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Dirichlet Forms for Poisson Measures and Lévy Processes: The Lent Particle Method

We present a new approach to absolute continuity of laws of Poisson functionals. The theoretical framework is that of local Dirichlet forms as a tool to study probability spaces. The method gives rise to a new explicit calculus that we show first on some simple examples : it consists in adding a particle and taking it back after computing the gradient. Then we apply it to SDE's driven by Poisson measure.

Introduction

In order to situate the method it is worth to emphasize some features of the Dirichlet forms approach with comparison to the Malliavin calculus which is generally better known among probabilists.

First the arguments hold under only Lipschitz hypotheses : for example the method applies to a stochastic differential equation with Lipschitz coefficients (cf. our second lecture in this volume). Second a general criterion exists, (EID) the Energy Image Density property, (proved on the Wiener space for the Ornstein-Uhlenbeck form, still a conjecture in general cf. Bouleau-Hirsch [START_REF] Bouleau | Dirichlet Forms and Analysis on Wiener Space[END_REF] but established in the case of random Poisson measures with natural hypotheses) which ensures the existence of a density for a R d -valued random variable. Third, Dirichlet forms are easy to construct in the infinite dimensional frameworks encountered in probability theory and this yields a theory of errors propagation through the stochastic calculus, especially for finance and physics cf. Bouleau [START_REF] Bouleau | Error Calculus for Finance and Physics, the Language of Dirichlet Forms[END_REF], but also for numerical analysis of PDE's and SPDE's cf. Scotti [START_REF] Scotti | Applications de la Théorie des Erreurs par Formes de Dirichlet[END_REF].

Our aim is to extend, thanks to Dirichlet forms, the Malliavin calculus applied to the case of Poisson measures and SDE's with jumps. Let us recall that in the case of jumps, there are several ways for applying the ideas of Malliavin calculus. The works are based either on the chaos decomposition (Nualart-Vives [START_REF] Nualart | Anticipative calculus for the Poisson process based on the Fock space[END_REF]) and provide tools in analogy with the Malliavin calculus on Wiener space, but non-local (Picard [START_REF] Picard | On the existence of smooth densities for jump processes[END_REF], Ishikawa-Kunita [START_REF] Ishikawa | Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps[END_REF]) or dealing with local operators acting on the size of the jumps using the expression of the generator on a sufficiently rich class and closing the structure, for instance by Friedrichs' argument (cf. especially Bichteler-Gravereaux-Jacod [START_REF] Bichteler | Malliavin Calculus for Processes with Jumps[END_REF] Coquio [START_REF] Coquio | Formes de Dirichlet sur l'espace canonique de Poisson et application aux équations différentielles stochastiques[END_REF] Ma-Röckner [START_REF] Ma | Construction of diffusion on configuration spaces[END_REF]).

We follow a way close to this last one. We will first expose the method from a practical point of view, in order to show how it acts on concrete cases. Then in a separate part we shall give the main elements of the proof of the main theorem on the lent particle formula. Eventually we will display several examples where the method improves known results. Then, in the last section, we shall apply the lent particle method to SDE's driven by a Poisson measure or a Lévy process. Complete details of the proofs and hypotheses for getting (EID) are published in [START_REF] Bouleau | Error calculus and regularity of Poisson functionals: the lent particle method[END_REF] and [START_REF] Bouleau | Energy image density property and the lent particle method for Poisson measures[END_REF].

The lent particle method

Consider a random Poisson measure as a distribution of points, and let us see a Lévy process as defined by a Poisson measure, that is let us think on the configuration space. We suppose the particles live in a space (called the bottom space) equipped with a local Dirichlet form with carré du champ and gradient. This makes it possible to construct a local Dirichlet form with carré du champ on the configuration space (called the upper space). To calculate for some functional the Malliavin matrix -which in the framework of Dirichlet forms becomes the carré du champ matrix -the method consists first in adding a particle to the system. The functional then possesses a new argument which is due to this new particle. We can compute the bottom-gradient of the functional with respect to this argument and as well its bottom carré du champ. Then taking back the particle we have added does not erase the new argument of the obtained functional. We can integrate the new argument with respect to the Poisson measure and this gives the upper carré du champ matrix -that is the Malliavin matrix. This is the exact summary of the method.

2.1

Let us give more details and notation.

Let (X, X , ν, d, γ) be a local symmetric Dirichlet structure which admits a carré du champ operator. This means that (X, X , ν) is a measured space, ν is σ-finite and the bilinear form e[f, g] = 1 2 γ[f, g] dν, is a local Dirichlet form with domain d ⊂ L 2 (ν) and carré du champ γ (cf Fukushima-Oshima-Takeda [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF] and Bouleau-Hirsch [START_REF] Bouleau | Dirichlet Forms and Analysis on Wiener Space[END_REF]). (X, X , ν, d, γ) is called the bottom space.

