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Abstract

I examine a continuous-time intertemporal consumption and portfolio choice

problem under ambiguity, where expected returns of a risky asset follow a hid-

den Markov chain. Investors with Chen and Epstein’s (2002) recursive multiple

priors utility possess a set of priors for unobservable investment opportunities.

The optimal consumption and portfolio policies are explicitly characterized in

terms of the Malliavin derivatives and stochastic integrals. When the model

is calibrated to U.S. stock market data, I find that continuous Bayesian revi-

sions under incomplete information generate ambiguity-driven hedging demands

that mitigate intertemporal hedging demands. In addition, ambiguity aversion

magnifies the importance of hedging demands in the optimal portfolio policies.

Out-of-sample experiments demonstrate the economic importance of accounting

for ambiguity.
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1 Introduction

Since the seminal work of Merton (1971), a number of papers have examined dynamic portfolio

choice when investment opportunities are time varying (e.g., Campbell and Viceira, 1999; Kim

and Omberg, 1996; Schroder and Skiadas, 1999, 2003). Assuming fully observable investment op-

portunities, this bulk of literature finds that the intertemporal hedging demand, which arises due

to stochastic variation in investment opportunities, is important in portfolio decisions. However,

in reality, investment opportunities are partially observable as moments of probability distribu-

tions of investment opportunities are often unobservable and must be estimated from observed

market signals. Dothan and Feldman (1986) and Detemple (1986) were the first to study asset

prices under incomplete information in general equilibrium, followed by David (1997), Veronesi

(1999), Ai (2009), among others.1 Other papers, to name a few, Gennotte (1986), Brennan (1998),

Lakner (1998) and Honda (2003), analyze dynamic portfolio choice under incomplete information.

Feldman (2007) provides an elaborate review of this literature and related discussions. Recently,

Bjök et al. (2010) obtain explicit representations of the optimal wealth and investment processes

for a wide range of partially observable investment opportunity sets. This growing body of liter-

ature employs recursive-filtering methods to estimate unobservable moments of distributions of

asset returns based on observed asset prices. The stochastic processes describing the dynamics

of the estimated moments are then treated as perfectly known and optimal consumption and

portfolio policies can be derived using techniques for solving complete information economies.

All these papers assume that investors have complete confidence in the probability law governing

the evolution of the estimated moments with no concerns regarding model uncertainty, which will

be relaxed in this paper. The importance of model uncertainty (or ambiguity) has been largely

recognized in both the asset pricing literature (e.g., Anderson et al., 2003; Chen and Epstein,

2002; Gagliardini et al., 2008; Hansen and Sargent, 2001; Leippold et al., 2008; Trojani and

Vanini, 2004) and the portfolio choice literature (e.g., Campanale, 2009; Liu, 2010; Maenhout,

2004,2006; Uppal and Wang, 2003).

My aim in this paper is to examine the effects of ambiguity on intertemporal consumption and

portfolio decisions in an incomplete information economy.2 To this end, I follow Honda (2003)
1 David (1997) investigates unobservable and regime switching investment opportunities in continuous time.

Lundtofte (2008) examines expected life-time utility and hedging demands when endowments and their expected
growth rate are imperfectly correlated.

2 Under incomplete information, Cagetti et al. (2002) use the robust control approach and a hidden Markov model
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and postulate that expected returns of a risky asset are unobservable and follow a hidden Markov

chain. For the sake of analytical convenience, I assume that the hidden Markov chain has two

different regimes.3 Investors update beliefs about the unobservable state according to the Bayes

rule. Different from the literature assuming expected utility, I employ Chen and Epstein’s (2002)

recursive multiple priors utility (hereafter RMPU) to account for ambiguity.4 The present model

therefore nests the expected utility model of Honda (2003) as a special case where there is no

ambiguity. Ambiguity and ambiguity aversion are concepts used to describe a decision maker who

is uncertain over which probability law describes the dynamics of state variables and is also averse

to such uncertainty. In the present model, investors with RMPU endogenously choose the worst-

case prior among a prescribed set of different priors inducing different posteriors. Investors take

into account not only incomplete information risk resulting from time-varying precision of beliefs

but also ambiguity about the probability law governing the dynamics of beliefs.5 In contrast to

the i.i.d. case, the effect of ambiguity varies over time as investors engage in continuous Bayesian

revisions under incomplete information. This way of modeling ambiguity builds on the work

of Miao (2009) where intertemporal consumption and portfolio decisions are examined without

considering specific investment opportunity sets.

I use the Malliavin calculus technique and Clark-Ocone formula to explicitly characterize the

optimal consumption and portfolio policies in terms of the Malliavin derivatives and stochastic

integrals. My solutions are based on the martingale method of Cox and Huang (1989).6 I cal-

ibrate the model to historical U.S. stock market data. Numerical calculations of the optimal

portfolios are implemented through the Monte Carlo Malliavin derivative (MCMD) method de-

veloped by Detemple et al. (2003). Similar to others (e.g., Maenhout, 2004, 2006) I find that

ambiguity lowers the total stock demand in all states of the economy. Moreover, under incom-

plete information, continuous Bayesian revisions interact with time-invariant ambiguity aversion

to yield an ambiguity-driven hedging component that is state- and horizon- dependent. This

component mitigates the hedging demand for stocks while magnifies the relative importance of

to examine asset pricing implications of ambiguity.
3 Guidolin and Timmermann (2007) analyze asset allocation decisions under multivariate regime switching asset

returns. They use a four-regime model to characterize the joint distribution of stock and bond returns. Extending
the present paper to the multivariate case would be interesting and is left for the future research.

4 See Gilboa and Schmeidler (1989) and Epstein and Schneider (2003) for axiomatic foundations for multiple priors
utility and recursive multiple priors utility.

5 I thank David Feldman for suggesting the terminology “incomplete information risk”.
6 Karatzas and Xue (1991) use the martingale method to derive the optimal consumption and portfolio choice under

incomplete information. Dybvig, Rogers and Back (1999) consider the application of the method to time-varying
investment opportunities.
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hedging demand in the optimal stock demand. Contrary to the well-known advice that investors

with long horizons should invest aggressively in stocks, I find that the optimal stock demand

is decreasing in the horizon, even when ambiguity is taken into consideration. Ambiguity also

affects the economic value of learning about the unobservable state as opposed to assuming i.i.d.

returns. Because investors worry that the model driving the dynamics of state beliefs is subject

to model uncertainty, the economic value of accounting for regimes and filtering declines under

ambiguity. For highly ambiguity-averse investors with very long horizons (e.g., 20 years), there is

almost no economic value of accounting for regimes and filtering versus assuming i.i.d. returns.7

This is in contrast to the previous findings based on expected utility (Xia, 2001; Guidolin and

Timmermann, 2007) that portfolio strategies taking into account unobservable states and filter-

ing yield higher utility gains than the i.i.d strategy. Finally, out-of-sample experiments using the

CRSP (Center for Research in Security Prices) data from 1996 to 2009 demonstrate that portfo-

lio strategies accounted for ambiguity are superior to those ignoring ambiguity for investors with

long horizons.

This paper differs from recent works examining implications of learning under ambiguity

(Epstein and Schneider, 2007; Leippold, et al., 2008). These papers assume that information on

the fundamental process is ambiguous and analyze the belief updating mechanism with multiple

priors and likelihoods. Here, investors treat the model driving the dynamics of the filtered

probabilities as ambiguous and have multiple beliefs with respect to the Bayesian estimated

model. Schroder and Skiadas (2003) examine intertemporal consumption and portfolio policies for

generalized recursive utility preferences that incorporate RMPU as a special case. They show that

the optimal consumption and portfolio policies can be characterized up to the solution to a single

constrained backward stochastic differential equation (BSDE). But they did not consider the role

of incomplete information. Sbuelz and Trojani (2008) examine asset prices in a continuous-time

exchange equilibrium with locally-constrained-entropy RMPU (LCE-RMPU). They exogenously

posit that the local bound on the size of ambiguity is some function of time-varying state variables.

