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Abstract

The Dirichlet forms methods, in order to represent errors and their
propagation, are particularly powerful in infinite dimensional problems
such as models involving stochastic analysis encountered in finance or
physics, cf. [5]. Now, coming back to the finite dimensional case,
these methods give a new light on the very classical concept of ‘nu-
merical approximation’ and suggest changes in the habits. We show
that for some kinds of approximations only an Ito-like second order
differential calculus is relevant to describe and propagate numerical er-
rors through a mathematical model. We call these situations strongly
stochastic. The main point of this work is an argument based on the
arbitrary functions principle of Poincaré-Hopf showing that the errors
due to measurements with graduated instruments are strongly stochas-
tic. Eventually we discuss the consequences of this phenomenon on
the specification of an approximate numerical result.

1 The dichotomy of small errors.

Let us begin by showing that there are two kinds of small errors which do
not propagate according to the same differential calculus.

Suppose two applied mathematicians A and B attempt to perform stochas-
tic simulation rigourously. By means of the well known inversion and rejec-
tion methods, they are able to simulate any probability law provided that
they can pick up a real number in the unit interval [0, 1] randomly.
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For this, the researcher A chooses the method of drawing the binary digits
by heads or tails. The researcher B, instead, prefers using a Polya’s urn.

Let us compare the biases and the variances of the errors in the two
procedures.

In the case A, the real number

x = 0, a1a2a3 · · · =
∞∑

k=1

ak
2k

ak ∈ {0, 1}

is approximated by xn =
∑n

k=1
ak
2k
.

Denoting Fn the σ-field generated by a1, · · · , an, the bias of the error is

bn = E[(x− xn)|Fn] =

∞∑

k=n+1

1/2

2k
=

1

2n+1

and the variance of the error is

vn = E[(x− xn)
2|Fn]− (E[(x− xn)|Fn])

2 =
1

3

1

4n
− 1

4

1

4n
=

1

12

1

4n
.

For the case B, let us recall the principle of Polya’s urn : there is at the
beginning a white ball and a black ball in the urn and each time a ball is
drawn from the urn, it is put back into the urn together with an other ball
of the same colour.

After n drawings, the proportion Xn of white balls in the urn is given by

(n + 2)Xn = (n + 1)Xn−1 + 1{Un≤Xn−1}

where Un is uniformly distributed on [0, 1] independent of Fn−1 = σ(X0, . . . , Xn−1).
In other words

Xn = Xn−1 +
1

n+ 2
(1{Un≤Xn−1} −Xn−1).

Xn is a bounded martingale which converges a.s. and in Lp, p ∈ [1,∞[, to a
random variable X∞ uniformly distributed on [0, 1] as easily seen when the
initial configuration of the urn is one white ball and one black ball.

For the bias we have

bn = E[X∞ −Xn|Fn] = 0
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and for the variance
vn = E[(X∞ −Xn)

2|Fn]

we have E[vn] =
1
6n

+ o(1/n).
We see that in case A the variances are smaller than the biases, while in

case B the biases are smaller than the variances.
How will these errors propagate through the simulations of our two Monte

Carlo practioners ?
A Taylor expansion on a C3-function with bounded derivatives gives

f(X)− f(Xn) = (X −Xn)f
′(Xn) +1

2
(X −Xn)

2f ′′(Xn)
+1

6
(X −Xn)

3f ′′′(Xn + θ(X −Xn))

new bias = E[f(X∞)− f(Xn)|Fn] = bnf
′(Xn) +

1

2
(vn + b2n)f

′′(Xn) + o(vn)

new variance = E[(f(X∞)− f(Xn))
2|Fn]− (E[f(X∞)− f(Xn)|Fn])

2

= (vn − b2n)f
′2(Xn) + o(vn).