Consider a Poisson random measure N on [0, +∞[×X with intensity measure dt × ν. A Dirichlet structure may be constructed canonically on the probability space of this Poisson measure that we denote (Ω 1 , A 1 , P 1 , D, Γ). We call this space the upper space.

D is a set of functions in the domain of Γ, in other words a set of random variables which are functionals of the random distribution of points. The main result is the following formula:

For all

F ∈ D Γ[F ] = +∞ 0 X ε -(γ[ε + F ]) dN
in which ε + and ε -are the creation and annihilation operators.

Let us explain the meaning and the use of this formula on an example.

First example.

Let Y t be a centered Lévy process with Lévy measure ν integrating x 2 . We assume that ν is such that a local Dirichlet structure may be constructed on R\{0} with carré du champ

γ[f ] = x 2 f ′2 (x).
The notion of gradient in the sense of Dirichlet forms is explained in [START_REF] Bouleau | Dirichlet Forms and Analysis on Wiener Space[END_REF] Chapter V. It is a linear operator with values in an auxiliary Hilbert space giving the carré du champ by taking the square of the Hilbert norm. It is convenient to choose for the Hilbert space a space L 2 of a probability space.

Here we define a gradient ♭ associated with γ by choosing ξ such that 1 0 ξ(r)dr = 0 and 1 0 ξ 2 (r)dr = 1 and putting

f ♭ = xf ′ (x)ξ(r).
Practically ♭ acts as a derivation with the chain rule (ϕ(f )

) ♭ = ϕ ′ (f ).f ♭ (for ϕ ∈ C 1 ∩ Lip or even only Lipschitz).
N is the Poisson random measure associated with Y with intensity dt × σ such that

t 0 h(s) dY s = 1 [0,t] (s)h(s)x Ñ (dsdx) for h ∈ L 2 loc (R + ).
We study the regularity of

V = t 0 ϕ(Y s-)dY s
where ϕ is Lipschitz and C 1 .

1 o . First step. We add a particle (α, x) i.e. a jump to Y at time α with size x what gives

ε + V = V + ϕ(Y α-)x + t ]α (ϕ(Y s-+ x) -ϕ(Y s-))dY s 2 o . V ♭ = 0 since V does not depend on x, and 
(ε + V ) ♭ = ϕ(Y α-)x + t ]α ϕ ′ (Y s-+ x)xdY s ξ(r) because x ♭ = xξ(r). 3 o . We compute γ[ε + V ] = (ε + V ) ♭2 dr = (ϕ(Y α-)x + t ]α ϕ ′ (Y s-+ x)xdY s ) 2 4 o . We take back the particle what gives ε -γ[ε + V ] = (ϕ(Y α-)x + t ]α ϕ ′ (Y s-)xdY s ) 2 and compute Γ[V ] = ε -γ[ε + V ]dN (lent particle formula) Γ[V ] = ϕ(Y α-) + t ]α ϕ ′ (Y s-)dY s 2 x 2 N (dαdx) = α t ∆Y 2 α ( t ]α ϕ ′ (Y s-)dY s + ϕ(Y α-)) 2 .
where

∆Y α = Y α -Y α-.
For real functional, (EID) is always true : V possesses a density as soon as Γ[V ] > 0. Then the above expression may be used to discuss the strict positivity of Γ[V ] depending on the finite or infinite mass of ν cf. [START_REF] Bouleau | Energy image density property and the lent particle method for Poisson measures[END_REF] Example 5.2. Before giving a typical set of assumptions that the Lévy measure ν has to fulfill, let us explicit the (EID) property.

Energy Image Density property (EID).

A Dirichlet form on L 2 (Λ) (Λ σ-finite) with carré du champ γ satisfies (EID) if, for any d and all U with values in R d whose components are in the domain of the form, the image by U of the measure with density with respect to Λ the determinant of the carré du champ matrix is absolutely continuous with respect to the Lebesgue measure i.e.

U * [(detγ[U, U t ]) • Λ] ≪ λ d .
This property is true for the Ornstein-Uhlenbeck form on the Wiener space, and in several other cases cf. Bouleau-Hirsch [START_REF] Bouleau | Dirichlet Forms and Analysis on Wiener Space[END_REF]. It was conjectured in 1986 that it were always true. It is still a conjecture.

It is therefore necessary to prove this property in the context of Poisson random measures. With natural hypotheses, cf. [START_REF] Bouleau | Energy image density property and the lent particle method for Poisson measures[END_REF] Parts 2 and 4, as soon as EID is true for the bottom space, EID is true for the upper space. Our proof uses a result of Shiqi Song [START_REF] Sh | Admissible vectors and their associated Dirichlet forms[END_REF].

