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ABSTRACT

The paper presents a model selection method for texture images,

more specifically, it finds the most adequate model for the pixels’ in-

teraction. This approach relies on a Bayesian framework, that prob-

abilizes all the quantities and determines the joint a posteriori law

for the models and the parameters. In order to compute the a pos-

teriori model probabilities, the model parameters are marginalized

by means of sampling, performed independently for each model in

a within-model sampling using a Metropolis-Hastings (M-H) algo-

rithm. The resulting chains are used to compute the evidence of each

model by an harmonic averaging of the likelihoods computed for the

aforementioned sampled values. The work presented in the follow-

ing represents a complex formalism based on state of the art methods

for parameter estimation, model selection techniques and sampling

algorithms, the novelty being the design of such an approach for a

texture model selection problem. An image processing application

of this kind raises serious difficulties regarding the large amount of

data, the data correlation and the highly non-linear dependencies of

the data with respect to the parameters. Despite these challenges,

our method successfully solves the problem of texture model selec-

tion and parameter estimation.

Index Terms— Texture, model choice, harmonic mean, Bayes,

Metropolis-Hastings

1. INTRODUCTION

Model selection can prove to be an important tool in data analysis,

signal processing and, as shown in the following, even in image pro-

cessing. The goal is to select the model that best describes the data,

concurrently with computing the parameters of that model. In our

case, the data is the observed image, denoted by X, the models are

M = k, with k = 1, ..,K, and each model is driven by the param-

eters θk. In such a setting, the Bayesian framework is conceptually

well adapted and allows the development of a unified approach to

solve the twofold problem.

The use of the Bayesian paradigm naturally leads to handling the

joint law for the models, the parameters and the data, from which the

a posteriori law for the models and the parameters can be deduced.

The information contained by this law is extracted using numerical

methods, sampling to be more exact and, regarding these methods,

the literature is divided into two types of approaches: across-model

simulation and within-model simulation.

The across-model approach consists in jointly sampling the

model and the parameters corresponding to that model, thus allow-

ing the algorithm to visit the models and jump from one to another

concurrently with choosing adapted values for the parameters. This

principle guides the state of the art algorithm of Reversible Jump

Monte Carlo Markov Chain (RJMCMC), first introduced in [1] and

then extensively studied and expanded in numerous papers, as shown

in [2, 3]. One of the immediate applications of this algorithm to a

Bayesian texture analysis problem, with an interesting perspective

on texture modeling by Beta mixtures, is presented in [4].

The within-model simulation technique consists in computing

the model probabilities by marginalizing out the parameters from

the joint a posteriori law. This is done by sampling the parame-

ters conditionally to each model, the values obtained being used to

compute the “evidence”, i.e., the probability of the data, given the

model. The evidence for model M = k can be obtained using

a harmonic mean of likelihood values computed for the parameter

samples, drawn conditionally with respect to the data and under the

assumption that M = k is the generating model. A detailed descrip-

tion of this principle can be found in [5, 6] and more recently in [7],

where a survey of within-model simulation methods is presented.

An image processing application, more specifically texture anal-

ysis, will illustrate the model selection method. Our previous work

[8], devoted to efficient sampling algorithms for the same types of

textures, is thus continued and enriched by a method that uses the

parameter samples to select the generating model.

2. DATA MODEL

Most of the applications of the above methods attempt to determine

the best model for the data probability distribution. In a significant

part of the literature, the observations consist of i.i.d. data, so these

methods do not deal with data correlations and assume the obser-

vations have a common distribution. Our goal was to assemble a

method to solve a more complex task: selecting the model for the

pixel correlation structure in a texture image.

The work focuses on textures modeled as zero-mean stationary

Gaussian Random Fields (GRFs), as they are rather versatile in gen-

erating diverse patterns (see Fig.1) and at the same time easy to ma-

nipulate and embed in a probabilistic framework. The model is com-

pletely described by its second order statistics and a distribution law:

f(x|R) = (2π)−N/2 det(R)−1/2 exp

[
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where x collects the N pixels and R is the correlation matrix. In the

frequency domain, by Whittle approximation, the previous expres-

sion becomes separable in terms of the Fourier coefficients:
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In fact, every element λn is the variance of the nth coefficient of

the image’s Fourier transform. Thus, as a physical interpretation, λ

describes the image’s Power Spectral Density (PSD).

An important tool in the subsequent developments is the nega-

tive log-likelihood (NLL) of the data knowing the underlying model:
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Fig. 1: Texture realizations using GRFs with structured PSDs [8].