We can distinguish three cases
1) If the variance is negligible with respect to the bias, vn ≪ bn, (case of

researcher A), the dominant term for the bias is asymptotically the first one.
E[(f(X∞)− f(Xn))

2|Fn] is negligible with respect to E[f(X∞)− f(Xn)|Fn]
and the situation will be carried on. It is enough to use the formula

E[f(X∞)− f(Xn)|Fn] = bnf
′(Xn) + o(bn) (1)

2) If the variance is of the same order of magnitude as the bias, the
situation will persist. The propagation formulae are

E[f(X∞)− f(Xn)|Fn] = bnf
′(Xn) +

1
2
vnf

′′(Xn) + o(vn)
E[(f(X∞)− f(Xn))

2|Fn] = vnf
′2(Xn) + o(vn)

}
(2)

3) If the bias is negligible in comparison to the variance, bn ≪ vn, (case of
researcher B), the main term in the bias becomes 1

2
vnf

′′(Xn) and we fall in
the case 2) where biases and variances remain of the same order of magnitude.

We see that a first order differential calculus is relevant for the researcher
A. But instead, the researcher B (with Polya’s urn) must perform an error
calculus involving both biases and variances, and

- the error calculus on the variances is a first order differential calculus,
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- the error calculus on the biases is a second order differential calculus
and uses the calculus on variances.

The first case will be called the weakly stochastic case. Then the usual
differential calculus is enough to propagate errors and to assess the sensitivity
of the model outputs to data.

The second case will be called strongly stochastic. Then the propagation
of biases (which is important in non-linear models) needs an Ito-like differ-
ential calculus given by formulae (1.2).

Comment. In practice, generally, we do not control the nature of the errors.
In modelling, errors on the data are exogenous, we know few from where they
come. It is wise to think according to the second case, especially to take in
account the randomness of the errors through the non-linearities of the model.

Let us go deeper into the mathematical arguments by displaying the bias
operators and the variance operator (the Dirichlet form) associated with an
approximation.

2 The bias operators and the Dirichlet form

associated with an approximation.

When two random variables Y and Yn are close together, the asymptotic
behaviour of

E[(φ(Yn)− φ(Y ))χ(Y )]

and of
E[(φ(Yn)− φ(Y ))χ(Yn)]

where φ and χ are test functions, are generally different. As a consequence
several bias operators have to be distinguished (cf. [6]) :

Let Y be a random variable defined on (Ω,A,P) with values in a mea-
surable space (E,F) and let Yn be approximations also defined on (Ω,A,P)
with values in (E,F). We consider an algebra D of bounded functions from
E into R or C containing the constants and dense in L2(E,F ,PY ) and a
sequence αn of positive numbers. With D and (αn) we consider the four
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following assumptions defining the four bias operators

(H1)

{
∀ϕ ∈ D, there exists A[ϕ] ∈ L2(E,F ,PY ) s.t. ∀χ ∈ D
limn→∞ αnE[(ϕ(Yn)− ϕ(Y ))χ(Y )] = EY [A[ϕ]χ].

(H2)

{
∀ϕ ∈ D, there exists A[ϕ] ∈ L2(E,F ,PY ) s.t. ∀χ ∈ D
limn→∞ αnE[(ϕ(Y )− ϕ(Yn))χ(Yn)] = EY [A[ϕ]χ].

(H3)

{
∀ϕ ∈ D, there exists Ã[ϕ] ∈ L2(E,F ,PY ) s.t. ∀χ ∈ D
limn→∞ αnE[(ϕ(Yn)− ϕ(Y ))(χ(Yn)− χ(Y ))] = −2EY [Ã[ϕ]χ].

(H4)

{
∀ϕ ∈ D, there exists \A[ϕ] ∈ L2(E,F ,PY ) s.t. ∀χ ∈ D
limn→∞ αnE[(ϕ(Yn)− ϕ(Y ))(χ(Yn) + χ(Y ))] = 2EY [\A[ϕ]χ].

We first note that as soon as two of hypotheses (H1) (H2) (H3) (H4) are
fulfilled (with the same algebra D and the same sequence αn), the other two
follow thanks to the relations

Ã =
A+ A

2
\A =

A− A

2
.