Without deriving explicit solutions, they identify that the impacts of ambiguity on the optimal

portfolio strategy are state-dependent in a non-standard way. Here, I show that even with a

constant local bound on the size of ambiguity, the model can still generate state-dependence of

the effects of ambiguity through endogenous Bayesian revisions. Furthermore, I explicitly show
7 I calibrate ambiguity (or ambiguity aversion) based on detection error probabilities. A high level of ambiguity

results in a small detection error probability. See Section 3.2 for details.
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the quantitative results on the state-dependence.

The rest of this paper is organized as follows. Section 2 presents the model and derives the

optimal consumption and portfolio policies using the martingale method. Section 3 calibrates

the model to U.S. stock market data and discusses the results. Section 4 concludes. Proofs are

collected in the Appendix.

2 The Model

In this section, I first present a hidden Markov model with an unobservable state governing

regimes of the expected return of a risky asset. A small investor filter his estimates of the

unobservable state by observing past and current asset prices. In the absence of ambiguity, the

investor relies on a non-linear recursive filter to extract the filtered probabilities that are updated

according to the Bayes rule. This non-linear filter represents a reference model describing the

dynamics of state beliefs. To model ambiguity, I use the κ−ignorance specification in Chen and

Epstein (2002) and consider a constrained set of alternative models surrounding the reference

model. This prescribed set of priors reflects the investor’s lack of confidence in the reference

model. I then describe the dynamic optimization problem under incomplete information and

ambiguity aversion. Finally, I derive the optimal consumption and portfolio policies using the

martingale method.

2.1 The investment opportunity set

I assume that there are two assets available for investment, a riskless short-term bond paying an

instantaneous return r and a risky asset with the following price dynamics:

dSt = Stμtdt+ StσSdBt.

The expected return μt follows a continuous-time Markov chain with two regimes μH and μL,

where μH > μL. The infinitesimal generating matrix of the hidden Markov chain is

Λ ≡

⎛
⎜⎝ −λ λ

χ −χ

⎞
⎟⎠
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with λ, χ > 0. The parameters μH , μL, λ, χ and σS are known constants. The transition probabil-

ities over any interval of time can be constructed from the infinitesimal matrix via the exponential

formula Ts = exp (sΛ).

I assume that at each point of time the investor can observe neither the expected return μt

nor the Brownian motion Bt. Instead, he can only observe asset prices. Given an initial prior

for the two regimes, the investor estimates the unobservable state, i.e., the probability of the

current regime being μH , based on observed asset prices. As in previous works (e.g., Dothan

and Feldman, 1986; Detemple, 1986; Feldman, 1989), I identify a σ-algebra equivalent economy

where the state variable is the filtered probability of the unobservable state. This economy is

a Markovian representation of the original economy.8 The optimal consumption and portfolio

policies obtained in the Markovian-equivalent economy are also optimal in the original economy.

Define the filtered probability πt as the posterior probability that the current regime is μH :

πt = Pr
(
μt = μH | FS

t

)

with π0 given, where
{FS

t

}
is the information filtration generated by the asset price process. It

follows from Theorem 9.1 in Liptser and Shiryaev (2001) that πt satisfies the stochastic differential

equation (SDE)

dπt = [λ− (λ+ χ)πt] dt+ πt (1− πt)
μH − μL

σS
dB̂t (1)

where B̂ is a standard Brownian motion with respect to the price filtration
{FS

t

}
and is defined

by

B̂t =
∫ t

0

dSτ − Sτ μ̂τdτ

SτσS
.

The conditional expected return with respect to the price filtration, μ̂t, is given by

μ̂t = μHπt + μL (1− πt) . (2)

In SDE (??), the precision of the conditional estimates depends on the filtered probability and is

therefore stochastic. To explore the dynamics of the filtered probabilities driven by SDE (??), I
8 See Feldman (2007) for detailed discussions on the irrelevance of Separation Principle for solving optimization

problems in dynamic incomplete information economies. See Detemple and Murthy (1994) for an early discussion
in a general context.
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rewrite (??) in terms of the original Brownian motion.9 Suppose the investor knows that during

some time interval [t1, t2], the true expected return is μt. It follows that πt satisfies the following

SDE

dπt =
[
λ− (λ+ χ)πt +

πt (μH − μ̂t) (μt − μ̂t)
σ2

S

]
dt+

πt (μH − μ̂t)
σS

dB. (3)

If the true expected return is μH during the time interval, then the second term in the drift of

(??) tends to trend πt toward 1. When πt is close to 1, both the second term in the drift and

the diffusion term converge to zero. This makes the first term in the drift become dominant, and

thus πt is driven toward 0. Conversely, if the true expected return is μL during the time interval,

the second term in the drift is negative and tends to trend πt toward 0. When πt is close to 0, the

first term in the drift becomes significant and drives πt toward 1. Thus, the drift term in (??)

has the effect of mean reversion. In the special case of non-switching regimes (λ = χ = 0), the

mean-reverting effect vanishes and the precision of the filtered probabilities increases as returns

are observed over time.

The diffusion term in SDE (??) quantifies incomplete information risk that stems from time

variation in the precision of the filtered probabilities. When πt takes values near 1/2, the investor

is uncertain about the current estimate, which leads to a large instantaneous standard deviation

of πt and a large scope of incomplete information risk. In updating beliefs, the investor therefore

relies heavily on innovations to returns. On the contrary, if the investor is fairly certain about

the current estimate, that is, when πt takes values near the boundaries of the interval [0, 1], the

magnitude of incomplete information risk is small, and innovations to returns have little effect

on revisions in beliefs.

2.2 Ambiguity and recursive multiple priors utility

2.2.1 The set of alternative models

Denote the planning horizon as T , the wealth process as {Wt}T
t=0 and the consumption process

as {Ct}T
t=0. Given an initial wealth endowment W0 > 0, the wealth dynamics can be described

by the following SDE:

dWt = [Wt (r + αt (μ̂t − r))− Ct] dt+WtαtσSdB̂t (4)
9 See David (1997) and Honda (2003) for more detailed discussions on the properties of this non-linear filter.
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where αt is the proportion of wealth invested in the risky asset. The investor makes consumption

and portfolio decisions based on the filtered probabilities of the unobservable state. Thus far,

the original incomplete information economy has been converted into a Markovian-equivalent

economy with the state processes (??) and (??).

Define the state vector Yt ≡ (Wt, πt). The reference model can be written as

dYt = μ (Yt) dt+ σ (Yt) dB̂t (5)

where μ and σ have the appropriate functional forms inherited from SDE (??) and (??). The

reference model serves as a benchmark among all the candidate models that an ambiguity-averse

investor is willing to consider. The investor doubts the full usefulness of the reference model

and only deems it as an approximation of the dynamics of his beliefs. He therefore considers a

constrained set of alternative models that are close to the reference model.

The set of alternative models on which RMPU is defined is constructed from
{FS

t

}T

t=0
-adapted

density generators defined by θ ≡ {θt}T
t=0 ∈ Θ satisfying sup |θt| ≤ κ with κ ≥ 0. This specifica-

tion is referred to as κ-ignorance in Chen and Epstein (2002). Each density generator θ delivers a

local distortion to the reference model. Suppose P is the subjective probability measure induced

by the reference model, i.e., the probability measure with respect to the Brownian motion B̂.

Each density generator θ generates a martingale zθ under P:

zθ
t = exp

(
−1

2

∫ t

0
θ2
sds−

∫ t

0
θsdB̂s

)
, 0 ≤ t ≤ T.

The set of priors is denoted as P and is defined in terms of the Radon-Nikodym derivatives of

the alternative models with respect to the reference model:

P ≡
{

Qθ : θ ∈ Θ,
dQθ

dP
= zθ

T

}
.

It is obvious that the size of P increases with κ. A large κ means that the investor has little

confidence in the reference model and is willing to consider a wide range of alternative models.