Main example of bottom structure in R d

Let (Y t ) t 0 be a d-dimensional Lévy process, with Lévy measure ν = kdx. Under standard hypotheses, we have the following representation:

Y t = t 0 R d u Ñ (ds, du),
where Ñ is a compensated Poisson measure with intensity dt × kdx. In this case, the idea is to introduce an ad-hoc Dirichlet structure on R d

The following example gives a case of such a structure (d, e) which satisfies all the required hypotheses and which is flexible enough to encompass many cases:

Lemma 1. Let r ∈ N * , (X, X ) = (R r , B(R r )) and ν = kdx
where k is non-negative and Borelian. We are given ξ = (ξ ij ) 1 i,j r an R r×r -valued and symmetric Borel function. We assume that there exist an open set O ⊂ R r and a function ψ continuous on O and null on R r \ O such that 1. k > 0 on O ν-a.e. and is locally bounded on O.

2. ξ is locally bounded and locally elliptic on O.

3. k ψ > 0 ν-a.e. on O.

for all

i, j ∈ {1, • • • , r}, ξ i,j ψ belongs to H 1 loc (O).
We denote by H the subspace of functions

f ∈ L 2 (ν) ∩ L 1 (ν) such that the restriction of f to O belongs to C ∞ c (O).
Then, the bilinear form defined by

∀f, g ∈ H, e(f, g) = r i,j=1 O ξ i,j (x)∂ i f (x)∂ j g(x)ψ(x) dx is closable in L 2 (ν). Its closure, (d, e
), is a local Dirichlet form on L 2 (ν) which admits a carré du champ γ:

∀f ∈ d, γ(f )(x) = r i,j=1 ξ i,j (x)∂ i f (x)∂ j f (x) ψ(x) k(x) .
Moreover, it satisfies property (EID) i.e. for any d and for any R d -valued function U whose components are in the domain of the form

U * [(detγ[U, U t ]) • ν] ≪ λ d
where det denotes the determinant and λ d the Lebesgue measure on (R d , B(R d )).

Remark: In the case of a Lévy process, we shall apply this Lemma with ξ the identity application. We shall often consider an open domain of the form O = {x ∈ R d ; |x| < ε} which means that we "differentiate" only w.r.t. small jumps and hypothesis 3. means that we do not need to assume regularity on k but only that k dominates a regular function.

2.5

Multivariate example.

Consider as in the previous section, a centered Lévy process without gausssian part Y such that its Lévy measure ν satisfies assumptions of lemma 1 (which imply 1 + ∆Y s = 0 a.s.) with d = 1 and ξ(x) = x 2 . We want to study the existence of density for the pair

(Y t , Exp(Y ) t ) where Exp(Y ) is the Doléans exponential of Y . Exp(Y ) t = e Yt s t
(1 + ∆Y s )e -∆Ys .

1 0 / We add a particle (α, y) i.e. a jump to Y at time α t with size y :

ε + (α,y) (Exp(Y ) t ) = e Yt+y s t
(1 + ∆Y s )e -∆Ys (1 + y)e -y = Exp(Y ) t (1 + y).

2 0 / We compute γ[ε + Exp(Y ) t ](y) = (Exp(Y ) t ) 2 y 2 ψ(y)
k(y) . 3 0 / We take back the particle :

ε -γ[ε + Exp(Y ) t ] = Exp(Y ) t (1 + y) -1 2 y 2 ψ(y) k(y)
we integrate in N and that gives the upper carré du champ operator (lent particle formula):

Γ[Exp(Y ) t ] = [0,t]×R Exp(Y ) t (1 + y) -1 2 y 2 ψ(y) k(y) N (dαdy) = α t Exp(Y ) t (1 + ∆Y α ) -1 2 ψ(∆Yα) k(∆Yα) ∆Y 2 α .
By a similar computation the matrix Γ of the pair (Y t , Exp(Y t )) is given by

Γ = α t 1 Exp(Y ) t (1 + ∆Y α ) -1 Exp(Y ) t (1 + ∆Y α ) -1 Exp(Y ) t (1 + ∆Y α ) -1 2 ψ(∆Y α ) k(∆Y α ) ∆Y 2 α .
Hence under hypotheses implying (EID), such as those of Lemma 1, the density of the pair

(Y t , Exp(Y t )) is yielded by the condition dim L 1 Exp(Y ) t (1 + ∆Y α ) -1 α ∈ JT = 2
where JT denotes the jump times of Y between 0 and t.

Making this in details we obtain Let Y be a real Lévy process with infinite Lévy measure with density dominating near 0 a positive function locally in H 1 , then the pair (Y t , Exp(Y ) t ) possesses a density on R 2 .

3 Demonstration of the lent particle formula

The construction.