When defined, the operator A which considers the asymptotic error from the
point of view of the limit model, will be called the theoretical bias operator.

The operator A which considers the asymptotic error from the point of
view of the approximating model will be called the practical bias operator.

Because of the property

< Ã[ϕ], χ >L2(PY )=< ϕ, Ã[χ] >L2(PY )

the operator Ã will be called the symmetric bias operator.
The operator \A which is often (see theorem 2.2 below) a first order oper-

ator will be called the singular bias operator.

Theorem 2.1 Under the hypothesis (H3),
a) the limit

Ẽ [ϕ, χ] = lim
n

αn
2
E[(ϕ(Yn)− ϕ(Y ))(χ(Yn)− χ(Y )] ϕ, χ ∈ D (3)

defines a closable positive bilinear form whose smallest closed extension is
denoted (E ,D).
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b) (E ,D) is a Dirichlet form (cf. [4])
c) (E ,D) admits a square field operator Γ satisfying ∀ϕ, χ ∈ D

Γ[ϕ] = Ã[ϕ2]− 2ϕÃ[ϕ] (4)

EY [Γ[ϕ]χ] = lim
n
αnE[(ϕ(Yn)− ϕ(Y ))2(χ(Yn) + χ(Y ))/2] (5)

d) (E ,D) is local if and only if ∀ϕ ∈ D

lim
n
αnE[(ϕ(Yn)− ϕ(Y ))4] = 0 (6)

this condition is equivalent to ∃λ > 2 limn αnE[|ϕ(Yn)− ϕ(Y )|λ] = 0.
e) If the form (E ,D) is local, then the principle of asymptotic error cal-

culus is valid on D̃ = {F (f1, . . . , fp) : fi ∈ D, F ∈ C1(Rp,R)} i.e.

limn αnE[(F (f1(Yn), . . . , fp(Yn))− F (f1(Y ), . . . , fp(Y )))
2]

= EY [
∑p

i,j=1F
′
i (f1, . . . , fp)F

′
j(f1, . . . , fp)Γ[fi, fj]].

The proof of this theorem is given in [6] Theorem 1, Remark 3 and Theorem
2. The point e) of the theorem is a commutativity of limits, it means that
the error on a function of Y may be directly obtained starting from the error
on Y by functional calculus.

An operator B from D into L2(PY ) will be said to be a first order operator
if it satisfies

B[ϕχ] = B[ϕ]χ+ ϕB[χ] ∀ϕ, χ ∈ D

Theorem 2.2 Under (H1) to (H4)
a) the theoretical variance limn αnE[(ϕ(Yn)−ϕ(Y ))2ψ(Y )] and the practi-

cal variance limn αnE[(ϕ(Yn)−ϕ(Y ))2ψ(Yn)] exist and we have ∀ϕ, χ, ψ ∈ D

limn αnE[(ϕ(Yn)− ϕ(Y ))(χ(Yn)− χ(Y ))ψ(Y )]
= EY [−A[ϕψ]χ + A[ψ]ϕχ− A[ϕ]χψ]

limn αnE[(ϕ(Yn)− ϕ(Y ))(χ(Yn)− χ(Y ))ψ(Yn)]
= EY [−A[ϕψ]χ + A[ψ]ϕχ− A[ϕ]χψ]

b) These two variances coincide if and only if \A is a first order operator,
and then are equal to EY [Γ[ϕ]ψ].
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The proof of this result is given in [6] Proposition 2.

Example: Typical formulae of finite dimensional error calculus.

Let us consider a triplet of real random variables (Y, Z, T ) and a real
random variable G independent of (Y, Z, T ) centered with variance one. We
are interested in the approximation Yε of Y given by

Yε = Y + εZ +
√
εTG. (7)

In the multidimensional case, Y is with values in Rp as Z, T is a p×q-matrix
and G is independent of (Y, Z, T ) with values in Rq, centered, square inte-
grable, such that E[GiGj] = δij .

Operator A.

