On the conservativity of cell centered Galerkin methods - Archive ouverte HAL Access content directly
Journal Articles Comptes rendus de l'Académie des sciences. Série I, Mathématique Year : 2013

On the conservativity of cell centered Galerkin methods

Abstract

In this work we investigate the conservativity of the cell centered Galerkin method of (Di Pietro, Cell centered Galerkin methods for diffusive problems, M2AN Math. Model. Numer. Anal., 46(1):111-144, 2012) and provide an analytical expression for the conservative flux. The relation with the SUSHI method of (Eymard, Gallouët, and Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes, SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Num. Anal., 30(4):1009-1043, 2010) and with discontinuous Galerkin methods is also explored. The theoretical results are assessed on a numerical example using standard as well as general polygonal grids.
Fichier principal
Vignette du fichier
ConsCCG.pdf (275.01 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00781510 , version 1 (27-01-2013)
hal-00781510 , version 2 (13-03-2013)

Identifiers

Cite

Daniele Antonio Di Pietro. On the conservativity of cell centered Galerkin methods. Comptes rendus de l'Académie des sciences. Série I, Mathématique, 2013, 351, pp.155-159. ⟨10.1016/j.crma.2013.03.001⟩. ⟨hal-00781510v2⟩
139 View
272 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More