In the special case κ = 0, all alternative models coincide with the reference model, and the set

of priors collapses to a singleton {P}. In this case, the investor has complete confidence in the

reference model.
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It follows from Girsanov’s theorem that the distorted law of motion of the state vector Y

implied by an alternative model Qθ is

dYt = μ (Yt) dt+ σ (Yt)
(
dB̂Qθ

t − θtdt
)

(6)

where B̂Qθ
is a Brownian motion under Qθ. As a result, the alternative models are absolutely

continuous with respect to the reference model. An ambiguity-averse investor is uncertain about

whether B̂ is a Brownian motion with respect to his information filtration, and in this case

ambiguity indeed concerns uncertainty induced by the drift distortion in the state processes. In

particular, under Qθ, the distorted law of motion of πt can be explicitly written as

dπt = [λ0 − (λ0 + λ1)πt] dt+ πt (1− πt)
μH − μL

σS

(
dB̂Qθ

t − θtdt
)
. (7)

It is worth noting that the drift distortion in (??) is a product of the term quantifying incomplete

information risk and the size of ambiguity. If the precision of the filtered probabilities is low, which

often occurs when estimating expected returns is difficult, the magnitude of the drift distortion

is large, and thus, the investor has low confidence in the reference model. As shown below, this

drift distortion generates an ambiguity-driven hedging demand. Under time-invariant ambiguity,

that is, θt = κ for all t ∈ [0, T ], SDE (??) becomes

dYt = μ (Yt) dt+ σ (Yt)
(
dB̂Q

t − κdt
)

where Q denotes Qθ with θ = κ. In Section 2.3, I show that time-invariant ambiguity can be

supported in the optimum.

2.2.2 The RMPU preferences

The investor has a time preference rate ρ and a constant relative risk aversion (CRRA) utility

function of the following form

u (C) =

⎧⎪⎨
⎪⎩

C1−γ

1− γ , γ > 0, �= 1

logC, γ = 1

8



With RMPU, the investor maximizes expected utility under the worst-case alternative model.

Among all the candidate models induced by the allowed set of priors, the worst-case model

delivers the minimum of expected utility for a consumption process and terminal wealth. Put

formally, the value function is

V0 (C,WT ) = max
Ct,αt

min
Qθ∈P

EQθ

[∫ T

0
e−ρtu (Ct) dt+ e−ρTu (WT )

]
(8)

subject to the state dynamics (??) and (??), or compactly, the reference model (??). The

minimization operator in (??) captures the concern that an alternative model may adversely

affect the continuation value. The worst-case model is endogenously selected from the set of

priors P that contains a prescribed family of alternative models generated from locally distorting

the reference model. The multiplicity of P captures the investor’s lack of confidence, and the

minimization operator reflects the aversion to such ambiguity. Since each probability measure Qθ

is associated with a density generator θ, the minimization operator in (??) is taken with respect

to the process θ.

Chen and Epstein (2002) derive the following backward stochastic differential equation (BSDE)

representation of the utility process Vt

dVt =
[
−u (Ct) + ρVt + max

θ∈Θ
θtσ

V
t

]
dt+ σV

t dB̂t, VT = u (WT ) .

where the diffusion term σV
t is endogenous and is a part of the complete solution to the above

BSDE.10 For κ-ignorance, Chen and Epstein (2002) show that the endogenous density generator

is given by

max
θ∈Θ

θtσ
V
t = θ∗t σ

V
t = κ|σV

t |, with θ∗t = κ× sgn
(
σV

t

)
(9)

where sgn
(
σV

t

)
= |σV

t |/σV
t if σV

t �= 0 and sgn
(
σV

t

)
= 0 otherwise. The term κ|σV

t | is entirely

attributed to ambiguity aversion rather than risk aversion. The parameter κ can also be inter-

preted as an ambiguity aversion parameter. It is worth noting that the worst-case probability law

associated with the density generator θ∗ depends on the sign of the diffusion part of the utility

process. The diffusion term of Vt, as a part of the complete solution to (??), relies on the optimal
10 Chen and Epstein (2002) show that the set of priors formulated by κ-ignorance satisfies a property called “rect-

angularity”. Rectangularity and other technical conditions ensure that the utility process under multiple priors is
recursive, and hence, time consistent in the sense of Johnsen and Donaldson (1985).
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consumption path, which is in turn a function of the endogenous density generator θ∗ (see the

proof of Proposition 1). Thus, unlike other studies (e.g., Trojani and Vanini, 2002; Gagliardini

et al., 2008) where one can explicitly derive the worst-case drift distortion and then tackle the

maximization problem under the resulting worst-case model, here solutions to the optimal con-

sumption and portfolio policies together with the endogenous worst-case model must be jointly

determined from solving the optimization problem. In Section 2.3, I employ the guess-and-verify

method to show that σV
t > 0 and θ∗t = κ for all t ∈ [0, T ] can be supported together in the

optimum. Thus, the size of ambiguity is time-invariant throughout the horizon and the optimal

consumption and portfolio policies can be derived conditioning on θ∗ = κ.

2.3 Optimal consumption and portfolio choice

Define the conditional market price of risk ν̂t as

ν̂t =
μ̂t − r
σS

.

Since πt is progressively measurable and always bounded between 0 and 1, the conditional mar-

ket price of risk is also progressively measurable and bounded. Because ν̂ is a bounded process,

Novikov’s condition holds; that is, EP
(
exp

{
1
2

∫ T
0 ν̂2

t dt
})

< ∞. In addition, the market is com-

plete in the Markovian-equivalent economy. Thus, there exists a unique equivalent martingale

measure P̃ given by dP̃ =ζTdP where

ζt = exp
(
−1

2

∫ t

0
ν̂2

sds−
∫ t

0
ν̂sdB̂s

)

with ζ0 = 1. Under P̃, the process B̃t = B̂t +
∫ t
0 ν̂sds is a Brownian motion. The state price

density, denoted as ξ, is given by

ξt = exp
(
−

∫ t

0
rds− 1

2

∫ t

0
ν̂2

sds−
∫ t

0
ν̂sdB̂s

)
.

Boundedness of the conditional market price of risk implies that all moments of the state price

density are finite, which is a sufficient condition ensuring the applicability of the martingale

method for time-varying investment opportunities (see Dybvig, Rogers and Back, 1999). This

condition is referred to as the “DRB condition” in Korn and Kraft (2004). As a result, the
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optimization problem is well-defined for general coefficients of relative risk aversion, and the

pitfalls raised by Korn and Kraft (2004) can be naturally avoided.

Hereafter, I assume the following condition holds for the primitive parameters describing

investment opportunities and preferences

μL − r
σS

− κ ≥ 0. (10)

This assumption guarantees that in all states of the economy, the conditional market price of risk

accounted for ambiguity, or effective conditional market price of risk, is strictly positive unless

πt exactly reaches 0. This assumption plays a key role in proving that time-invariant ambiguity

can be supported in the optimum (see the proof of Proposition 1).

The static variational problem corresponding to the optimization problem (??) is formulated

by standard arguments as follows:

max
Ct,WT

min
Qθ∈P

EQθ

[∫ T

0
e−ρtu (Ct) dt+ e−ρTu (WT )

]
(11)

s.t. W0 = EP

[∫ T

0
ξtCtdt+ ξTWT

]
. (12)

Suppose Qθ∗ solves the inner minimization problem. The Lagrangian of (??) subject to (??) is

given by

L = EQθ∗
[∫ T

0
e−ρtu (Ct) dt+ e−ρTu (WT )

]
+ y

{
W0 − EP

[∫ T

0
ξtCtdt+ ξTWT

]}
(13)

where θ∗ is given in (??) and y is a scalar Lagrange multiplier. Different from the standard

martingale formulation under expected utility, the endogenous probability law under which the

expectation of discounted future utility is taken deviates from the probability law governing

the static budget constraint. This deviation captures the investor’s distrust in the reference

model that delivers a particular consumption process. To solve (??), a change of measure is

applied to convert the worst-case probability measure Qθ∗ to the reference measure P using the

Radon-Nikodym derivative between the two measures. The first-order conditions (shown in the

Appendix) are derived under the reference measure. The solutions to the optimal consumption

and portfolio policies together with the endogenous probability law Qθ∗ are presented in the
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following proposition.