Proposition 2.1 If Z and T are square integrable, if ϕ is C2 bounded with
bounded derivatives of first and second orders (ϕ ∈ C2

b ) and if χ is bounded,

1

ε
E[(ϕ(Yε)− ϕ(Y ))χ(Y )] → EY [A[ϕ]χ]

where A[ϕ](y) = E[Z|Y =y]ϕ′(y) + 1
2
E[T 2|Y =y]ϕ′′(y).

In the multidimensional case

A[ϕ](y) = E[Zt|Y =y]∇ϕ(y) + 1

2

∑

ij

E[(TT t)ij|Y =y]ϕ′′
ij(y).

Proof. Let us give the argument with the notation of the case q = p = 1.
The Taylor-Lagrange formula applied up to second order gives

1
ε
E[(ϕ(Yε)− ϕ(Y ))χ(Y )] = E[Zϕ′(Y )χ(Y )]

+1
2
E[(εZ2 + 2

√
εZTG+ T 2G2)∫ 1

0

∫ 1

0
ϕ′′(Y + ab(εZ +

√
εTG))2adadb χ(Y )]

(note that ZTG and T 2G2 ∈ L1 because of the independence) and this tends
by dominated Lebesgue theorem to E[Zϕ′(Y )χ(Y )] + 1

2
E[T 2ϕ′′(Y )χ(Y )]. �

Quadratic form and operator Ã.
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Proposition 2.2 If Z and T are square integrable, if ϕ and χ are C1
b

1

ε
E[(ϕ(Yε)− ϕ(Y )(χ(Yε)− χ(Y )] → E[T 2ϕ′(Y )χ′(Y )]

and in the multidimensional case

1

ε
E[(ϕ(Yε)− ϕ(Y )(χ(Yε)− χ(Y )] → E[(∇ϕ)t(Y )TT t∇χ(Y )].

Proof. The demonstration is similar with a first order expansion. �

In order to exhibit the operator Ã, we must examine the conditions of an inte-
gration by parts in the preceding limit. Let us put θij(y) = E[(TT t)ij|Y =y]
so that E[(∇ϕ)t(Y )TT t∇χ(Y )] = ∑

ij EY [ϕ
′
iθijχ

′
i].

Proposition 2.3 If Z and T are square integrable, if for i, j = 1, . . . , p
the measure θijPY on Rp possesses a partial derivative in the sense of dis-
tributions ∂j(θijPY ) which is a bounded measure absolutely continuous with
respect to PY , say ρijPY , then as soon as θij and ρij ∈ L2(PY ) the form

Ẽ [ϕ, χ] = 1
2

∑
ij EY [ϕ

′
iθijχ

′
j ] is closable on the algebra D = C2

b , hypotheses
(H1) to (H4) are fulfilled and

Ã[ϕ] =
1

2

∑

ij

θijϕ
′′
ij +

1

2

∑

ij

ρijϕ
′
j.

Proof. We have

∑

ij

∫
θijϕ

′
iχ

′
j dPY =

∑

ij

∫
θij(∂j(ϕ

′
iχ)− ϕ′′

ijχ)dPY

and the equality

∫
θij∂j(ϕ

′
iχ)dPY = −

∫
ϕ′
iχρijdPY

valid for ϕ, χ ∈ C∞
K extends, under the assumptions of the statement, to

ϕ, χ ∈ C2
b . This yields

1
2

∑
ij E[ϕ

′
iθijχ

′
j] = −1

2

∫
(
∑

ij θijϕ
′′
ij +

∑
ij ρijϕ

′
j)χ dPY .

�
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The operator Ã depends only on T , not on Z. We obtain A by difference
:

A[ϕ] =
1

2

∑

ij

θijϕ
′′
ij +

∑

j

(
∑

i

ρij − zj)ϕ
′
j

where zj(y) = E[Zj |Y = y]. At last, \A is first order : \A[ϕ] =
∑

j(zj −
1
2

∑
i ρij)ϕ

′
j .

For infinite dimensional examples see [6].