This is where the notion of model intervenes, as the texture can

be obtained by using any type of pixel interaction model, i.e., any

form for the PSD. The dictionary of models chosen in the current

work consists of parametric forms: Generalized Gaussian (M = 1),

Student (M = 2), Chi-Square (M = 3), Ring (M = 4). Each

model M = k is driven by the set of parameters θk, Table 1 show-

ing the dependencies λk(θk). Some parameters are common to

all the models, such as the scale factor γ, the central frequencies

νx0, νy0, that give the positioning in the frequency space, and the

widths σx, σy that determine the spread of the function. There are

also some model specific parameters: the interior and exterior radii

r1, r2 and the power p, which gives the models the possibility to

have a wide range of shapes according to its values.

3. METHODOLOGY

3.1. Bayesian Setting

The model choice is a continuously active branch of statistics, that

compares the models based on their structural properties and selects

from a family of models the one that is best adapted to the available

data, i.e., the observations and the a priori information.

The Bayesian approach is fundamentally probabilistic, i.e., a

joint probability distribution is used to describe the relations between

the unknowns and the data, and from this the a posteriori distribution

is deduced, which extracts the useful information from the data.

In the current problem, we have a set of K = 4 models that

will be tested for the data X. For the kth model, X has a law

f(X|θk,M = k), as seen in (3). The Bayesian approach pro-

Table 1: Pixel correlation models for the textures

Model M = k Expression of λk(θk)

Generalized 1
γ
exp 1
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[
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105, otherwise

ceeds by attributing an a priori distribution π(θk|M = k) to the

parameters of model k, consisting of uniform laws on the interval

[−0.5, 0.5] for the central frequencies, as they represent the posi-

tions in the reduced frequency domain. For the widths we chose

uniform a priori laws [0.01, 1], as beyond these values the laws are

either too narrow and will correspond to uncorrelated fields, either

too wide and then all pixels will be correlated to all the rest. For p,

r1, r2 and γ uniform a priori laws were also used, in accordance

with their physical significance. The a priori probabilities for each

model were set to Pr(M = k) = 1/K, so that no model is favored

with respect to another and the data decides on the model adequacy.

Intuitively, this complete specification can be regarded as a three

stage model of hierarchic structure to generate the data X: firstly,

the model k is chosen using Pr(M = k), secondly, the parameter

vector θk is obtained by using π(θk|M = k) and, thirdly, the data

is generated according to f(X|θk,M = k) [9].

3.2. Posterior Model Probabilities

The problem amounts to finding the most probable model, given the

data, and for this the a posteriori probabilities of the models will be

used. By applying Bayes’ theorem, the probability of model k is:

Pr(M = k|X) =
Pr(M = k)f(X|M = k)

f(X)
(4)

In (4) there are two quantities that have to be computed in order

to select the most probable model:

1. the probability distribution of the data, f(X),
2. the evidence for each model, fX|M = k).

Fortunately, f(X) is model independent and thus it can be nu-

merically computed by factorizing it and imposing that the model

probabilities add to 1:

f(X) =

K∑

k=1

f(X|M = k)Pr(M = k) (5)

The second quantity of interest, the evidence, is determined from

the joint law, by marginalizing the parameters and amounts to calcu-

lating the integral:

f(X|M = k) =

∫

f(X|θk,M = k)π(θk|M = k)dθk (6)

which is mathematically intractable due to the very complex depen-

dencies with respect to the parameters [8]. Thus, the integral must

be computed numerically, as detailed in Section 3.3.

Remark: In the final stage, the pairwise model comparison, say

M = k and M = k′ could be summarized by:

Pr(M = k|X)

Pr(M = k′|X)
︸ ︷︷ ︸

A posteriori chances

=
f(X|M = k)

f(X|M = k′)
︸ ︷︷ ︸

Bayes Factors

×
Pr(M = k)

Pr(M = k′)
︸ ︷︷ ︸

A priori chances

(7)

3.3. Harmonic Mean

As previously seen, the within-model analysis requires the compu-

tation of the evidences, f(X|M = k). If these could be calculated

explicitly, the a posteriori model probability would result immedi-

ately. However, this is not possible and a numerical computation

must be used, meaning that the usual difficulty of the Bayesian ap-

proach, i.e., computing integrals of the type (6), will be eliminated

by using MCMC methods.

Relation (6) can be seen as an expectation of the likelihood under

the a priori law. In numerical terms, this can be computed by draw-

ing samples from the a priori and averaging the likelihood computed



for these samples. However, the laws f(X|θk,M = k) for our tex-

ture images are very peaked, and the a prioris π(θk|M = k) for

the parameters are uniform, meaning that if we were to sample un-

der the a priori there would be a high risk of drawing a considerable

amount of samples from regions of very low probability, leading to

a high rejection rate and a slow sampling process.