Proposition 1 Suppose γ �= 1 and the following condition holds11:

EP̃
t

[∫ T

t
e−rsC∗s

∫ s

t

(
Dtν̂τdB̃τ

)
ds+ e−rTW ∗

T

∫ T

t
Dtν̂sdB̃s

]
> 0 for all t ∈ [0, T ] (14)

where C∗s and W ∗
T are given in (ii). The following solutions characterize an optimum:

(i) The endogenous probability law is given by Qθ∗ with θ∗t = κ for all t ∈ [0, T ]

(ii) The optimal consumption C∗t and terminal wealth W ∗
T are

C∗t =
(
e−ρtzκ

t

yξt

) 1
γ

and W ∗
T =

(
e−ρT zκ

T

yξT

) 1
γ

(15)

where the Lagrange multiplier y satisfies

y =
(

EP

[∫ T

0
(ξt)

γ−1
γ (e−ρtzκ

t )
1
γ dt+ (ξT )

γ−1
γ (e−ρT zκ

T )
1
γ

]
/W0

)γ

(16)

(iii) The optimal portfolio policy, α∗t , is

α∗t =
μ̂t − r
γσ2

S

− κ

γσS
+

1− γ
γ

ert

σSW ∗
t

EP̃
t

[∫ T

t
e−rsC∗s

∫ s

t

(
Dtν̂τdB̃τ

)
ds+ e−rTW ∗

T

∫ T

t
Dtν̂sdB̃s

]

(17)

where the conditional expectation is taken under the equivalent martingale measure P̃. The Malli-

avin derivative of the conditional market price of risk is given by Dtν̂s = (μH−μL)
σS

Dtπs where the

Malliavin derivative of π, Dtπs, satisfies the following SDE:

d(Dtπs) = −(λ0 + λ1)Dtπsds+
μH − μL

σ
(1− 2πs)DtπsdB̂s

subject to the boundary condition lims→tDtπs = πt (1− πt) μH−μL
σS

.

Proof. See Appendix.

Corollary 1 Suppose π0 > 0. The solutions in Proposition 1 nest the case of logarithmic utility

with γ = 1.
11 Ideally, I would like to be able to show analytically that this condition holds for the solution in Proposition 1 (ii).

Unfortunately, I have been unable to do so, because the condition involves the Malliavin derivatives and stochastic
integrals, which must be computed numerically. Nevertheless, for all calibration exercises in this paper, I have
verified that this condition does hold on a fine grid of the state probability π ∈ [0, 1] and the horizon t ∈ [0, T ]
with T = 40 years.
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Proof. See Appendix.

Under (??) and (??), I can show that the time-invariant density generator θ∗ = κ delivers the

endogenous worst-case alternative model (see Appendix). As a result, the investor’s attitude

toward multiple priors does not depend on the state of the economy.12 This simplified feature

of the model provides analytical convenience, namely, delivers explicit solutions to the optimal

consumption and portfolio policies.

In the optimal portfolio formula (??), the first term quantifies the myopic demand for the

risky asset, which is instantaneously mean-variance efficient and only depends on the current

estimate of the unobservable state. Here, myopia represents “generalized myopia” defined in

Feldman (1992).13 Under incomplete information, investors with logarithmic preferences update

their portfolios as functions of the filtered probability (see Corollary 1). The second term reflects

the effect of ambiguity on myopic demand. Together, the first two terms are called ambiguity-

adjusted myopic demand. Under the i.i.d. assumption, Chen and Epstein (2002) show that the

optimal portfolio formula is given by the first two terms where μ̂t is replaced by the known and

constant expected return. Their results hence give rise to a form of observational equivalence; i.e.,

concerning the effects on the optimal consumption and portfolio choice, an increase in the size of

ambiguity is observationally equivalent to a decline in the effective market price of risk with the

same magnitude. Under incomplete information, this form of observational equivalence cannot

sustain because ambiguity also affects the intertemporal hedging demand in a non-standard way.

The third term quantifies hedging demand, which is induced to hedge against the future time

variation in the conditional estimates of the unobservable state. In the optimal portfolio formula,

the Malliavin derivative Dtπs captures the effect of an innovation in the Brownian motion B̂

at time t on the state variable π at time s. A notable difference between the solution derived

here and those derived in the expected utility framework in the absence of ambiguity (Brennan,

1998; Honda, 2003) is that hedging demand is driven not only by incomplete information risk
12 One can imagine a case where the density generator θ∗ switches between the two different regimes (κ and −κ)

whenever the diffusion term of the utility process changes its sign, as implied by (??). However, the case of regime-
switching density generator is intractable for two reasons. First, if the worst-case model switches between different
regimes, a state vector solution to the optimal control would be difficult to obtain. Second, the diffusion part of the
utility process, which determines the instantaneous regime of the density generator, is endogenous and depends on
the decision variables when investment opportunities are time-varying. This adds enormous difficulty to solving
the optimization problem in the presence of jumps in the density generator.

13 In incomplete information economies, logarithmic investors have the same informational requirements as non-
logarithmic investors do, due to the need of estimating unobservable state variables. Feldman (1992) encompasses
in the definition of generalized myopia the concept that investors are myopic in an incomplete information economy
if and only if they are myopic in the Markovian-equivalent complete information economy.
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but also by ambiguity. In particular, ambiguity affects hedging demand through intermediate

consumption decisions, as is obvious from (??) and (??). The hedging term in (??) can be further

decomposed into two components, hedgeIIR and hedgeambiguity, and the optimal portfolio formula

can be rewritten as

α∗t =
μ̂t − r
γσ2

S

− κ

γσS
+ hedgeIIR + hedgeambiguity

where hedgeIIR is obtained from the third term in (??) by setting κ = 0, and hedgeambiguity ac-

counts for the difference between hedgeIIR and hedging demand. As a result, hedgeIIR is solely

attributed to the intertemporal hedging of incomplete information risk, while hedgeambiguity

is purely driven by ambiguity. The component hedgeIIR exists under expected utility, but

hedgeambiguity does not. Although the effect of ambiguity on myopic demand is state-independent,

hedgeambiguity is state-dependent. The following section shows quantitative results on the state-

dependence.

3 Calibration and Results

3.1 Data, estimation and MCMD

In the calibration exercise, the U.S. stock market is a proxy for the risky asset. The parameters of

the stochastic process for stock returns and the two-regime hidden Markov model are estimated

using quarterly U.S. stock market return data for the sample period 1947.1–1995.4. Data from

1996.1 to 2009.4 are taken as a genuine post-sample and used for out-of-sample experiments. All

data are from Center for Research in Security Prices. Nominal returns are deflated to obtain real

returns using the CPI data from Federal Reserve Economic Data St. Louis. The real risk-free

rate is set at a level comparable to that in Campbell and Viceira (1999). I jointly estimate the

discrete-time analogue of the return process and hidden Markov model using the EM algorithm

of Hamilton (1989). Here, I set the low-regime mean return in the discrete-time model at such a

level that Inequality (??) holds for a sizable κ. The allowed values for κ are empirically plausible

as the corresponding detection error probabilities are economically meaningful, which implies that

the scope of ambiguity is empirically significant.14 Then I estimate a Markov switching model

to obtain maximum-likelihood estimates. The estimates are annualized to yield appropriate

continuous-time estimates. I employ the following formula in Israel et al. (2001) to compute the
14 See Section 3.2 and 3.3 for further details.
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infinitesimal generating matrix Λ given the estimated transition probability matrix

Λ =
∞∑
i=1

(−1)i+1

i
(P − I)i

where P is the transition probability matrix, I is the identity matrix, and the series is approxi-

mated with length 5 in the calibration exercise. Table 1 summarizes the estimation results.

[Insert Table 1 here]

I use the Monte Carlo Malliavin derivative (MCMD) method developed by Detemple, et al.

(2003) to compute optimal portfolio policies. As shown by Detemple et al. (2003), simulating

optimal portfolios in explicit form can improve efficiency and accuracy of numerical approxima-

tions relative to the standard stochastic programming with backward iterations. I run a random

number generator to simulate a large number of sample paths and numerically evaluate the

stochastic integrals in the optimal portfolio policy rule. The state probability π and its Malliavin

derivative are simulated using a variance-stabilizing transformation to minimize approximation

error, as suggested by Detemple et al. (2003). The reformulation allows us to adopt a change

of variables that normalizes the volatility of the filtered probability process to a constant. This

makes the calculation of the Malliavin derivative Dtπs be of the same complexity as the numerical

solution of an ordinary differential equation.15 The number of Monte Carlo replications is set at

N = 20, 000.

