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The Lent Particle Method

for Marked Point Processes

Nicolas Bouleau
Ecole des Ponts ParisTech

Although introduced in the case of Poisson random measures (cf [2], [3]), the lent particle method
applies as well in other situations. We study here the case of marked point processes. In this case
the Malliavin calculus (here in the sense of Dirichlet forms) operates on the marks and the point
process doesn’t need to be Poisson. The proof of the method is even much simpler than in the case of
Poisson random measures. We give applications to isotropic processes and to processes whose jumps
are modified by independent diffusions.

1. Construction of the upper Dirichlet structure

a) Marked point processes

Let (X,X ) and (Y,Y) be two measurable spaces such that {x} ∈ X ∀x ∈ X and {y} ∈ Y ∀y ∈ Y .
Let C(X) be the configuration space of X i.e. the space of countable sum m of Dirac masses such

that m{x} ∈ {0, 1} ∀x ∈ X , so that m may be indentified with its support. C(X) is equipped with
the smallest σ-field FX s.t. the maps ω 7→ card(ω ∩ A) be measurable for any A ∈ X .

Similarly we consider C(X × Y ) equipped with FX×Y .
Let µ be a probability measure on (Y,Y) and Q a probability measure on (C(X),FX). Let us

denote by M the random measure on X with law Q.
For F a function FX×Y -measurable and bounded, we may define a linear operator S by putting

S(F ) =

∫

F ((x1, y1), . . . , (xn, yn), . . .)µ(dy1) · · ·µ(dyn) · · ·

the integral doesn’t depend on the order of the numbering. S(F ) is FX -measurable. Thus by

P(F ) =

∫

S(F ) dQ

we define a probability measure on (C(X × Y ),FX×Y ). We will say that P is the law of the random
measure M marked by µ. It will be convenient to denote N = M ⊙ µ this random measure of law P.

b) Dirichlet structure on a marked point process

We suppose that the measure µ is such that there exists a local Dirichlet structure with carré du
champ (Y,Y, µ,d, γ). Although not necessary, we assume for simplicity that constants belong to dloc

(see Bouleau-Hirsch [5] Chap. I Definition 7.1.3.)

1 ∈ dloc which implies γ[1] = 0.

By the same argument as the theorem on products of Dirichlet structures ([5] Chap. V §2.2), the
domain

D = {F ∈ L2(P), for Q-a.e.m =
∑

εxi
, ∀i, for µ-a.e.u1, . . . , µ-a.e.ui−1, µ-a.e.ui+1, . . .

F ((x1, u1), . . . , (xi−1, ui−1), (xi, . ), (xi+1, ui+1) . . .) ∈ d

and EP[
∑

i

(γ[F ])(ui)] < +∞}

and the operator Γ[F ] =
∑

i(γ[F ])(ui) define a local Dirichlet structure
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(C(X × Y ),FX×Y ,P,D,Γ).

c) Let us recall the Energy Image Density property : For a σ-finite measure ν on some measurable
space, a Dirichlet form on L2(ν) with carré du champ γ is said to satisfy (EID) if for any d and for
any Rd-valued function U whose components are in the domain of the form

U∗[(detγ[U,U
t]) · ν] ≪ λd

where U∗ denotes taking the image measure by U , det denotes the determinant, and λd the Lebesgue
measure on Rd.

For a local Dirichlet structure with carré du champ, the above property is always true for real-
valued functions in the domain of the form (Bouleau [1], Bouleau-Hirsch [5] Chap. I §7). It has been
conjectured in 1986 (Bouleau-Hirsch [4] p251) that (EID) were true for any Rd-valued function whose
components are in the domain of the form for any local Dirichlet structure with carré du champ.
This has been shown for the Wiener space equipped with the Ornstein-Uhlenbeck form and for some
other structures by Bouleau-Hirsch (cf. [5] Chap. II §5 and Chap. V example 2.2.4) and also for the
Poisson space by A. Coquio [6] when the intensity measure is the Lebesgue measure on an open set,
and in more general cases in [2] thanks to a result of Song [8]. But this conjecture being at present nei-
ther refuted nor proved in full generality, the property has to be established in every particular setting.

