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Improving Monte Carlo simulations by Dirichlet forms

Nicolas Bouleau

—

Abstract

Equipping the probability space with a local Dirichlet form with square field operator Γ
and generator A allows to improve Monte Carlo simulations of expectations and densities
as soon as we are able to simulate a random variable X together with Γ[X] and A[X]. We
give examples on the Wiener space, on the Poisson space and on the Monte Carlo space.
When X is real-valued we give an explicit formula yielding the density at the speed of the
law of large numbers.
Résumé

Nous montrons que, dans les situations où l’espace de probabilité est équipé d’une
forme de Dirichlet locale avec carré du champ Γ et générateur A, la possibilité de simuler
une variable aléatoire X ainsi que Γ[X] et A[X] permet d’accélérer le calcul de l’espérance
de X et de sa densité. Nous donnons des exemples dans les cas de l’espace de Wiener, de
l’espace de Poisson et de l’espace de Monte Carlo. Lorsque X est à valeurs réelles nous
donnons une formule explicite permettant d’obtenir la densité à la vitesse de la loi des
grands nombres. Pour citer cet article : N. Bouleau, C. R. Acad. Sci. Paris, Ser. I ...
(2005).

1 Introduction

The efficiency of Dirichlet forms is known in order to obtain existence of densities under
weak hypotheses (cf [3]). We show here that they are still usefull for the computation
of such densities. Our framework is an error structure (Ω,A, IP, ID,Γ), i.e. a probability
space equipped with a local Dirichlet form (E , ID) admitting a square field operator Γ (cf
[2],[3]). The associated L2-generator is denoted (A,DA).

We consider a random variable X ∈ DA such that X, Γ[X] and A[X] are simulatable.

Example 1. Wiener space.
Let us consider a stochastic differential equation (sde) defined on the Wiener space

equipped with the Ornstein-Uhlenbeck error structure (cf [2],[3])

Xt = x0 +

∫ t

0
σ(Xs, s)dBs +

∫ t

0
r(Xs, s)ds

By the functional calculus for the operators Γ and A, if the coefficients are smooth, the
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triplet (Xt,Γ[Xt], A[Xt]) is a diffusion, solution to the equation





Xt

Γ[Xt]
A[Xt]



 =





x0
0
0



+

∫ t

0





σ(Xs, s) 0 0
0 2σ′

x(Xs, s) 0
−1

2σ(Xs, s)
1
2σ

′′
x2(Xs, s) σ′

x(Xs, s)









1
Γ[Xs]
A[Xs]



 dBs

+

∫ t

0





r(Xs, s) 0 0
σ2(Xs, s) 2r′x(Xs, s) + σ′2

x (Xs, s) 0
0 1

2r
′′
x2(Xs, s) r′x(Xs, s)









1
Γ[Xs]
A[Xs]



 ds

Denoting Yt the column vector (Xt,Γ[Xt], A[Xt]) this equation writes Yt = Y0+
∫ t
0 a(Ys, s)dBs+

∫ t
0 b(Ys, s)ds and applying the Euler scheme with mesh 1

n on [0,T] : Y n
t = Y0+

∫ t
0 a(Y

n
[ns]
n

,
[ns]
n )dBs+

∫ t
0 b(Y

n
[ns]
n

,
[ns]
n )ds. yields a process Y n

t = (Xn
t , (Γ[X])nt , (A[X])nt )

t for which it is easy to ver-

ify that Γ[Xn
t ] = (Γ[X])nt and A[Xn

t ] = (A[X])nt .
By known results (cf [1] [4] [5]) in order to compute the density of XT , we may approx-

imate it by the solution Xn
T of the Euler scheme. Thus, we have then to simulate Xn

T in a
situation where we are also able to simulate Γ[Xn

T ] and A[Xn
T ].