3.2 Detection error probabilities

I use the detection error probabilities technique developed by Anderson et al. (2003) to calibrate

the size of ambiguity. Anderson et al. (2003) relate the calibration of ambiguity to a model

selection problem in a Bayesian context. Maenhout (2004) and Maenhout (2006) examine de-

tection error probabilities, respectively, under i.i.d. returns and mean-reverting returns. When

choosing between two potential data generating processes, a decision maker performs likelihood

ratio tests for a given data set. The two models are difficult to distinguish from each other if

the probability of mistakenly rejecting one model in favor of the other is high. This probability

is given by the probability that the log-likelihood ratio is negative when the rejected model is
15 See Detemple et al. (2003) for further details. Detemple et al. (2005) extend the variance-stabilizing transformation

to cases with multiple state variables and assets.
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the true data generating process. In continuous time, the log-likelihood ratio is given by the log

of the Radon-Nikodym derivative. Specifically, the log of the Radon-Nikodym derivative of the

distorted probability measure Q with respect to the reference measure P is

η1,t ≡ log(
dQ

dP
| FS

t ) = −
∫ t

0
θ∗sdB̂s − 1

2

∫ t

0
(θ∗s)

2ds.

The log of the Radon-Nikodym derivative of the probability measure P with respect to Q is

η2,t ≡ log(
dP

dQ
| FS

t ) =
∫ t

0
θ∗sdB̂s +

1
2

∫ t

0
(θ∗s)

2ds.

If Model P is true, the decision maker will mistakenly reject it in favor of Model Q based on a

finite sample with size N when η1,N > 0. Conversely, if Q is correct, it will be rejected erroneously

when η2,N > 0. Assuming an initial prior of 0.5 on each model, the detection error probability

εN (θ), which is the time-0 conditional probability of choosing a wrong model based on a finite

sample of length N , is defined as

εN (θ) = 0.5 Pr(η1,N > 0 | P ) + 0.5 Pr(η2,N > 0 | Q).

As θ∗ increases, the two models are easier to distinguished statistically from each other, and the

detection error probability becomes lower as a result. For κ−ignorance, it is straightforward to

derive

εN (κ) = Pr
(
Z < −κ

2

√
N
)

where Z is from the standard normal distribution. Anderson et al. (2003) advocate 10% as the

lower bound of detection error probabilities.

3.3 Incomplete information risk, ambiguity and portfolio choice

I consider three alternative values for the ambiguity aversion parameter κ, κ = 0 (expected

utility), 0.08 and 0.16. For the sample period 1947.1–1995.4, the detection error probabilities for

κ = 0.08 and 0.16 are, respectively, 0.288 and 0.131, which are above the threshold advocated by

Anderson et al. (2003). The coefficient of relative risk aversion, γ, is set at γ = 4. The investment

horizon is 10 years unless explicitly stated. Figure 1 plots hedging demands as functions of

the state probability when utility is defined over intermediate consumption and over terminal
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wealth respectively. Under expected utility (κ = 0), the finding that hedging demands have

a negative sign for γ > 1 is in line with the existing works (Brennan, 1998; Honda, 2003).16

For investors who are more risk averse than the logarithmic investor, their utility functions are

unbounded from below but bounded from above. They therefore behave more conservatively than

the logarithmic investor and are willing to hold a less risky portfolio than the myopic portfolio.

Under incomplete information, continuous Bayesian revisions create a perfect positive correlation

between innovations to returns and revisions in beliefs. Stocks tend to have low (high) returns

when their mean returns are expected to be low (high). Because investors desire to smooth

utility across states, a portfolio is deemed less risky if it can deliver wealth when investment

opportunities are poor, that is, when mean return estimates are low. Thus, investors with γ > 1

optimally reduce the total stock demand relative to myopic demand. This implies that the

intertemporal hedging demand has a negative sign. Moreover, similar to Honda (2003), I find

that in the absence of ambiguity, hedging demand is high when π takes values near 1/2, that is,

when incomplete information risk is sizable.

[Insert Figure 1 here]

Figure 2 shows that ambiguity mitigates hedging demand in all states of the economy and

that this impact is state-dependent, where utility is assumed to be defined over intermediate

consumption.17 The right panel in Figure 2 further separates hedging demand into the two

hedging components, hedgeIIR and hedgeambiguity. The magnitude of hedgeambiguity depends on

the ambiguity aversion parameter and incomplete information risk. A high ambiguity aversion

parameter, κ, leads to a large hedgeambiguity, all else being equal. A high instantaneous standard

deviation of the filtered probabilities also results in a large hedgeambiguity. If incomplete infor-

mation risk shrinks toward a negligible level, hedgeambiguity vanishes. This state-dependence can

be explained by the drift distortion in the worst-case alternative model (??). The drift distortion

implied by the worst-case prior reinforces the effect of mean reversion in the filter (??) and drives

the component hedgeambiguity. Since hedging demand depends on the mean-reverting effect, the

drift distortion in SDE (??) reduces hedging demand, as observed in Figure 2.18 Moreover, as the
16 I also compute hedging demands for various coefficients of relative risk aversion, assuming expected utility. Hedging

demands have a negative sign for γ > 1 but a positive sign for γ < 1. For the sake of brevity, these results are not
reported.

17 The results based on utility over terminal wealth are similar and thus not reported.
18 I also perform the comparative statics experiments and find that mean reversion in the dynamics of state beliefs

lowers hedging demand.

17



size of the drift distortion is large when π takes values near 1/2, hedgeambiguity becomes large in

magnitude. Figure 3 plots the optimal stock demand and the fraction of hedging demand in the

optimal stock demand as functions of the state probability. Not surprisingly, ambiguity lowers

the optimal stock demand in all states of the economy. In addition, ambiguity magnifies the

relative importance of hedging demand in the optimal stock demand. This is because the effect

of ambiguity on myopic demand is of the first order while its effect on hedging demand is of the

second order.19 In particular, the impact of ambiguity on the ratio of hedging demand to the

optimal stock demand turns out to be stronger when the current regime is more likely to be in

the bad regime. As a result, ambiguity-averse investors who believe that the current state is poor

prefer a conservative portfolio with its composition significantly steering toward hedging demand

while away from myopic demand. Figure 4 shows the horizon effect on the optimal stock demand

for a horizon ranging from 1 year to 20 years, where the state probability is set at its steady-state

value. As the horizon increases, the optimal stock demand decreases because hedging demand

is monotonically increasing in the horizon. This result holds true for all the values of κ being

considered. Thus, the well-known advice that investors with long horizons should allocate a sub-

stantial proportion of wealth into stocks does not necessarily hold true in incomplete information

economies.

[Insert Figure 2 here]

[Insert Figure 3 here]

[Insert Figure 4 here]

3.4 Welfare implications

Two natural questions concerning the welfare implications of ambiguity are: (1) How economically

important is it for an ambiguity-averse investor to learn about the unobservable state rather

than treating investment opportunities as fully observable and i.i.d.? and (2) Are investors

necessarily better off by accounting for ambiguity in portfolio choice from the out-of-sample

perspective? To address the first question, I assess the economic importance of regimes under

ambiguity aversion by computing the certainty equivalent wealth. I follow Xia (2001) and define

the certainty equivalent wealth (CEW ) of a portfolio s as the amount of wealth that makes an
19 Note that in the expression for the ambiguity-adjusted myopic demand, the ambiguity aversion parameter, κ,

appears additively to the conditional market price of risk, which implies a first-order effect on myopic demand.
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investor indifferent between receiving CEW with certainty at horizon T and having initial wealth

$1 to invest up to the horizon using strategy s:

e−ρT (CEW s)1−γ

1− γ = V0(WT | s) W0 = 1

where V0(WT | s) is the maximized RMPU over terminal wealth when the optimal strategy s

is adopted for a given investment opportunity set. The present value of CEW s, PCEW s, is

defined as PCEW s = e−rTCEW s. For instance, the symbol PCEW IID represents the present

value of CEW assuming that asset returns follow a simple i.i.d. process and the corresponding

optimal portfolio strategy is adopted. The economic value of regimes is quantified by taking the

difference between PCEWHMM and PCEW IID for some ambiguity aversion parameter value,

where PCEWHMM stands for PCEW under the hidden Markov model.