Lemma 1. If the structure (Y,Y, µ,d, γ) is such that any finite product (Y,Y, µ,d, γ)n, n ∈ N, sat-

isfies (EID) then the structure (C(X × Y ),FX×Y ,P,D,Γ) satisfies (EID).

This is an application of prop. 2.2.3 and thm 2.2.1 of Chap. V of [5].

d) The lent particle method.
Let us denote ̟ the current point of the space C(X × Y ), and let us introduce the operators

ε+(x,u)̟ = ̟ ∪ {(x, u)} ε−(x,u)̟ = ̟ ∩ {(x, u)}c

then we have the lent particle formula

∀F ∈ D Γ[F ] =

∫

ε−γε+F dN (1)

Proof. For F ∈ D we have

ε+F = F ((x, u), (x1, u1), . . . , (xi, ui), . . .)
γε+F = γ[F ((x, .), (x1, u1), . . . , (xi, ui), . . .)](u)

and
∫

ε−γε+F dN is the sum, when (x, u) varies among the points (xi, ui) ∈ ̟ of the preceding
result. This makes

∑

i

γi[F ],

exactly what we obtained by the product construction. This shows also, by the definition of D, that
the integral

∫

ε−γε+F dN exists and belongs to L1(P). �

e) Gradient. Let us explain how could be done the construction of a gradient for the structure
(C(X × Y ),FX×Y ,P,D,Γ) starting from a gradient for the structure (Y,Y, µ,d, γ).

Let us suppose that the structure (Y,Y, µ,d, γ) is such that the Hilbert space d be separable.
Then by a result of Mokobodzki (see Bouleau-Hirsch [5], ex.5.9 p. 242) this Dirichlet structure admits
a gradient operator in the sense that there exists a separable Hilbert space H and a continuous linear
map D from d into L2(Y, µ;H) such that
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• ∀u ∈ d, ‖D[u]‖2H = γ[u].

• If F : R → R is Lipschitz then

∀u ∈ d, D[F ◦ u] = (F ′ ◦ u)Du.

• If F is C1 (continuously differentiable) and Lipschitz from Rd into R (with d ∈ N) then

∀u = (u1, · · · , ud) ∈ dd, D[F ◦ u] =

d
∑

i=1

(F ′
i ◦ u)D[ui].

As only the Hilbertian structure of H plays a role, we can choose for H a space L2(R,R, ρ) where
(R,R, ρ) is a probability space such that the dimension of the vector space L2(R,R, ρ) is infinite. As
usual, we identify L2(µ;H) and L2(Y ×R,Y ⊗R, µ× ρ) and we denote the gradient D by ♭:

∀u ∈ d, Du = u♭ ∈ L2(Y ×R,Y ⊗R, µ× ρ).

Without loss of generality, we assume moreover that operator ♭ takes its values in the orthogonal
space of 1 in L2(R,R, ρ), in other words we take for H the orthogonal of 1. So that we have

∀u ∈ d,

∫

u♭dρ = 0 µ-a.e.

Finally, by the hypothesis on γ we have

1 ∈ dloc which implies γ[1] = 0 and 1♭ = 0.

With these tools and hypotheses we obtain easily a gradient for the structure (C(X×Y ),FX×Y ,P,D,Γ).
We have to follow the same construction as above replacing the measure Q × µN by the measure
Q×µN×ρN. This yields a random measure N ⊙ρ = M ⊙µ×ρ defined under the probability measure
P× ρN.

Now it is straightforward to show that the formula

F ♯ =

∫

ε−(ε+F )♭ dN ⊙ ρ

for F ∈ D defines a gradient for the structure (C(X × Y ),FX×Y ,P,D,Γ) with values in L2(P × ρN).
The existence of the integral

∫

ε−(ε+F )♭ dN ⊙ ρ comes from the fact that it is controlled by that of
∫

ε−γε+F dN thanks to

ρN
{

(

∫

ε−(ε+F )♭ dN ⊙ ρ)2
}

=

∫ ∫

(ε−(ε+F )♭)2dρdN =

∫

ε−γ[ε+F ]dN

(similar formula as in Corollary 12 of [2]).
Example. If F = e−N(f), then

ε+(x,u)F = e−N(f)e−f(x,u)

γε+(x,u)F = e−2N(f)e−2f(x,u)γ[f ]
∫

ε−γε+F dN = e−2N(f)N(γ[f ]) (= e−2N(f)Γ[N(f)])

( Γ[N(f)] = N(γ[f ]) even in the non Poissonian case).

