φiip
T,F (uh)(vT − vF ),

where, for all vh = Rh(vh) ∈ Vh,

Φiip
T,F (vh) := φT,F (vh) + ∆iip

T (vh)·nT,F . (14)

It is thus clear that the numerical flux for the IIP-ccG method is equal to the dG flux plus a perturbation
proportional to the difference between the gradient reconstruction (6) based on face unknowns and the

3



10−2.5 10−2 10−1.5

10−4

10−3

10−2

h

N
ii
p

∆

Triangular
Kershaw

Hexagonal

10−2.5 10−2 10−1.5

10−4

10−3

10−2

h

N
si

p
∆

Triangular
Kershaw

Hexagonal

Figure 1: Convergence of the flux perturbation. The triangular and Kershaw mesh families correspond
to the mesh families 1 and 4.1 of the FVCA5 benchmark [11] respectively, while the hexagonal-dominant
mesh family coincides with the one proposed in [7]

gradient reconstruction (13) based on dG fluxes, both of which are consistent. Consider now the following
variation of (11), where the sole difference lies in the approximation of the right-hand side:

Find uh = Rh(uh) ∈ Vh such that aiip
h (uh, vh) =

∑
T∈Th

|T |〈f〉T vT for all vh = Rh(vh) ∈ Vh. (15)

Setting vF = 1 for F ∈ F i
h with F ⊂ ∂T1 ∩ ∂T2 and vT = 0 for all T ∈ Th in (15) it is inferred

Φiip
T1,F

(uh) = −Φiip
T2,F

(uh), (16)

which shows that the flux defined by (14) is continuous. Moreover, a conservation property analogous
to (5) can be proved by a similar argument.

To corroborate the above theoretical results, in the left panel of Figure 1 we show a numerical example
where the convergence of the perturbation norm N iip

∆ := (
∑

T∈Th ‖∆
iip
T (uh)‖2L2(Ω)d)1/2 is numerically

evaluated on three successively refined mesh families. For every mesh type and refinement property (16)
is verified up to machine precision.

SIP-ccG method To conclude, we extend the above argument to the SIP-ccG method of [4]. The
corresponding bilinear form containing an additional symmetry term reads

asip
h (uh, vh) := aiip

h (uh, vh)−
∑

F∈Fh

∫
F

JuhK{∇hvh}·nF . (17)

For all vh = Rh(vh) ∈ Vh, the symmetry term can be rewritten as follows:

−
∑

F∈Fh

∫
F

JuhK{∇hvh}·nF = −
∑
T∈Th

|T |·LT (uh)GT (vh), LT (uh) :=
∑

F∈FT

1

hT,F
〈JuhK〉FnF ,

where hT,F := |T | card(TF )
|F | . The operator LT is analogous to the jump lifting defined in [8, Section 3.2.2].

Proceeding as for the IIP-ccG method it is inferred

asip
h (uh, vh) =

∑
T∈Th

∑
F∈FT

|F |Φsip
T,F (uh)(vT − vF ),

where, for all vh = Rh(vh) ∈ Vh,

Φsip
T,F (vh) := φT,F (vh) + ∆sip

T (vh)·nT,F , ∆sip
T (vh) := ∆iip

T (vh) + LT (vh).

The numerical convergence of the perturbation norm N sip
∆ defined by replacing ∆iip

T by ∆sip
T in the

expression of N sip
∆ is shown in the right panel of Figure 1. Also in this case the flux continuity property

Φsip
T1,F

(uh) = −Φsip
T2,F

(uh) for all F ∈ F i
h such that F ⊂ ∂T1 ∩ ∂T2 is verified to machine precision.
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