We are now able to make more precise the dichotomy of §1: we shall
say that the approximation is weakly stochastic if hypotheses H1 to H4 are
fulfilled and Ã = 0 and hence \A = A = −A.

And the approximation will be said strongly stochastic if hypotheses H1
to H4 are fulfilled and Ã 6= 0 hence the Dirichlet form (cf. Thm 2.1) is not
nought.

3 The usual norm-based numerical analysis

revisited.

For boundary value problems or optimization problems etc. the resolution
by approximation is often displayed in numerical analysis in the following
manner :

The data are represented by a function f in some functional space F , the
parameters of the problem are represented by a point λ in a suitable space
Λ and the mathematical solution of the problem writes

g = Φ(f, λ).

The solution belongs to the space G when f ∈ F and λ ∈ Λ. Then, the
analysis of the functional Φ yields norm estimates of the form :

‖fn − f‖F ≤ α
‖λn − λ‖Λ ≤ β

}
=⇒ ‖gn − g‖G ≤ ξ(α, β, n) (8)

for some function ξ, which assures the convergence of the resolution proce-
dure.

It has to be emphasized that such a reasoning supposes that the premises
of (3.1) be fullfilled. The error f − fn is thought deterministically. The
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possible randomness of the error and the behaviour of its bias through the
functional Φ are not taken in account in this approach.

Remark. a) When the problem is purely mathematical, the above difficulty
may, most often, be considered of secondary importance. Indeed, if the
function f and parameters λ are random, we may consider that the problem
is solved as soon as we are able to compute the law of the output g or to have
an approximation of it (if there were also randomness in the functional Φ, our
aim would be to get the joint law of (f, λ, g), we move away this case which
is similar for simplicity). Now for this, it is enough that an approximation
fn and λn of f and λ yields an approximation gn of g in probability. In other
words, estimates of the form (3.1) in probability are sufficient to solve the
problem:

∀δ > 0, ∃ε > 0, s.t.
P{‖fn − f‖F ≤ α; ‖λn − λ‖Λ ≤ β} ≥ 1− ε

⇒ P{‖gn − g‖G ≤ ξ(α, β, n)} ≥ 1− δ



 (9)

then the law of g may be approximated by Monte Carlo methods, because
we are allowed to choose the sample f and parameter λ as we want provided
they follow the right probability law.

This can be said otherwise : from a mathematical point of view, most
often, the sensitivity of g to the input f may be thought globally. Estimate
like (3.2) will be usually obtained by inequalities similar to (3.1) but in the
sense of spaces like Lp(Ω,A,P;F ), Lp(Ω,A,P; Λ) and Lp(Ω,A,P;G).

b) But different is the situation where f comes from an experiment.
For example the temperatures, the wind velocities, etc. in a meteorologi-
cal model. In such cases, the data f is imposed, known with some precision,
and the question whether the errors are weakly or strongly stochastic is rel-
evant. In the first case the sensitivity analysis reduces to a derivation (in
a suitable sense between suitable spaces), in the second case a second order
Ito-like calculus is compulsory.

The importance of this discussion is reinforced by the results of the next
section.
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4 The errors due to the graduation of mea-

suring instruments are strongly stochastic.

Suppose Y is a real quantity measured with a graduated instrument. Let Yn
be the approximation of Y to the nearest graduation, i.e.

Yn =
[nY ]

n
+

1

2n

([x] denotes the integral part of x, and {x} = x− [x] the fractional part).