Figure 5 plots the percentage difference in PCEW s under the hidden Markov model versus

i.i.d. returns as a function of the investment horizon ranging from 1 year to 20 years for the non-

ambiguity case (κ = 0) and two cases with ambiguity (κ = 0.08 and 0.16). The state probability

π is set at its steady-state value. In the absence of ambiguity, the economic value of regimes is

non-negligible and the welfare loss of ignoring regimes is increasing in the horizon. The utility cost

measured by the difference in PCEW s reaches as high as 1.5% at long horizons. Nevertheless,

the economic importance of regimes declines significantly when ambiguity is taken into account,

and this effect is especially strong at long horizons. The decline in the economic value of regimes

is due to the concern that the stochastic process driving the dynamics of state beliefs is subject

to model uncertainty. This uncertainty reduces the scope of utility gains from accounting for

regimes and filtering. For κ = 0.16, the economic value of regimes becomes even negative at a

horizon as long as 20 years, suggesting that a highly ambiguity-averse investor may expect to

be better off by choosing the i.i.d. strategy. Figure 6 displays the time series plot of PCEW s

under different strategies for the sample period 1986.1–1995.4 and an investment horizon of 10

years. The state probability, starting from its steady-state value, is updated after each period’s

return is realized. The results indeed confirm the findings above. In the absence of ambiguity, the

economic value of regimes is sizable: the PCEW under the hidden Markov model stays above

the PCEW under i.i.d. returns in most cases during the sample period. Ambiguity, however,

decreases the economic value of regimes by driving the PCEW under the hidden Markov model
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toward the PCEW under i.i.d. returns.

To address the second question, I evaluate out-of-sample performance of different portfolio

strategies for the genuine out-of-sample period 1996.1–2009.4 in a way similar to Guidolin and

Timmermann (2007). However, unlike Guidolin and Timmermann (2007) who only consider the

buy-and-hold strategy, I examine continuous-time strategies that take into account continuous

updating and intermediate consumption.20 I compare the performance of a two-regime hidden

Markov model, a simple i.i.d. model, the hidden Markov model with ambiguity and the i.i.d.

model with ambiguity. The models of asset returns will be re-estimated once the next period’s

return is realized, and the state probability will be updated based on the re-estimated parameter

values. For instance, the hidden Markov model is initially estimated for 1947.1–1995.4 and the

corresponding estimates and state probability (initially set at its steady-state value) are used

to calculate the optimal stock allocation and portfolio return for 1996.1. Then the sample is

extended to 1947.1–1996.1 and the model is re-estimated. The state probability is revised based

on the estimates for 1947.1–1996.1 and portfolio optimization is repeated, and so forth. I consider

three investment horizons, T = 1, 5 and 10 years.

I compute realized utility under different models to evaluate out-of-sample performance. The

realized utility measure is defined as

UT
t ≡

W 1−γ
t+T

1− γ ,Wt = 1

Wt+τ −Wt+τ−1 =
[(

1− ψT
t+τ−1

)
rf + ψT

t+τ−1rt+τ−1,t+τ

]
Wt+τ−1

where rf is the quarterly risk-free rate, {rt+τ−1,t+τ}T
τ=1 are the realized stock returns between

t + 1 and t + T and ψT
t+τ is the period-(t + τ) optimal stock allocation with the horizon T .

The optimal portfolio weights are computed by solving the optimization problem (??) for a

given κ and investment opportunity set. For each of the six models (or strategies, see Table

2) and each investment horizon, I obtain a time series
{
UT

τ

}
, τ = 1996.1, · · · , 2009.4 − T of

realized utilities. Following Guidolin and Timmermann (2007), I use a block bootstrap with

50, 000 independent trials to construct the empirical distribution of UT
τ . Table 2 reports sum-

mary statistics for the empirical distribution of UT
τ . Among the six portfolio strategies, the

strategy {HMM,κ = 0.16} produces the highest mean realized utility for all the three invest-
20 Out-of-sample experiments assuming no intermediate consumption produce similar findings.
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ment horizons. Among all the horizons considered, the difference in the mean realized utilities

between the strategy {HMM,κ = 0.16} and other strategies is the highest for T = 10 years,

indicating the importance of accounting for ambiguity in out-of-sample performance for investors

with long horizons. The strategy {IID, κ = 0.16} generates a slightly lower mean realized util-

ity than {HMM,κ = 0.16} for all the horizons, suggesting the importance of accounting for

regimes in evaluating out-of-sample performance. Moreover, the strategy {HMM,κ = 0.16} has

the lowest standard deviations of realized utility levels for all the horizons, and its 5% and 10%

confidence intervals of realized utility levels have the smallest size among all the strategies. These

results indicate that ambiguity can reduce uncertainty in out-of-sample welfare levels. It is also

worth noting that the 10% confidence intervals for the horizon T = 5 years do not even overlap

under the strategy {HMM,κ = 0.16} and {HMM,κ = 0}, which provides strong evidence to

show that their performance are statistically distinguishable. Table 3 reports summary statistics

for differences in realized utility levels between the benchmark strategy {HMM,κ = 0.16} and

all the other strategies. The results indicate that except for {IID, κ = 0.16}, the out-of-sample

performance of {HMM,κ = 0.16} is significantly better than other strategies for all the hori-

zons. For the horizons T = 5 and 10 years, the out-of-sample performance of {HMM,κ = 0.16}
is sufficiently good to outperform {IID, κ = 0.16}.

4 Conclusion

I have examined a continuous-time intertemporal consumption and portfolio choice problem for

an ambiguity-averse investor when expected returns of a risky asset are unobservable and follow

a continuous-time Markov chain with two regimes. Investors lack confidence in the reference

model that characterizes a Markovian equivalent representation of the original incomplete infor-

mation economy. Facing an optimization problem with recursive multiple priors utility, investors

consider the worst-case model among a family of alternative models surrounding the reference

model. In calibrating the model to U.S. stock market data, I find that ambiguity with respect

to the reference model lowers the optimal stock demand and hedging demand while magnifies

the relative importance of hedging demand in the optimal portfolio policy. The economic value

of regimes and filtering about the unobservable state declines under ambiguity. Finally, out-of-

sample experiments confirm the economic importance of accounting for ambiguity in portfolio
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decisions.

There are several ways to extend this paper. In a related work, Guidolin and Timmermann

(2007) consider regime-switching predictability of both stock and bond returns from the dividend

yield. One could extend their framework to incorporate ambiguity and ambiguity aversion. Such

a new framework may deepen our understanding of the effects of ambiguity, multiple regimes

and uncertain predictability on asset allocation decisions. Extensions along the lines of Ju and

Miao (2010) and Chen et al. (2009) seem therefore very promising. In addition, one could

also examine the effects of ambiguity on consumption and portfolio choice under incomplete

information and recursive preferences, where the separation between risk aversion and the attitude

toward intertemporal substitution is allowed for.
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Appendix

The Clark-Ocone Formula The space of random variables for which Malliavin derivatives are

defined is called D1,2.21 Any random variable F ∈ D1,2 can be decomposed as

F = E (F ) +
∫ T

t
E [DtF | Ft] dBt

where Ft represents the information filtration generated by the Brownian motion B up to time

t.

Proof of Proposition 1 The proof employs the guess-and-verify method to show that in the

optimum, the density generator θ is given by θ∗t = κ for all t ∈ [0, T ] and to derive the optimal

consumption and portfolio policies. First, I conjecture θ∗t = κ for all t ∈ [0, T ] and proceed to

derive the solution to the volatility of the utility process σV
t . Then I verify that σV

t > 0 holds for

all t ∈ [0, T ], which is also a verification of θ∗t = κ for all t ∈ [0, T ], in accordance with (??). The

explicit solutions to the optimal consumption and portfolio choice conditioning on θ∗ = κ follow

naturally.