Let us summarize this construction which gives a result, similar to Theorem 17 of [2], obtained
much more easily here for marked point processes than for random Poisson measures.
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Theorem 2. The carré du champ operator of the upper Dirichlet structure (C(X×Y ),FX×Y ,P,D,Γ)
satisfies ∀F ∈ D

Γ[F ] =

∫

ε−γ[ε+F ]dN

and this structure satisfies (EID) as soon as every finite product (Y,Y, µ,d, γ)n satisfies (EID).

2. Application to isotropic processes.

Let us consider a Lévy process Z = (Z1, Z2) with values in R2 and Lévy measure σ(dx, dy) =
ν(dr)τ(dθ) where τ is the uniform probability on the circle. Let us suppose that Z is centered without
Gaussian part and that σ integrates r2 = x2 + y2. Let N be the Poisson measure such that for any
h1 and h2 in L2(ds)

∫ t

0

h1(s)dZ
1
s + h2(s)dZ

2
s =

∫

1[0,t](s)(h1(s)x+ h2(s)y) Ñ(dsdxdy).

Let us construct the upper Dirichlet structure starting from the classical structure on the unit cir-
cle with domain H1. And let us consider as illustration the very simple functional F = Zt =
(rt cos θt, rt sin θt)

ε+(t0,r0,θ0)F = (Z1
t + 1t≥t0r0 cos θ0, Z

2
t + 1t≥t0r0 sin θ0)

γ ε+F = 1t≥t0

(

sin2 θ0 cos θ0 sin θ0
cos θ0 sin θ0 cos2 θ0

)

r20

Γ[F ] =

∫

ε−γ ε+F dN =

∫ t

0

r2
(

sin2 θ cos θ sin θ
cos θ sin θ cos2 θ

)

N(dsdrdθ).

As soon as ν has an infinite mass, ∀t > 0, ∃r1 6= 0, r2 6= 0 et θ1 6= θ2 s.t.

Γ[F ] ≥ r21 ∧ r22

(

sin2 θ1 + sin2 θ2 cos θ1 sin θ1 + cos θ2 sin θ2
cos θ1 sin θ1 + cos θ2 sin θ2 cos2 θ1 + cos2 θ2

)

in the sense of positive symmetric matrices. Hence it follows that

det Γ[F ] ≥ (r21 ∧ r22)
2 sin2(θ1 − θ2) > 0.

So that Zt possesses a density on R2, as soon as ν(R∗
+) = +∞. This result is probably known although

not contained in the criterion of Sato [7] which supposes ν absolutely continuous. (Here ν may be
possibly a weighted sum of Dirac masses because it doesn’t carry any Dirichlet form).

The measure on the circle need not to be uniform provided that it carries a Dirichlet form such that
its n-th powers satisfy (EID). The idea generalizes obviously replacing the circle by a d-dimensional
sphere.

Actually, the process Z doesn’t need to be Lévy. The method applies as well for instance to a real
process purely discountinuous if we modify its jumps by i.i.d. transformations.

3. Insight on transform of Lévy processes by diffusions.

Since the Wiener measure is a probability measure we may take for (Y,Y, µ) the Wiener space
equipped with the Ornstein-Uhlenbeck structure. We know that (EID) is fulfilled as asked in Thm 2.

Let us consider the SDE

Xx
t = x+

d
∑

j=1

∫ t

0

Aj(X
x
τ , x)dB

j
τ +

∫ t

0

B(Xx
τ , x)dτ (2)

where x ∈ Rm. The coefficients are C1 ∩ Lip with respect to the first argument.
Let us take for (X,X ) the Euclidean space (R+× Rm,B(R+×Rm)). Let M be a random Poisson

measure on R+ × Rm with intensity ds× ν and law Q associated with a Lévy process Z. We denote
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̟ =
∑

α ε(sα,xα) the current point of C(X).