�
�
�
�
�
�

�
�
�
�
�

q

q

q

q

q

Yn

O
Y

q

@@
q

@@
q

@@
q

@@
q

@@

ξn(x)

O
x

Let us put Yn = Y +ξn(Y ) where the function ξn(x) =
[nx]
n

− 1
2n
−x is periodic

with period 1
n
and may be written ξn(x) =

1
n
θ(nx) with θ(x) = 1

2
− {x}. Let

PY be the law of Y , we have

Theorem 4.1 a) If PY has a density,

(n(Yn − Y ), Y )
d

=⇒ (V, Y ) (10)

where V is uniform on (−1
2
, 1
2
) independent of Y , and for ϕ ∈ C1 ∩ Lip

n2
E[(ϕ(Yn)− ϕ(Y ))2] → 1

12
EY [ϕ

′2]. (11)

b) If PY has a density satisfying one of the following conditions :
i) the derivative in distribution sense ∂PY is a measure ≪ PY of the form

ρPY with ρ ∈ L2(PY ),
ii) PY = h.1G

dy

|G|
with G open set, h ∈ H1 ∩ L∞(G), h > 0,

then hypotheses H1 to H4 are fulfilled on the algebra D = C2
b of bounded
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functions with bounded derivatives up to order 2 with αn = n2 and

A[ϕ] = 1
24
ϕ′′

Ã[ϕ] = 1
24
ϕ′′ + 1

24
ρϕ′ case i)

Ã[ϕ] = 1
24
ϕ′′ + 1

24
hh′ϕ′ case ii).

Here
d

=⇒ denotes the weak convergence, i.e. the convergence of probability
measures on continuous bounded functions, EY is the expectation under PY .
Proof. a) It is equivalent to study the weak convergence of (1

2
+ n(Yn −

Y ), Y ) = (1
2
+ θ(nY ), Y ). Since 1

2
+ θ takes its values in the unit interval, it

is enough to study the convergence on the characters of the group T1 × R,
i.e.

E[e2iπk(
1

2
+θ(nY ))eiuY ] = E[e−2iπknY eiuY ] = ΨY (u− 2πkn)

where ΨY is the characteristic function of Y . This tends to Ψ(u)1{k 6=0} by
the Riemann-Lebesgue lemma since PY has a density.

If ϕ ∈ C1 ∩ Lip, the relation ϕ(Yn)− ϕ(Y ) = (Yn − Y )
∫ 1

0
ϕ′(Y + α(Yn −

Y ))dα gives

n2
E[(ϕ(Yn)− ϕ(Y ))2] = E[θ2(nY )ϕ′2(Y )] + o(1)

and E[θ2(nY )ϕ′2(Y )] →
∫ 1

2

− 1

2

θ2(t)dtE[ϕ′2(Y )] what proves the second asser-

tion.
b) We postpone the proof of b) after theorem 4.2. �

Comments. 1) The result a) is the classical arbitrary functions principle (cf.
[1] [2]), it would be still valid if PY were a Rajchman measure (see [8]). For
extensions of the arbitrary functions principle to infinite dimensional cases
see [7] and [8]. A summary of the history of this principle is given in [8]
section I.3.

2) The b) of the theorem shows that when the law PY is smooth, the
approximation Yn of Y to the nearest graduation is strongly stochastic.

The results of theorem 4.1 extend to the finite dimensional case: Let
us suppose Y is Rd-valued, measured with an equidistant graduation corre-
sponding to an orthonormal rectilinear coordinate system, and estimated to
the nearest graduation component by component. Thus we put

Yn = Y +
1

n
θ(nY )

12



with θ(y) = (1
2
− {y1}, · · · , 12 − {yd}).

Theorem 4.2 a) If PY has a density and if X is Rm-valued

(X, n(Yn − Y ))
d

=⇒ (X, (V1, . . . , Vd)) (12)

where the Vi’s are i.i.d. uniformly distributed on (−1
2
, 1
2
) independent of X.