Let us recall that (X, X , m, d, γ) is a local Dirichlet structure with carré du champ called the bottom space, m is σ-finite and the bilinear form e[f, g] = 1 2 γ[f, g] dm is a local Dirichlet form with domain d ⊂ L 2 (m) and with carré du champ γ. For all x ∈ X, {x} is supposed to belong to X , m is diffuse. The associated generator is denoted a, its domain is D(a) ⊂ d.

We consider a random Poisson measure N , on (X, X , m) with intensity m. It is defined on (Ω, A, P) where Ω is the configuration space of countable sums of Dirac masses on E, A is the σ-field generated by N and P is the law of N .

(Ω, A, P) is called the upper space. The question is to construct a Dirichlet structure on the upper space, induced "canonically" by the Dirichlet structure of the bottom space.

This question is natural by the following interpretation. The bottom structure may be thought as the elements for the description of a single particle moving according to a symmetric Markov process associated with the bottom Dirichlet form. Then considering an infinite family of independent such particles with initial law given by (Ω, A, P) shows that a Dirichlet structure can be canonically considered on the upper space (cf. the introduction of [START_REF] Bouleau | Energy image density property and the lent particle method for Poisson measures[END_REF] for different ways of tackling this question).

Because of some formulas on functions of the form e iN (f ) related to the Laplace functional, we consider the space of test functions D 0 to be the set of elements in L 2 (P) which are the linear combinations of variables of the form

e i Ñ (f ) with f ∈ D(a) ⊗ L 2 (dt) L 1 (ν × dt), recall that Ñ = N -dt × ν. If U = p λ p e i Ñ (fp) belongs to D 0 , we put Ã0 [U ] = p λ p e i Ñ (fp) (i Ñ (a[f p ]) - 1 2 N (γ[f p ])), (1) 
where, in a natural way , if

f (x, t) = l u l (x)ϕ l (t) ∈ D(a) ⊗ L 2 (dt) a[f ] = l a[u l ]ϕ l and γ[f ] = l γ[u l ]ϕ l .
In order to show that A 0 is uniquely defined and is the generator of a Dirichlet form satisfying the required properties, starting from a gradient of the bottom structure we construct a gradient for the upper structure defined first on the test functions. Then we show that this gradient does not depend on the form of the test function and this allows to extend the operators thanks to Friedrichs' property yielding the closedness of the upper structure.

3.2

The bottom gradient.

We suppose the space d separable, then there exists a gradient for the bottom space : There is a separable Hilbert space and a linear map

D from d into L 2 (X, m; H) such that ∀u ∈ d, D[u] 2 H = γ[u], then necessarily -If F : R → R is Lipschitz then ∀u ∈ d, D[F • u] = (F ′ • u)Du, -If F is C 1 and Lipschitz from R d into R then D[F • u] = d i=1 (F ′ i • u)D[u i ] ∀u = (u 1 , • • • , u d ) ∈ d d .
We take for H a space

L 2 (R, R, ρ) where (R, R, ρ) is a probability space s.t. L 2 (R, R, ρ) is infinite dimensional. The gradient D is denoted by ♭: ∀u ∈ d, Du = u ♭ ∈ L 2 (X × R, X ⊗ R, m ⊗ ρ).
Without loss of generality, we assume moreover that the operator ♭ takes its values in the orthogonal space of 1 in L 2 (R, R, ρ). So that we have ∀u ∈ d, u ♭ dρ = 0 ν-a.e.

3.3

Candidate gradient for the upper space.

Then, we introduce the creation operator (resp. annihilation operator) which consists in adding (resp. removing if necessary) a jump at time t with size u:

ε + (t,u) (w 1 ) = w 1 1 {(t,u)∈supp w 1 } + (w 1 + ε (t,u) })1 {(t,u) / ∈supp w 1 } ε - (t,u) (w 1 ) = w 1 1 {(t,u) / ∈supp w 1 } + (w 1 -ε (t,u) })1 {(t,u)∈supp w 1 } .
In a natural way, we extend these operators to the functionals by

ε + H(w 1 , t, u) = H(ε + (t,u) w 1 , t, u) ε -H(w 1 , t, u) = H(ε - (t,u) w 1 , t, u).
Definition. For F ∈ D 0 , we define the pre-gradient

F ♯ = +∞ 0 X×R ε -((ε + F ) ♭ ) dN ⊙ ρ,
where N ⊙ ρ is the point process N "marked" by ρ i.e. if N is the family of marked points (T i , X i ), N ⊙ ρ is the family (T i , X i , r i ) where the r i are new independent random variables mutually independent and identically distributed with law ρ, defined on an auxiliary probability space ( Ω, Â, P). So N ⊙ ρ is a Poisson random measure on [0, +∞[×X × R.

3.4

Main result.

The above candidate may be shown to extend in a true gradient for the upper structure.