In order to avoid this, in a similar manner as with importance

sampling, the integral is computed by introducing a more adequate

sampling distribution and then compensating for this change. Thus,

integral (6) can be rewritten as:

f(X|M = k) = Eg

[

f(X|θk,M = k)
π(θk|M = k)

g(θk)

]

(8)

where g is an auxiliary function, not necessarily the sampling dis-

tribution. Its role is to make possible the sampling under a more

adapted law that will allow a good exploration of the parameter

space, but will also take into account the form of the likelihood. Such

a law is the a posteriori and then (8) becomes:

f(X|M = k) =
{
Eθk|X,M=k

[
f(X|θk,M = k)−1

]}−1
(9)

Practically, knowing that θ
(t)
k with t = 1, .., T are samples from the

a posteriori law, the evidence can be numerically computed as:

f̃(X|M = k) =

{

1

T

T∑

t=1

[

f(X|θ
(t)
k ,M = k)

]−1
}−1

(10)

This is in fact the harmonic mean of the likelihood values computed

for the samples θ
(t)
k . For this estimator, the g function is equiva-

lent to the inverse of an importance function and thus the estimator

performs better when g has lighter tails than π(θk|X,M = k) [7].

Even though f̃(X|M = k) converges to the true value

f(X|M = k) when T → ∞, it does not generally satisfy the

Gaussian central limit theorem. To be more exact, occasionally, a

value of θ
(t)
k may occur that has low probability and thus has impor-

tant effects on the final result [6]. These reservations were reinforced

by [10], making the harmonic mean a rather avoided algorithm, since

in some cases it may exhibit infinite variance. However, its compu-

tational efficiency and ease of implementation have lead to its use in

a series of topic modeling papers such as [11, 12].

All these considerations are true for the general case, however,

for the current application, the probability of drawing a sample of

very low probability region is extremely small, as the sampling law

(the a posteriori) is very peaked. Moreover, even if such a sample

from a low probability region were to occur, in our case it would only

do so during the burn-in period, as our sampler allows a thorough

exploration of the law, but especially its high probability regions.

This actually means that the general doubts regarding the infinite

variance do not apply in our case due to the form of the posterior

law, as long as we make sure the sampler has reached convergence

before using the values in the computations.

3.4. Parameter Estimates

The samples drawn from the posterior distribution are not only used

for computing the harmonic mean, and thus the evidence, but also to

compute a parameter estimate. In this case, the A Posteriori Expec-

tation estimator was chosen and it consists in calculating the expec-

tation:

θ̂ = Eθ|X,M=k[θ] (11)

numerically computed by averaging the samples drawn from the a

posteriori distribution.

3.5. Metropolis-Hastings Sampling

The evidences are the key ingredients for computing the model prob-

abilities and they are obtained by a harmonic mean of likelihoods

computed for a series of samples θ(t), drawn from the a posteriori.

At this point, the difficulty of sampling these laws must be

pointed out, due to the complicated dependencies with respect to

θ, as shown in [8]. For this reason, direct sampling is infeasible

and thus the M-H sampler will be used. Among the class of M-H

samplers we chose the Fisher M-H, introduced in [8] due to its

very good speed performances when applied to texture parameter

sampling. Although it adds an extra layer of complexity to an al-

ready multi-stage multi-algorithm combining approach, it exploits

particularities of the problem and enhances the sampling speed.

The algorithm starts by initializing the parameter and at each

iteration it makes a proposal, by a directional perturbation of the

current parameter value. This proposal is either accepted, or rejected

(the current value is repeated) according to an acceptance probability

dictated by the proposal law and the a posteriori law.

4. ALGORITHM

The methodological and algorithmic ingredients previously pre-

sented are mainly state of the art, being complex tools in probability

theory, random fields analysis and sampling. They are used to as-

semble the model selection method for texture images, a composite

algorithm that inherits their capabilities, but also their complexity.

The implementation of the algorithm posed a series of numerical

problems, mainly due to the exponential form of the likelihood law,

amounting to quantities that overpass Matlab’s representation capa-

bilities and are set to zero or infinity. To be more exact, we would

need to compute exponentials with arguments superior to 103 or in-

ferior to −103. For this reason NLLs are computed and handled in

the sampling phase instead of the likelihoods themselves.

This solves only partially the problem, as when computing the

harmonic means we need to use the exponential quantities. To over-

come this standstill, a normalization was in order: we determined

the minimum NLL for each chain and we normalized the chain by

this value. However, the value by which we normalized had to be

reintroduced in order to obtain correct results and this was done in

the final phase of the a posteriori model probability computation.

Remark: The values of the NLL for each parameter sample were

already computed during the sampling stage.