For all ϕ ∈ C1 ∩ Lip(Rd)

(X, n(ϕ(Yn)− ϕ(Y )))
d

=⇒ (X,

d∑

i=1

Viϕ
′
i(Y )) (13)

n2
E[(ϕ(Yn)− ϕ(Y ))2|Y =y] → 1

12

d∑

i=1

ϕ′2
i (y) in L1(PY ) (14)

in particular

n2
E[(ϕ(Yn)− ϕ(Y ))2] → EY [

1

12

d∑

i=1

ϕ′2
i (y)]. (15)

b) If ϕ is of class C2, the conditional expectation n2E[ϕ(Yn)−ϕ(Y )|Y = y]
possesses a version n2(ϕ(y + 1

n
θ(ny))− ϕ(y)) independent of the probability

measure P which converges in the sense of distributions to the function 1
24
△ϕ.

c) If PY ≪ dy on Rd, ∀ψ ∈ L1([0, 1])

(X,ψ(n(Yn − Y )))
d

=⇒ (X,ψ(V )). (16)

d) We consider the bias operators on the algebra C2
b of bounded functions

with bounded derivatives up to order 2 with the sequence αn = n2. If PY has
a density and if one of the following condition is fulfilled

i) ∀i = 1, . . . , d the partial derivative ∂iPY in the sense of distributions is
a measure ≪ PY of the form ρiPY with ρi ∈ L2(PY )

ii) PY = h1G
dy

|G|
with G open set, h ∈ H1 ∩ L∞(G), h > 0

then hypotheses (H1) to (H4) are satisfied and

A[ϕ] = 1
24

△ ϕ

Ã[ϕ] = 1
24

△ ϕ+ 1
24

∑
ϕ′
iρi case i)

Ã[ϕ] = 1
24

△ ϕ+ 1
24

1
h

∑
h′iϕ

′
i case ii)

Γ[ϕ] = 1
12

∑
ϕ′2
i .
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Proof. The argument for relation (4.3) is similar to one dimensional case.
The relation (4.4) comes from the Taylor expansion ϕ(Yn)− ϕ(Y ) =

=
∑d

i=1(Yn,i − Yi)
∫ 1

0
ϕ′
i(Yn,1, . . . , Yn,i−1, Yi + t(Yn,i − Yi), Yi+1, . . . , Yd) dt

and the convergence

(X,
∑

i

θ(nYi)ϕ
′
i(Y ))

d
=⇒ (X,

∑

i

ϕ′
i(Y )Vi)

thanks to (4.3) and the following approximation in L1

E

∣∣∣∣∣
∑

i

θ(nYi)ϕ
′
i(Y )−

∑

i

θ(nYi)

∫ 1

0

ϕ′
i(. . . , Yi + t(Yn,i − Yi), . . .)dt

∣∣∣∣∣ → 0.

To prove the formulae (4.5) and (4.6) let us remark that

n2E[(ϕ(Yn)− ϕ(Y )2|Y = y] =

= E




∣∣∣∣∣
∑

i

θ(nYi)

∫ 1

0

ϕ′
i(. . . , Yi + t(Yn,i − Yi), . . .)dt

∣∣∣∣∣

2

|Y = y





=

∣∣∣∣∣
∑

i

θ(nyi)

∫ 1

0

ϕ′
i(y1 +

1

n
θ(ny1), . . . , yi + t

1

n
θ(nyi), . . .)dt

∣∣∣∣∣

2

PY − a.s.

each term (θ(nyi)
∫ 1

0
ϕ′
i(. . .)dt)

2 converges to
∫
θ2ϕ′2

i (y) = 1
12
ϕ′2
i in L1 and

each term θ(nyi)θ(nyj)
∫ 1

0
. . .

∫ 1

0
. . . goes to zero in L1 what proves the a) of

the statement.
The point b) is obtained following the same lines with a Taylor expansion

up to second order and an integration by part thanks to the fact that ϕ is
now supposed to be C2.

In order to prove c) let us suppose first that PY = 1[0,1]d.dy. Considering
a sequence of functions ψk ∈ Cb tending to ψ in L1 we have the bound

|E[ei<u,X>eivψ(θ(nY ))]− E[ei<u,X>eivψk(θ(nY ))]|
≤ |v|

∫
|ψ(θ(ny))− ψk(θ(ny))|dy

= |v|
∑n−1

p1=0 · · ·
∫ p1+1

p1
· · · |ψ(θ(ny1) . . .)− ψk(θ(ny1) . . .)|dy1 . . . dyd

= |v|
∑

· · ·
∑∫

· · ·
∫
|ψ(θ(x1), . . .)− ψk(θ(x1), . . .)|dx1n · · · dxd

n

= |v|‖ψ − ψk‖L1.
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And this yields (4.7) in this case. Now if PY ≪ dy then P{Y } ≪ dy on [0, 1]d

and the weak convergence under dy on [0, 1]d implies the weak convergence
under P{Y } what yields the result.