The argument is based on the extension of the pregenerator A 0 thanks to Friedrichs' property (cf. for instance [START_REF] Bouleau | Dirichlet Forms and Analysis on Wiener Space[END_REF] p. 4) : A 0 is shown to be well defined on D 0 which is dense, A 0 is negative and symmetric and therefore possesses a selfadjoint extension. Before stating the main Theorem, let us introduce some notation. We denote by D the completion of D 0 ⊗ L 2 ([0, +∞[, dt) ⊗ d with respect to the norm

H D = E ∞ 0 X ε -(γ[H])(w, t, u)N (dt, du) 1 2 + E ∞ 0 X (ε -|H|)(w, t, u)η(t, u)N (dt, du) = E ∞ 0 X γ[H](w, t, u)ν(du)dt 1 2 + E ∞ 0 X |H|(w, t, u)η(t, u)ν(du)dt,
where η is a fixed positive function in L 2 (R + × X, dt × dν).

Theorem. The formula

∀F ∈ D, F ♯ = +∞ 0 X×R ε -((ε + F ) ♭ ) dN ⊙ ρ,
extends from D 0 to D, it is justified by the following decomposition :

F ∈ D ε + -I → ε + F -F ∈ D ε -((.) ♭ ) → ε -((ε + F ) ♭ ) ∈ L 2 0 (P N × ρ) d(N ⊙ρ) → F ♯ ∈ L 2 (P × P)
where each operator is continuous on the range of the preceding one and where L 2 0 (P N × ρ) is the closed set of elements G in L 2 (P N × ρ) such that R Gdρ = 0 P N -a.s.

Furthermore for all F ∈ D

Γ[F ] = Ê(F ♯ ) 2 = +∞ 0 X ε -γ[ε + F ] dN. (2) 
Let us explicit the steps of a typical calculation applying this theorem.

Let H = Φ(F 1 , . . . , F n ) with Φ ∈ C 1 ∩ Lip(R n ) and F = (F 1 , . . . , F n ) with F i ∈ D, we have : a) γ[ε + H] = ij Φ ′ i (ε + F )Φ ′ j (ε + F )γ[ε + F i , ε + F j ] P × ν-a.e. b) ε -γ[ε + H] = ij Φ ′ i (F )Φ ′ j (F )ε -γ[ε + F i , ε + F j ] P N -a.e. c) Γ[H] = ε -γ[ε + H]dN = ij Φ ′ i (F )Φ ′ j (F ) ε -γ[ε + F i , ε + F j ]dN P-a.e.
As we see above, a peculiarity of the method comes from the fact that it involves, in the computation, successively mutually singular measures, such as measures P N = P(dω)N (ω, dx) and P × ν. This imposes some care in the applications.

Let us finally remark that the lent particle formula (2) has been encountered by some authors as valid on a space of test functions (see e.g. [START_REF] Privault | Equivalence of gradients on configuration spaces[END_REF] before Prop 8), let us emphasize that in our case, it is valid on the whole domain D, this is essential to apply the method to SDE's for example.

Applications

Sup of a stochastic process on [0, t].

The fact that the operation of taking the maximum is typically a Lipschitz operation makes it easy to apply the method.

Let Y be a centered Lévy process as in §2.2. Let K be a càdlàg process independent of Y . We put

H s = Y s + K s .
Proposition. If σ(R\{0}) = +∞ and if P[sup s t H s = H 0 ] = 0, the random variable sup s t H s has a density.

As a consequence, any Lévy process starting from zero and immediately entering R * + , whose Lévy measure dominates a measure σ satisfying Hamza condition and infinite, is such that sup s t X s has a density.

Let us recall that the Hamza condition (cf. Fukushima and al. [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF] Chapter 3) gives a necessary and sufficient condition of existence of a Dirichlet structure on L 2 (σ). Such a necessary and sufficient condition is only known in dimension one.

4.2

Regularity without Hörmander.

Consider the following SDE driven by a two dimensional Brownian motion

     X 1 t = z 1 + t 0 dB 1 s X 2 t = z 2 + t 0 2X 1 s dB 1 s + t 0 dB 2 s X 3 t = z 3 + t 0 X 1 s dB 1 s + 2 t 0 dB 2 s .
(

) 3 
This diffusion is degenerate and the Hörmander conditions are not fulfilled. The generator

is A = 1 2 (U 2 1 + U 2 2 ) + V and its adjoint A * = 1 2 (U 2 1 + U 2 2 ) -V with U 1 = ∂ ∂x 1 + 2x 1 ∂ ∂x 2 + x 1 ∂ ∂x 3 , U 2 = ∂ ∂x 2 + 2 ∂ ∂x 3 and V = -∂ ∂z 2 -1 2 ∂ ∂z 3 .
The Lie brackets of these vectors vanish and the Lie algebra is of dimension 2 : the diffusion remains on the quadric of equation 

     Z 1 t = z 1 + t 0 dY 1 s Z 2 t = z 2 + t 0 2Z 1 s -dY 1 s + t 0 dY 2 s Z 3 t = z 3 + t 0 Z 1 s -dY 1 s + 2 t 0 dY 2 s
under hypotheses on the Lévy measure such that the bottom space may be equipped with the carré du champ operator γ

[f ] = y 2 1 f ′2 1 + y 2 2 f ′2
2 satisfying the hypotheses yielding EID. Let us apply in full details the lent particle method.