The first-order conditions of the Lagrangian problem (??) are

e−ρtzκ
t (C∗t )−γ = yξt and e−ρtzκ

t (W ∗
T )−γ = yξT (18)

where zκ
t is given by

zκ
t = exp

(
−1

2

∫ t

0
κ2ds−

∫ t

0
κdB̂s

)
.

The optimal consumption and terminal wealth in (??) can be obtained from the first-order

conditions. Substituting (??) into the budget constraint (??) yields the Lagrange multiplier y in

(??).

Applying Ito’s lemma to the optimal consumption in (??) yields the following dynamics of

the consumption process
dC∗t
C∗t

= μC
t dt+ σC

t dB̂t

21 Oksendal(1997) provides a concise introduction to Malliavin calculus. Interested readers can also refer to Nualart
(1995) for a textbook treatment.
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where

μC
t =

1
γ

(r − ρ) +
1
2

(1 + γ)
(
σC

t

)2
+ σC

t κ

σC
t =

1
γ

(ν̂t − κ) .

By homogeneity, I conjecture that the utility process along the optimal path has the following

form

Vt =
(C∗t )1−γ

1− γ At

with VT = (W ∗
T )1−γ

1−γ AT , where At satisfies the BSDE:

dAt

At
= μA

t dt+ σA
t dB̂t, AT = 1.

It follows from Ito’s lemma that Vt satisfies the BSDE:

dVt = μV
t dt+ σV

t dB̂t, VT =
(W ∗

T )1−γ

1− γ

with σV
t = Vt

[
(1− γ)σC

t + σA
t

]
. The derivation of μV

t is irrelevant to the proof and thus omitted.

To obtain σV
t and σA

t in explicit forms, I first derive the optimal portfolio policy α∗t as a function

of both σC
t and σA

t and then characterize α∗t in terms of the Malliavin derivatives and stochastic

integrals. The explicit expression of σA
t can be immediately obtained. Then, σV

t can be solved

explicitly, and its sign can be readily determined.

Multiply both sides of the first-order condition for consumption in (??) by C∗t and integrate

over the product space dt⊗ dP to obtain

EP

[∫ T

0
e−ρt (C∗t )1−γ zκ

t dt

]
= yEP

[∫ T

0
ξtC

∗
t dt

]
.

Similarly, one can obtain EP
[
e−ρT (W ∗

T )1−γ zκ
T

]
= yEP [ξTW ∗

T ]. It follows from the complemen-

tary slackness condition (??), the equality y = (C∗0 )−γ and the definition of RMPU (??) that the

following equality holds

W0 = (1− γ) (C∗0 )−γ V0.
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In the same way, one can deduce for all t ∈ [0, T ]

W ∗
t = (1− γ) (C∗t )−γ Vt. (19)

Applying Ito’s Lemma to (??) and matching the volatility term with that in the budget constraint

(??) yield an expression for the optimal portfolio α∗t

α∗t =
σC

t + σA
t

σS

=
μ̂t − r
γσ2

S

− 1
γ

κ

σS
+
σA

t

σS
. (20)

The martingale representation theorem implies that wealth at time t, Wt, is given by

ξtW
∗
t = EP

t

[∫ T

t
ξsC

∗
sds+ ξTW

∗
T

]
. (21)

By Ito’s lemma, the volatility of the left-hand side of (??) is −ξtW ∗
t ν̂t +ξtW ∗

t α
∗
tσS . By the Clark-

Ocone formula, the volatility of the right-hand side is given by EP
t

[
Dt

(∫ T
t ξsC

∗
sds+ ξTW

∗
T

)]
.

The two volatilities must be equal, leading to the following equality

ξtW
∗
t α

∗
t =

1
σS
ξtW

∗
t ν̂t +

1
σS

EP
t

[
Dt

(∫ T

t
ξsC

∗
sds+ ξTW

∗
T

)]
. (22)

In (??), the Malliavin derivative Dt

(∫ T
t ξsC

∗
sds+ ξTW

∗
T

)
can be computed as follows. First,

by linearity and exchangeability between the Malliavin derivative and the ordinary Lebesgue

integral, we have

Dt

(∫ T

t
ξsC

∗
sds+ ξTW

∗
T

)
=

∫ T

t
Dt (ξsC∗s ) ds+Dt (ξTW ∗

T ) . (23)

The second term on the right-hand side of (??) can be written asDt (ξTW ∗
T ) = W ∗

TDtξT +ξTDtW
∗
T

where DtW
∗
T is computed by the chain rule of Malliavin calculus:

DtW
∗
T =

W ∗
T

γ

(
zκ
T

ξT

)−1

Dt

(
zκ
T

ξT

)
=
W ∗

T

γ

(
zκ
T

ξT

)−1 ( 1
ξT
Dtz

κ
T −

zκ
T

ξ2T
DtξT

)
.
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The term Dtz
κ
T is further computed as

Dtz
κ
T = Dt exp

(
−1

2

∫ T

0
κ2ds−

∫ T

0
κdB̂s

)

= zκ
TDt

(
−1

2

∫ T

0
κ2ds−

∫ T

0
κdB̂s

)
= −κzκ

T 1t≤T

where 1t≤T is an indicator function. Rearranging the terms and assuming t ≤ T yield

Dt (ξTW ∗
T ) = −κ

γ
ξTW

∗
T +

γ − 1
γ

W ∗
TDtξT . (24)

Similarly, for t ≤ s, one can derive

Dt (ξsC∗s ) = −κ
γ
ξsC

∗
s +

γ − 1
γ

W ∗
sDtξs. (25)

Substituting (??) and (??) into (??), rearranging terms and applying the equality (??) give us

α∗t =
ν̂t

σS
− κ

γσS
+
γ − 1
γ

1
σSW ∗

t

EP
t

[∫ T

t
C∗s

Dtξs
ξt

ds+W ∗
T

DtξT
ξt

]

where Dtξs, t ≤ s is computed as

Dtξs = −ξs
(
ν̂t +

∫ s

t

(
dB̂τ + ν̂τdτ

)
Dtν̂τ

)
.

The optimal portfolio α∗t is given by

α∗t =
ν̂t − κ
γσS

+
1− γ
γ

1
σSX∗t

EP
t

[∫ T

t

ξs
ξt
C∗s

(∫ s

t
Dtν̂τ

(
dB̂τ + ν̂τdτ

))
ds+

ξT
ξt
W ∗

T

∫ T

t

(
dB̂s + ν̂sds

)
Dtν̂s

]

which can be rewritten using the equivalent martingale measure P̃ as

α∗t =
μ̂t − r
γσ2

S

− κ

γσS
+

1− γ
γ

ert

σSW ∗
t

EP̃
t

[∫ T

t
e−rsC∗s

∫ s

t

(
Dtν̂τdB̃τ

)
ds+ e−rTW ∗

T

∫ T

t
Dtν̂sdB̃s

]

(26)

where B̃t = B̂t +
∫ t
0 ν̂sds. Comparing (??) to (??), we have

σA
t =

1− γ
γ

ert

W ∗
t

EP̃
t

[∫ T

t
e−rsC∗s

∫ s

t

(
Dtν̂τdB̃τ

)
ds+ e−rTW ∗

T

∫ T

t
Dtν̂sdB̃s

]
.
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Thus, σV
t is given by

σV
t =

(1− γ)Vt

γ

[
(ν̂t − κ) +

ert

W ∗
t

EP̃
t

[∫ T

t
e−rsC∗s

∫ s

t

(
Dtν̂τdB̃τ

)
ds+ e−rTW ∗

T

∫ T

t
Dtν̂sdB̃s

]]
.