Algorithm 1 Model Choice Algorithm

% Initialize the a priori model probabilities

PrM(k) = 1/K, k = 1...K;

% For each model k generate T samples from π(θk|X,M = k)
for k = 1 → K do

[Θk,NLLk] = MetropolisHastings(T );
mNLL(k) = min(NLLk);
normNLLk = NLLk −mNLL(k);
Evid(k) = HarmonicMean(normNLLk);

end for

for k = 1 → K do

% Compute the a posteriori model probabilities

PrM|X(k) =
PrM(k) · Evid(k)

K∑

l=1

PrM(l) · Evid(l) · emNLL(k)−mNLL(l)

(12)
end for



Table 2: The probability (in %) of the method selecting a certain

model, on the vertical, the true model used to generate the

data and on the horizontal the model chosen by the method

True model
Estimated model

GG St CS Ro

GG 96.3 1.8 1.6 0.3

St 3.3 92.5 0.7 3.5

CS 5.8 1.9 90.1 2.2

Ro 1.8 6.1 0.8 91.3

Consequently, the exponentials intervene only in the final stage,

and they are factored, as shown by expression (12). This is done

in order to replace computing the exponentials of the NLL chains

minima with the exponentials of these differences, since the expo-

nentials of the minima will be seen by Matlab as zero, yielding in-

determinateness, while the exponentials of the differences will re-

sult in finite non trivial values. Moreover, even if the values of the

differences are not finite, non trivial values, we will still have elim-

inated the indeterminateness: for instance if for a model l we have

exp[mNLL(k) − mNLL(l)] = ∞, then PrM|X(l) = 1. Con-

versely, if for model k, exp[mNLL(k) − mNLL(l)] = 0, all the

models l 6= k will have PrM|X(l) = 0 and PrM|X(k) = 1. This

solution eliminates the numerical problems without introducing any

approximation, only by conveniently handling the quantities.

5. EXPERIMENTAL RESULTS

This section is devoted to the performances in terms of speed and

accuracy of our model selection method. The true model and the

values of its parameters used to generate the data are known since we

worked on synthetic images. Consequently, we can directly evaluate

the accuracy of the model probabilities and parameter estimates.

The concerns regarding the behavior of the harmonic mean esti-

mator, more specifically the fact that infinite variance situations may

be encountered, have lead us to monitor the empirical variance all

throughout the simulations and we report that with no exception, the

variance is not only finite, but also tends to zero.

The implementation was done in Matlab, with T = 1000, re-

sulting in a total run time of about 4 minutes on a 3GHz processor.

The algorithm performs very well, managing to correctly yield

a strong probability for the model that generated the texture and

very weak probabilities for the other models. An interesting fact,

highlighting the strength of the method, is that it successfully distin-

guishes the models even if the observed textures are visually similar.

The experimental setting is the following: we chose 20 sets of

parameter values, θ, and using these sets we generated the 80 cor-

responding textures, by using every set θ for each model. We ran

the algorithm 10 times for each texture and we counted the number

of times the algorithm associates the highest probability to the true

model. The results are synthesized in Table 2, where we can see that

the method correctly identifies the true model in the large majority

of cases, as shown by the strong probabilities on the diagonal. There

are a series of misclassification situations, quantified by the other

percentages, which occur mainly in situations where the shapes of

the PSDs for those specific values of the parameters are very similar.

The parameter estimation for each model is very accurate, yield-

ing values situated within the ±3% relative error interval with re-

spect to the true parameter values, as also discussed in [8].

In Fig.2 we have shown an example of an original texture and

its reconstruction using our model selection and parameter estima-

tion method. We can observe their strong similarity as proof of the

Fig. 2: Observed image and reconstructed texture

successful model identification and accurate parameters estimation.

6. CONCLUSION AND PERSPECTIVES

The paper presents the mathematical formulation and the perfor-

mances of a model selection with joint parameter estimation method

for texture images modeled as GRFs. This approach assembles state

of the art algorithms, such as M-H, within-model simulation, har-

monic means, in a fully Bayesian framework. The joint probability

law synthesizes the information contained by the data and all prior

information available on the models and the parameters.

This method uses a within-model sampling technique, the very

nature of the tackled problem having lead us towards choosing this

type of sampling rather than RJMCMC. The relatively small number

of models and the fact that, based on our work in [8], we were able

to efficiently sample the model parameters reinforced our choice.

We foresee a number of future developments for this algorithm,

among which we consider its integration in a more complex appli-

cation for textured images segmentation with model selection and

parameter estimation for each region. We also intend to widen the

set of texture models beyond the class of GRFs, perspectives in this

direction being non-Gaussian models such as: fractal models, Wold

models, Markov Random Fields.
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