For α t ε + (α,y 1 ,y 2 ) Z t = Z t +    y 1 2Y 1 α-y 1 + 2 t ]α y 1 dY 1 s + y 2 Y 1 α-y 1 + t ]α y 1 dY 1 s + 2y 2    = Z t +   y 1 2y 1 Y 1 t + y 2 y 1 Y 1 t + 2y 2   ,
where we have used

Y 1 α-= Y 1 α because ε + send into P × ν classes. That gives γ[ε + Z t ] =   y 2 1 y 2 1 2Y 1 t y 2 1 Y 1 t id y 2 1 4(Y 1 t ) 2 + y 2 2 y 2 1 2(Y 1 t ) 2 + 2y 2 2 id id y 2 1 (Y 1 t ) 2 + 4y 2 2   and ε -γ[ε + Z t ] =   y 2 1 y 2 1 2(Y 1 t -∆Y 1 α ) y 2 1 (Y 1 t -∆Y 1 α ) id y 2 1 4(Y 1 t -∆Y 1 α ) 2 + y 2 2 y 2 1 2(Y 1 t -∆Y 1 α ) 2 + 2y 2 2 id id y 2 1 (Y 1 t -∆Y 1 α ) 2 + 4y 2 2   ,
where id denotes the symmetry of the matrices. Hence

Γ[Z t ] = α t (∆Y 1 α ) 2   1 2(Y 1 t -∆Y 1 α ) (Y 1 t -∆Y 1 α ) id 4(Y 1 t -∆Y 1 α ) 2 2(Y 1 t -∆Y 1 α ) 2 id id (Y 1 t -∆Y 1 α ) 2   + (∆Y 2 α ) 2   0 0 0 0 1 2 0 2 4   .
With this formula we can reason, trying to find conditions for the determinant of Γ[Z] to be positive. For instance if the Lévy measures of Y 1 and Y 2 are infinite, it follows that Z t has a density as soon as

dim L      1 2(Y 1 t -∆Y 1 α ) (Y 1 t -∆Y 1 α )   ,   0 1 2   α ∈ JT    = 3.
But Y 1 possesses necessarily jumps of different sizes, hence Z t has a density on R 3 . It follows that the integro-differential operator

Ãf (z) =   f (z) -f   z 1 + y 1 z 2 + 2z 1 y 1 + y 2 z 3 + z 1 y 1 + 2y 2   -(f ′ 1 (z) f ′ 2 (z) f ′ 3 (z))   y 1 2z 1 y 1 + y 2 z 1 y 1 + 2y 2     σ(dy 1 dy 2 )
is hypoelliptic at order zero, in the sense that its semigroup P t has a density. No minoration is supposed on the growth of the Lévy measure near 0 as assumed by many authors.

This result implies that for any Lévy process Y satisfying the above hypotheses, even a subordinated one in the sense of Bochner, the process Z is never subordinated of the Markov process X solution of equation (3) (otherwise it would live on the same manifold as the initial diffusion).

Application to SDE's driven by a Poisson measure

The equation we study

We consider another probability space (Ω 2 , A 2 , P 2 ) on which an R n -valued semimartingale

Z = (Z 1 , • • • , Z n ) is defined, n ∈ N * .
We adopt the following assumption on the bracket of Z and on the total variation of its finite variation part. It is satisfied if both are dominated by the Lebesgue measure uniformly: Assumption on Z: There exists a positive constant C such that for any square integrable R n -valued predictable process h:

∀t 0, E[( t 0 h s dZ s ) 2 ] C 2 E[ t 0 |h s | 2 ds]. (4) 
We shall work on the product probability space: (Ω,

A, P) = (Ω 1 × Ω 2 , A 1 ⊗ A 2 , P 1 × P 2 ).
For simplicity, we fix a finite terminal time T > 0.

Let d ∈ N * , we consider the following SDE:

X t = x + t 0 X c(s, X s -, u) Ñ (ds, du) + t 0 σ(s, X s -)dZ s (5) 
where x ∈ R d , c : R + × R d × X → R d and σ : R + × R d → R d×n satisfy the set of hypotheses below denoted (R).