Because EP̃
t

[∫ T
t e−rsC∗s

∫ s
t

(
Dtν̂τdB̃τ

)
ds+ e−rTW ∗

T

∫ T
t Dtν̂sdB̃s

]
> 0 and W ∗

t > 0 for all t ∈
[0, T ] and the condition (??) implies that νt − κ ≥ 0 always holds true, σV

t is strictly positive

for all t ∈ [0, T ] when either γ > 1 or 0 < γ < 1 holds. As a result, one can verify by (??) that

θ∗t = κ for all t ∈ [0, T ] and the optimal consumption and portfolio choice are given by (??) and

(??). This completes the proof. �

Proof of Corollary 1 For γ = 1, the utility process along the optimal path has the form

Vt = logC∗t + logAt. By Ito’s lemma, σV
t is given by σV

t = σC
t + σA

t , where σC
t = ν̂t − κ. The

optimal portfolio α∗t can be expressed as

α∗t =
μ̂t − r
σ2

S

− κ

σS
+
σA

t

σS
.

It follows from γ = 1 that

Dt (ξTW ∗
T ) = −κξTW ∗

T and Dt (ξsC∗s ) = −κξsC∗s

and that the optimal portfolio α∗t is given by

α∗t =
μ̂t − r
σ2

S

− κ

σS
.

Thus, σA
t = 0 and σV

t = ν̂t − κ. Since Pr (πt > 0) = 1 for 0 ≤ t ≤ T under the condition π0 > 0

(see Lemma 9.3, Liptser and Shiryaev 2001), it follows that σV
t > 0 for 0 ≤ t ≤ T . Thus, θ∗t = κ

for all t ∈ [0, T ] and the optimal consumption and portfolio policies are those given in (??) and

(??) by setting γ = 1. This completes the proof. �
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Figure 1: Optimal hedging demands plotted against the state probability: interim consumption and
terminal wealth. The graphs plot the optimal hedging demands as functions of π for the horizon T = 10
years and κ = 0, 0.08 and 0.16.
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Figure 2: Hedging demand components (with utility over interim consumption) plotted against the
state probability: κ = 0, 0.08 and 0.16. The investment horizon is 10 years. The left graph plots the
optimal hedging demand. The right graph plots the hedging demand components, hedgeIIR (the solid
line), hedgeκ with κ = 0.08 (the dash-dot line) and hedgeκ with κ = 0.16 (the dashed line). hedgeIIR:
hedging component due to incomplete information risk. hedgeκ (hedgeambiguity): hedging component due
to ambiguity.
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Figure 3: Optimal stock demand and the fraction of hedging demand in the optimal stock demand (with
utility over interim consumption) plotted against the state probability for κ = 0, 0.08 and 0.16. The
investment horizon is 10 years.

35



0 2 4 6 8 10 12 14 16 18 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Horizon in years (T)

O
p
ti
m

a
l 
s
to

c
k
 d

e
m

a
n
d
 (

%
)

κ=0
κ=0.08
κ=0.16

Figure 4: Horizon effect. The investment horizon ranges from T = 0 to 20 years. The state probability
π is set at its steady-state value.
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Figure 5: The economic value of regimes. The graph plots the percentage difference in the present value of
the certainty equivalent wealth (PCEW ) between a hidden Markov model and an IID model as a function
of the horizon (ranging from 1 year to 20 years) for κ = 0, 0.08 and 0.16. The parameter estimates of the
hidden Markov model are reported in Table 1. The state probability π is set at its steady-state value.
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Figure 6: Time series plot of PCEW s under different models and preferences: 1986.1–1995.4. The
model specifications include a hidden Markov model (HMM) with two regimes and an IID model. Three
alternative preferences include κ = 0 (expected utility), κ = 0.08 and κ = 0.16.

Table 1: Parameter estimates of a two-regime Markov switching model for returns (1947.1–1995.4)

Parameter Descriptions Notation Values
High mean return regime μH 0.1129
Low mean return regime μL 0.0283
Volatility of returns σ 0.1569
Transition density parameter χ 0.2589
Transition density parameter λ 0.6018

This table reports the ML estimates of a two-regime hidden Markov model for stock returns where the low mean return
regime, μL, is exogenously fixed. The estimates reported are continuous-time estimates that are derived from the discrete-
time estimates, where the latter are obtained based on real quarterly log returns on the CRSP value-weighted market portfolio
for the period 1947.1–1995.4. The parameter values are calculated by suitably annualizing the discrete-time estimates.
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Table 2: Comparison of out-of-sample performance I

HMM IID
T = 1 T = 5 T = 10 T = 1 T = 5 T = 10

Panel A: κ = 0
Mean -0.336 -0.276 -0.190 -0.337 -0.284 -0.204
Stdev 0.022 0.024 0.033 0.023 0.025 0.038
5% c.i.-lower -0.381 -0.324 -0.256 -0.384 -0.333 -0.281
5% c.i.-upper -0.294 -0.231 -0.128 -0.295 -0.236 -0.133
10% c.i.-lower -0.373 -0.316 -0.245 -0.376 -0.325 -0.268
10% c.i.-upper -0.301 -0.238 -0.137 -0.301 -0.243 -0.143
Panel B: κ = 0.08
Mean -0.321 -0.240 -0.147 -0.321 -0.245 -0.156
Stdev 0.018 0.018 0.022 0.018 0.019 0.025
5% c.i.-lower -0.356 -0.276 -0.191 -0.358 -0.282 -0.206
5% c.i.-upper -0.288 -0.206 -0.107 -0.288 -0.209 -0.110
10% c.i.-lower -0.350 -0.270 -0.184 -0.352 -0.276 -0.198
10% c.i.-upper -0.293 -0.211 -0.113 -0.293 -0.215 -0.117
Panel C: κ = 0.16
Mean -0.308 -0.211 -0.117 -0.309 -0.214 -0.122
Stdev 0.014 0.013 0.014 0.014 0.014 0.016
5% c.i.-lower -0.336 -0.237 -0.145 -0.337 -0.241 -0.154
5% c.i.-upper -0.283 -0.185 -0.091 -0.283 -0.187 -0.092
10% c.i.-lower -0.331 -0.233 -0.141 -0.332 -0.237 -0.149
10% c.i.-upper -0.287 -0.189 -0.095 -0.287 -0.192 -0.097

This table summarizes out-of-sample performance measures for portfolio strategies under different return specifications and
preferences. The return specifications include a hidden Markov model (HMM) with two regimes and an IID model. The
alternative preferences include κ = 0 (expected utility), κ = 0.08 and κ = 0.16. The out-of-sample performance measures are
calculated based on realized power utility with γ = 4 and 50,000 bootstrap trials for three investment horizons: 1, 5, and 10
years and for the out-of-sample period 1996.1–2009.4. The results reported include the mean, standard deviation, 5% and
10% confidence intervals of the bootstrap trials of realized power utility.

Table 3: Comparison of out-of-sample performance II

HMM IID
T = 1 T = 5 T = 10 T = 1 T = 5 T = 10

Panel A: κ = 0
Mean -0.027 -0.065 -0.072 -0.029 -0.073 -0.086
Stdev 0.009 0.011 0.019 0.010 0.012 0.024
t-stat 3.136 6.248 3.797 3.016 6.229 3.564
Panel B: κ = 0.08
Mean -0.012 -0.029 -0.030 -0.013 -0.034 -0.039
Stdev 0.004 0.005 0.008 0.005 0.006 0.011
t-stat 3.056 6.267 3.918 2.819 6.120 3.515
Panel C: κ = 0.16
Mean n.a. n.a. n.a. -0.001 -0.003 -0.005
Stdev n.a. n.a. n.a. 0.001 0.001 0.002
t-stat n.a. n.a. n.a. 0.595 2.568 2.258

This table summarizes out-of-sample performance measures for portfolio strategies under different return specifications and
preferences. The return specifications include a hidden Markov model (HMM) with two regimes and an IID model. The
alternative preferences include κ = 0 (expected utility), κ = 0.08 and κ = 0.16. The out-of-sample performance measures are
calculated based on differences in realized power utility with γ = 4 between the strategy {HMM, κ = 0.16} and all the other
strategies. The number of bootstrap trials is 50,000. The investment horizons are 1, 5, and 10 years. The out-of-sample
period is 1996.1–2009.4. The results reported include the mean, standard deviation, and t-stat of the bootstrap trials of
differences in realized power utility.
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