Example 2. Poisson space.
Let (IRd,B(IRd), µ,d, γ) be an error structure on IRd, (a,Da) its generator. Let N be

a Poisson point process defined on (Ω,A, IP) with state space IRd and intensity measure
µ. (Ω,A, IP) may be equipped with a so-called “white" error structure (Ω,A, IP, ID,Γ) (cf
[2]) with the following properties : if h ∈ Da then N(h) ∈ DA, Γ[N(h)] = N(γ[h]) and
A[N(h)] = N(a[h]).

In order to simulate N(ξ) we have only to draw a finite (poissonian) number of i.i.d.
random variables with law µ so that we are indeed in a situation where N(h), Γ[N(h)],
and A[N(h)] are simulatable.

Example 3. Monte Carlo space.
Let X = F (U0, U1, . . . , Um, . . . ;V0, V1, . . . , Vn, . . .) be a random variable defined on the

space
([0, 1]IN,B([0, 1]IN), dxIN)× ([0, 1]IN ,B([0, 1]IN), dxIN) where the Ui are the coordinates of the
first factor with respect to which X is supposed to be regular, Vj the ones of the second
factor with respect to which X is supposed to be irregular or discontinuous (rejection
method, etc.).

Let us put on the Ui the following error structure

([0, 1]IN,B([0, 1]IN), dxIN, ID,Γ) = ([0, 1],B([0, 1]), dx,d, γ)IN

where (d, γ) is the closure of the operator γ[u](x) = x2(1− x)2u′2(x) for u ∈ C1([0, 1]).
Then under natural regularity assumptions, we have Γ[X] =

∑∞
i=0 F

′2
i U2

i (1−Ui)
2. and

A[X] =
∞
∑

i=0

(
1

2
F ′′
iiU

2
i (1− Ui)

2 + F ′
iUi(1− Ui)(1− 2Ui))

so that X, Γ[X] and A[X] are simulatable.
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2 Diminishing the bias

Let (Ω,A, IP, ID,Γ) be an error structure. For X ∈ (DA)d, var[X] denotes the covariance
matrix of X, A[X] the column vector with components (A[X1], . . . , A[Xd]), Γ[X] is the

matrix Γ[Xi,Xj ] and
√

Γ[X] denotes the positive symmetric square root of Γ[X].

We follow the idea that the random variable X + εA[X] +
√
ε
√

Γ[X]G where G is an

exogeneous independent reduced Gaussian variable, has almost the same law as X. Start-
ing from the fundamental relation of the functional calculus on A, an integration by parts
argument gives the following lemma.

Lemma 2.1 Let X ∈ (DA)d. we suppose that X possesses a conditional density η(x, γ, a)
given Γ[X]=γ et A[X]=a such that x 7→ η(x, γ, a) be C2 with bounded derivatives. Then

∀x ∈ IRd

IE[−(A[X])t∇xη(x,Γ[X], A[X]) +
1

2
trace

(

Γ[X].Hessxη
)

(x,Γ[X], A[X])] = 0.

Theorem 2.2 Let X be as in the preceding lemma, the conditional density η(x, γ, a) being
C3 bounded with bounded derivatives. When ε → 0, the quantity

1

ε2

(

IE[g(x−X − εA[X], εΓ[X])] − f(x)
)

has a finite limit equal to

1

2
IE[(A[X])t(Hessxη)(x,Γ[X], A[X])A[X] −

d
∑

i,j,k=1

A[Xi]Γ[Xj ,Xk]η
′′′
xixjxk

(x,Γ[X], A[X])].

Proof. If we write IE[g(x−X−εA[X], εΓ[X])] =
∫

µ(dγ, da)
∫

g(x−y−εa, εγ)η(y, γ, a)dy

=
∫

µ(dγ, da)IEη(x−εa−√
ε
√
γG, γ, a) where G is an IRd-valued reduced Gaussian variable,

and if we expand with respect to
√
ε and take the expectation, terms in

√
ε and ε

√
ε vanish

because G and G3 are centered and the term in ε vanishes also thanks to the lemma. This
gives the result.