In d) the point i) is proved by the approach already used in [6] consist-
ing of proving that hypothesis (H3) is fulfilled by displaying the operator

Ã thanks to an integration by parts. The point ii) is an application of a
Girsanov theorem for Dirichlet forms (cf. [8]). �

5 Conclusion.

The question of the specification of an approximate numerical result may be
made more precise : it is a description of the error on the inputs in such a way
that it is possible (in smooth cases) to obtain the same kind of description
on the output.

• To give the result with an interval for the error is a specification. But
it is unsatisfactory for several reasons :

(i) the law of the error may have a non compact support, or a support
not decreasing to a point (cf. Polya’s urn),

(ii) with such a description we can manage neither the variances nor the
biases.

• To give the result with an interval and a probability that the error be
inside this interval is also a specification. It is a triplet (xn, α, ε) where xn is
the proposed result, with the condition

P{|x− xn| < α} ≥ 1− ε.

As already discussed, such a specification may be used when we are only
concerned by the law of the output. If the probability P{|x − xn| < α} is
known for every α, this gives the knowledge of ‖x−xn‖2L2(P), but the critique

(ii) still holds.
• The Dirichlet theoretical specification used in our argumentation deals

with the following mathematical objects :
. PY the law of the quantity to be approximated,
. the sequence αn giving the order of magnitude,
. the algebra D,
. A, A the theoretical and practical bias operators,

15



. Γ the square field operator of the associated Dirichlet form.
This specification seems to be too sophisticated to be used by engineers

in usual cases, and the question remains to simplify it, preserving the main
ideas.

Here we will just give a comment on this question in the finite dimensional
case Y = Φ(X) with Φ regular from Rp into Rq. If the input is measured
with a graduated instrument, the square field operator on the input Γin is
yielded by the size of the graduation and do not depend on the probability
law of the input provided that this law be regular, by the arbitrary functions
principle. A natural hypothesis is to suppose that the law of the input is
uniform in a neighbourhood of the numerical data. Then (theorem 4.2 d))
the approximation of the input satisfies

Ain = Ain = Ãin (=
1

12
∆)

and this equality will be transported to the output

Aout = Aout = Ãout

(see definitions H1 to H3). The generator Ãout and the square field operator
Γout will be given by the image of the input Dirichlet structure by the map
Φ (cf. [3] Chap V, [5] Chap IV). The formulae are

(Γout[u])(y) = E[Γin[u ◦ Φ](X)|Y = y]

(Ãout[u])(y) = E[Ãin[u ◦ Φ](X)|Y = y]

}
(17)

where Γin[u ◦ Φ] and Ãin[u ◦ Φ] are obtained by the functional calculus in
Dirichlet structures (cf. [3] Chap I section 6) with natural notation this
writes

Γin[u ◦ Φ] = (∇u)t◦ Φ Γin[Φ] (∇u)◦ Φ
Ãin[u◦ Φ] = (∇u)t◦ Φ Ãin[Φ] +

1
2

∑
ij ∂

2
iju Γin[Φi,Φj ]

}
(18)

We see that, in order to obtain the coefficients of the bias differential operator
Ãout, by formulae (5.2) we have to compute Γin[Φi,Φj ] and Ãin[Φ] which
involves the Jacobian and the Hessian matrices of the map Φ and then by
formulae (5.1) to average in X on the level manifolds of Φ.

In conclusion, we have attempted to convince the reader that errors have
to be thought in terms of second order differential operators. In order that
this language be convenient for practical engineering use, more simplicity has
to be looked for, taking in account the specific form of the different problems.
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