Equation (2) is not that of a homogeneous Markov process because of the second argument in the
coefficients. We can nevertheless define Πt,x(dξ) to be the law of Xx

t and νΠt =
∫

ν(dx)Πt,x to be the
law of Xt starting with the measure ν.

Lemma 3. If the coefficients Aj, B are Lipschitz with respect to the first argument with constant in-

dependent of x and vanish at zero, the transition Πt preserves Lévy measures and measures integrating

x 7→ |x| ∧ 1.
Proof. By Gronwall lemma for p=1 or p=2, E|Xx

t |
p ≤ k|x|pekt, this means that νΠt is a Lévy measure

for any Lévy measure ν and the lemma. �

The transformed Lévy process (Tt(Z))s whose jumps are modified independently by the diffusion
(2), which is a Lévy process with Lévy measure νΠt, is a functional F of the marked point process.
Let us suppose for simplicity that the jumps of Z are summable, i.e. that ν integrates x 7→ |x| ∧ 1,
then F may be written

F =

∫

[0,s]×Rm×Y

Xx
t (y)N(dsdxdy)

with as above N = M ⊙ µ. The lent particle formula gives

F ♯ =

∫

[0,s]×Rm×Y×R

(Xx
t )

♭ d(N ⊙ ρ)

and

Γ[F ] =

∫

[0,s]×Rm×Y

γ[Xx
t ] dN.

Now (Xx
t )

♭ and γ[Xx
t ] are known by the usual Malliavin calculus : (.)♭ is a gradient on the Wiener

space associated with the O-U structure, for which we can choose (cf [5]) the operator defined by

(

∫

h(s)dBj
s)

♭ =

∫

h(s)dB̂j
s h ∈ L2(R+)

where B̂j are independent copies of Bj .

(Xx
t )

♭ = Kt

∫ t

0

K−1
v σ(Xx

v , x) · dB̂v

γ[Xx
t ] = Kt[

∫ t

0

K−1
v σ(Xx

v , x)σ
∗(Xx

v , x)(K
−1
v )∗dv]K∗

t

where σ is the matrix whose columns are the Aj j = 1, . . . , d and K the continuous invertible matrix
valued process solution of

Kx
t = I +

d
∑

j=1

∫ t

0

∂Aj(Xx
v , x)K

x
v dB

j
v +

∫ t

0

∂B(Xx
v , x)K

x
v dv.

where ∂Aj and ∂B are the Jacobian matrices with respect to the first argument.
We can write

Γ[F ] =

∫

[0,s]×Rm×Y

(

Kx
t

[
∫ t

0

(Kx
v )

−1σ(Xx
v , x)

σ∗(Xx
v , x)(K

x
v )

−1∗dv](Kx
t )

∗)(y)M ⊙ µ(dudxdy)
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By the (EID) property, for F to possess a density it suffises that the vector space V spanned by
the column vectors of the matrices

(

Kx
t (K

x
v )

−1σ(Xx
v , x)

)

(y) 0 ≤ v ≤ t, x ∈ Rm, y ∈ Y,

be m-dimensional a.s.
If we restrict the study to the case where the diffusion coefficients do not depend on the first

argument Aj(X
x
u , x) = Aj(x), i.e. for the SDE

Xx
t = x+

d
∑

j=1

Aj(x)B
j
t +

∫ t

0

B(Xx
v , x)dv

then, taking v close to t, the space V contains the vectors

Aj(∆Zu) j = 1, . . . , d u ∈ JT (Z)

where JT (Z) denotes the jump times of Z before s and we have

Proposition 4. Let us suppose the Lévy measure ν infinite. If the vectors Aj(x) are such that for

any infinite sequence xn ∈ Rm, xn 6= 0, tending to 0, the vector space spanned by the vectors

Aj(xn), j = 1, . . . , d, n ∈ N

is m-dimensional then the Lévy process (Tt(Z))s has a density on Rm.

Proof. The result comes from the above condition by the fact that Z has infinitely many jumps of
size near zero . �

As in part 2, the fact that Z be a Lévy process does not really matter. The method applies to
the transform of the jumps of any process as soon as the perturbations are i.i.d and carry a Dirichlet
form yielding (EID).
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