Hypotheses (R): 1. There exists η ∈ L 2 (X, ν) such that: a) for all t ∈ [0, T ] and u ∈ X, c(t, •, u) is differentiable with continuous derivative and 3. As a consequence of hypotheses 1. and 2. above, it is well known that equation ( 5) admits a unique solution X such that E[sup t∈[0,T ] |X t | 2 ] < +∞. We suppose that for all t ∈ [0, T ], the matrix (I + n j=1 D x σ •,j (t, X t -)∆Z j t ) is invertible and its inverse is bounded by a deterministic constant uniformly with respect to t ∈ [0, T ].

∀u ∈ X, sup t∈[0,T ],x∈R d |D x c(t, x, u)| η(u), b) ∀(t, u) ∈ [0, T ] × X, |c(t, 0, u)| η(u), c) for all t ∈ [0, T ] and x ∈ R d , c(t, x, •) ∈ d and sup t∈[0,T ],x∈R d γ[c(t, x, •)](u) η 2 (u),

Remark:

We have defined a Dirichlet structure (D, E) on L 2 (Ω 1 , P 1 ). Now, we work on the product space, Ω 1 × Ω 2 . Using natural notations, we consider from now on that (D, E) is a Dirichlet structure on L 2 (Ω, P). In fact, it is the product structure of (D, E) with the trivial one on L 2 (Ω 2 , P 2 ) (see [START_REF] Bouleau | Dirichlet Forms and Analysis on Wiener Space[END_REF] ). Of course, all the properties remain true. In other words, we only differentiate w.r.t. the Poisson noise and not w.r.t. the one introduced by Z.

Spaces of processes and functional calculus

We denote by P the predictable sigma-field on [0, T ] × Ω and we define the following sets of processes:

• H : the set of real valued processes (X t ) t∈[0,T ] , defined on (Ω, A, P), which belong to L 2 ([0, T ] × Ω).

• H P : the set of predictable processes in H.

• H D : the set of real valued processes (H t ) t∈[0,T ] , which belong to L 2 ([0, T ]; D) i.e. such that

H 2 H D = E[ T 0 |H t | 2 dt] + T 0 E(H t )dt < +∞.
• H D,P : the subvector space of predictable processes in H D .

• H D⊗d,P : the set of real valued processes H defined on [0, T ] × Ω × X which are predictable and belong to L 2 ([0, T ]; D ⊗ d) i.e. such that

H 2 H D⊗d,P = E[ T 0 X |H t | 2 ν(du)dt]+ T 0 X E(H t (•, u))ν(du)dt+E[ T 0 e(H t )dt] < +∞.
The main idea is to differentiate equation ( 5), to do that we need some functional calculus.

It is given by the next Proposition that we prove by approximation:

Proposition 2. Let H ∈ H D⊗d,P and G ∈ H n D,P , then:

1. The process

∀t ∈ [0, T ], X t = t 0 X H(s, w, u) Ñ (ds, du)
is a square integrable martingale which belongs to H D and such that the process X -= (X t -) t∈[0,T ] belongs to H D,P . The gradient operator satisfies for all t ∈ [0, T ]:

X ♯ t (w, ŵ) = t 0 X H ♯ (s, w, u, ŵ)d Ñ (ds, du)+ t 0 X×R H ♭ (s, w, u, r)N ⊙ρ(ds, du, dr). (6) 
2. The process

∀t ∈ [0, T ], Y t = t 0 G(s, w)dZ s is a square integrable semimartingale which belongs to H D , Y -= (Y t -) t∈[0,T ] belongs to H D,P and ∀t ∈ [0, T ], Y ♯ t (w, ŵ) = t 0 G ♯ (s, w, ŵ)dZ s . (7) 

Computation of the Carré du champ matrix of the solution

Applying the standard functional calculus related to Dirichlet forms, the previous Proposition and a Picard iteration argument, we obtain:

Proposition 3. The equation (5) admits a unique solution X in H d D . Moreover, the gradient of X satisfies:

X ♯ t = t 0 X D x c(s, X s-, u) • X ♯ s-Ñ (ds, du) + t 0 X×R c ♭ (s, X s-, u, r)N ⊙ ρ(ds, du, dr) + t 0 D x σ(s, X s-) • X ♯ s-dZ s .
Let us define the R d×d -valued processes U by

dU s = n j=1 D x σ .,j (s, X s-)dZ j s ,
and the derivative of the flow generated by X:

K t = I + t 0 X D x c(s, X s-, u)K s-Ñ (ds, du) + t 0 dU s K s-.
Proposition 4. Under our hypotheses, for all t 0, the matrix K t is invertible and its inverse Kt = (K t ) -1 satisfies:

Kt = I - t 0 X Ks-(I + D x c(s, X s-, u)) -1 D x c(s, X s-, u) Ñ (ds, du) - t 0 Ks-dU s + s t Ks-(∆U s ) 2 (I + ∆U s ) -1 + t 0 Ks d < U c , U c > s .
We are now able to calculate the carré du champ matrix. This is the aim of the next Theorem, to show how simple is the lent particle method we give a sketch of the proof.