About the variance, we obtain

Proposition 2.3 Let X satisfying the assumptions of the lemma and such that (detΓ[X])−
1
2 ∈

L1, then

lim
ε→0

εd/2IEg2(x−X−εA[X], εΓ[X]) = lim
ε→0

εd/2varg(x−X−εA[X], εΓ[X]) = IE





η(x,Γ[X], A[X])

(4π)d/2
√

detΓ[X]



 .

The quantity IEg(x−X−εA[X], εΓ[X]) is obtained by simulation with the law of large

numbers, so that the approximation f̂ of the density f of X is

f̂(x) =
1

N

N
∑

n=1

g(x−Xn − ε(A[X])n, ε(Γ[X])n)

where the indices n denote independent drawings. The preceding results show that, with
respect to the usual kernel method, the speed, in the sense of the L2-norm, is the same as
if the dimension was divided by 2.

3



3 Direct formulae

In the case where X is real-valued, if in addition to X, A[X], Γ[X] we are able to simulate
Γ[X, 1

X ], it is possible to obtain the dentity of X at the speed of the law of large numbers
thanks to the following formulae :

Theorem 3.1 a) If X ∈ DA with Γ[X] ∈ ID and Γ[X] > 0 a.s. then X has a density f

which possesses an l.s.c. version f̃ given by

f̃(x) = lim
ε↓0

↑ 1

2
IE

(

sign(x−X)(Γ[X,
1

ε+ Γ[X]
] +

2A[X]

ε+ Γ[X]
)

)

.

b) If in addition 1
Γ[x] ∈ ID, then X has a density f which is absolutely continuous and given

by

f(x) =
1

2
IE

(

sign(x−X)(Γ[X,
1

Γ[X]
] +

2A[X]

Γ[X]
)

)

.

The proof is based on the relation

IE[ϕ′′(X)
Γ[X]

ε + Γ[X]
] = −IE[ϕ′(X)(Γ[X,

1

ε+ Γ[X]
] +

2A[X]

ε+ Γ[X]
)].

valid for any C2-function ϕ with bounded derivatives which comes from the functional
calculus using the general relation E [u, v] = − < A[u], v > ∀u ∈ DA ∀v ∈ ID, and then
applying it with ϕ =

√

λ2 + (y − x)2 in order to get the monotone convergence result.

Under the hypotheses of theorem 3.1, as soon as G ∈ ID∩L∞, there are similar formulae
for conditional expectations IE[G|X = x] :

f(x)IE[G|X = x] =
1

2
IE

(

sign(x−X)(Γ[X,
G

Γ[X]
] +

2GA[X]

Γ[X]
)

)

.

Let us finally remark that in these formulae, the factor on the right of sign(x−X) is centered
and a variance optimisation may be performed thanks to an arbitrary deterministic function
as done in [4] where direct formulae similar to those of section 3 are given in the case of
the Wiener space involving Skorokhod integrals instead of Dirichlet forms.

References

[1] Bally V., Talay D. “The law of the Euler scheme for stochastic differential equations
: II. Convergence rate of the density", Monte Carlo Methods and Appl. vol 104, No1,
43-80 (1996)

[2] Bouleau N. Error Calculus for Finance ansd Physics, the Language of Dirichlet
Forms, De Gruyter, 2003.

[3] Bouleau N., Hirsch F. Dirichlet Forms and Analysis on Wiener Space, De Gruyter,
1991.

4



[4] Kohatsu-Higa A., Pettersson R. “Variance reduction methods for simulation of
densities on Wiener space", SIAM J. Numer. Anal. Vol 40, No2, 431-450, (2002)

[5] Malliavin P., Thalmaier A. “Numerical error for SDE: Asymptotic expansion and
hyperdistributions", C. R. Acad. Sci. Paris ser. I 336 (2003) 851-856

5