Theorem 5. For all t ∈ [0, T ], Γ[X t ] = K t t 0 X Ks γ[c(s, X s-, •)] K * s N (ds, du)K * t . Proof. Let (α, u) ∈ [0, T ] × X. We put X (α,u) t = ε + (α,u) X t . X (α,u) t = x + α 0 X c(s, X (α,u) s -, u ′ ) Ñ (ds, du ′ ) + α 0 σ(s, X (α,u) s -)dZ s + c(α, X (α,u) α -, u) + ]α,t] X c(s, X (α,u) s -, u ′ ) Ñ (ds, du ′ ) + ]α,t] σ(s, X (α,u) s -)dZ s .
Let us remark that X (α,u) t = X t if t < α so that, taking the gradient with respect to the variable u, we obtain:

(X (α,u) t ) ♭ = (c(α, X (α,u) α -, u)) ♭ + ]α,t] X D x c(s, X (α,u) s -, u ′ ) • (X (α,u) s -) ♭ Ñ (ds, du ′ ) + ]α,t] D x σ(s, X (α,u) s -) • (X (α,u) s -) ♭ dZ s .
Let us now introduce the process K (α,u) t = ε + (α,u) (K t ) which satisfies the following SDE:

K (α,u) t = I + t 0 X D x c(s, X (α,u) s -, u ′ )K (α,u) s- Ñ (ds, du ′ ) + t 0 dU (α,u) s K (α,u) s- and its inverse K(α,u) t = (K (α,u) t
) -1 . Then, using the flow property, we have: ∀t 0, (X (α,u) t

) ♭ = K (α,u) t K(α,u) α (c(α, X α -, u)) ♭ .
Now, we calculate the carré du champ and then we take back the particle:

∀t 0, ε - (α,u) γ[(X (α,u) t )] = K t Kα γ[c(α, X α -, •)] K * α K * t .
Finally integrating with respect to N we get ∀t 0, Γ[X t ] = K t t 0 X

Ks γ[c(s, X s -, •)](u) K * s N (ds, du)K * t .

First application: the regular case

An immediate consequence of the previous Theorem is: Proposition 6. Assume that X is a topological space, that the intensity measure ds × ν of N is such that ν has an infinite mass near some point u 0 in X. If the matrix (s, y, u) → γ[c(s, y, •)](u) is continuous on a neighborhood of (0, x, u 0 ) and invertible at (0, x, u 0 ), then the solution X t of (5) has a density for all t ∈]0, T ].

Application to SDE's driven by a Lévy process

Let Y be a Lévy process with values in R d , independent of another variable X 0 . We consider the following equation

X t = X 0 + t 0 a(X s-, s) dY s , t 0
where a : R k × R + → R k×d is a given map.

Proposition 7. We assume that:

1. The Lévy measure, ν, of Y satisfies hypotheses of the example given in Section 2.4 with ν(O) = +∞ and ξ i,j (x) = x i δ i,j . Then we may choose the operator γ to be where η ∈ L 2 (ν).

γ[f ] = ψ(x) k(x) d i=1 x 2 i d i=1 (∂ i f ) 2 for f ∈ C ∞ 0 (R d ).
3. a is continuous with respect to the second variable at 0, and such that the matrix aa * (X 0 , 0) is invertible;

then for all t > 0 the law of X t is absolutely continuous w.r.t. the Lebesgue measure.

Proof. We just give an idea of the proof in the case d = 1:

Let us recall that γ[f ] = ψ(x) k(x) x 2 f ′2 (x).

We have the representation: Y t = t 0 R u Ñ (ds, du), so that

X t = X 0 + t 0 R
a(s, X s-)u Ñ (ds, du).

The lent particle method yields:

Γ[X t ] = K 2 t t 0 X

K2

s a 2 (s, X s-)γ[j](u)N (ds, du)

where j is the identity application: γ

[j](u) = ψ(u) k(u) u 2 . So Γ[X t ] = K 2 t t 0 X K2 s a 2 (s, X s-) ψ(u) k(u) u 2 N (ds, du) = K 2 t α<t K2 s a 2 (s, X s-) ψ(∆Y s ) k(∆Y s ) ∆Y 2 s ,
and it is easy to conclude.

Remarks: (i) We refer to [START_REF] Bouleau | Application of the lent particle method to Poisson driven SDE's[END_REF] for other examples and applications. (ii) Let us finally remark that as easily seen, one can iterate the gradient and so obtain criteria of regularity for the density of Poisson functionals such as solutions of SDE's, this is the object of a forthcoming paper.
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