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A BLASCHKE-TYPE CONDITION FOR ANALYTIC

FUNCTIONS ON FINITELY CONNECTED DOMAINS.

APPLICATIONS TO COMPLEX PERTURBATIONS OF

A FINITE-BAND SELFADJOINT OPERATOR

L. GOLINSKII AND S. KUPIN

Abstract. This is a sequel of the article by Borichev–Golinskii–
Kupin [2] where the authors obtain Blaschke-type conditions for
special classes of analytic functions in the unit disk which sat-
isfy certain growth hypotheses. These results were applied to get
Lieb–Thirring inequalities for complex compact perturbations of a
selfadjoint operator with a simply connected resolvent set.

The first result of the present paper is an appropriate local ver-
sion of the Blaschke-type condition from [2]. We apply it to obtain
a similar condition for an analytic function in a finitely connected
domain of a special type. Such condition is by and large the same
as a Lieb–Thirring type inequality for complex compact pertur-
bations of a selfadjoint operator with a finite-band spectrum. A
particular case of this result is the Lieb–Thirring inequality for a
selfadjoint perturbation of the Schatten class of a periodic (or a
finite-band) Jacobi matrix. The latter result seems to be new in
such generality even in this framework.

Introduction

Let e = {αj, βj}j=1,...,n+1 ⊂ R be a set of distinct points. We suppose
that

(0.1) −∞ < α1 < β1 < α2 < β2 < · · · < αn+1 < βn+1 < +∞.

Let also

(0.2) e =
n+1
⋃

j=1

ej, ej = [αj, βj],

and Ω := C̄\e. For a function f analytic in Ω, f ∈ A(Ω), Zf stands for
the set of the zeros counting the multiplicities. By d(λ, M) we denote
the distance between a point λ and a set M .

Our main functional theoretic result looks as follows.
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Theorem 0.1. Let f ∈ A(Ω), |f(∞)| = 1, and, for p, q ≥ 0

(0.3) log |f(λ)| ≤
K1

dp(λ, e) dq(λ, e)
.

Then for any 0 < ε < 1

(0.4)
∑

λ∈Zf

dp+1+ε(λ, e) da(p,q,ε)(λ, e) (1 + |λ|)b(p,q,ε) ≤ C · K1,

where

a(p, q, ε) =
(p + 2q − 1 + ε)+ − (p + 1 + ε)

2
,

b(p, q, ε) = (p + q − 1 + ε)+ −
(p + 2q − 1 + ε)+ + p + 1 + ε

2
.

As usual, x+ = max{x, 0}. Here and in the sequel C = C(e, p, q, ε)
stands for a generic positive constant which depends on indicated pa-
rameters. Of course, inequality (0.4) looks somewhat cumbersome, and
it can be simplified in specific situations. Here are two examples.

Corollary 0.2. Let f ∈ A(Ω), |f(∞)| = 1, and, for p, q ≥ 0, p+q ≥ 1

log |f(λ)| ≤
K1

dp(λ, e) dq(λ, e)
.

Then for any 0 < ε < 1

(0.5)
∑

λ∈Zf

dp+1+ε(λ, e) dq−1(λ, e)

1 + |λ|
≤ C · K1.

The case q = 0 is important for applications.

Corollary 0.3. Let f ∈ A(Ω), |f(∞)| = 1, and

(0.6) log |f(λ)| ≤
K1

dp(λ, e)
, p ≥ 0.

Then for any 0 < ε < 1

(0.7)
∑

λ∈Zf

dp+1+ε(λ, e)

d(λ, e)(1 + |λ|)
≤ C · K1,

as long as p ≥ 1, and

(0.8)
∑

λ∈Zf

dp+1+ε(λ, e)

(d(λ, e) (1 + |λ|))(p+1+ε)/2
≤ C · K1

for p < 1.

All operators appearing in the present paper act on a separable
Hilbert space H. Consider a (bounded) selfadjoint operator A0 de-
fined on H. We suppose it to be finite-band, i.e., for its spectrum

σ(A0) = σess(A0) = e,
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where e looks like in (0.2). A typical example here is a double infinite
periodic Jacobi matrix. Let B ∈ Sp, the Schatten class of operators,
p ≥ 1. We do not suppose B to be selfadjoint. By the Weyl theorem,
see, e.g., [8], the essential spectrum σess(A), A = A0 + B, coincides
with σess(A0).

We want to have some information on the distribution of the discrete
spectrum σd(A) := σ(A)\σess(A), which consists of eigenvalues of finite
algebraic multiplicity. It is clear that the points from σd(A) can only
accumulate to e. Here is the quantitative version of this intuition.

Theorem 0.4. Let A0 be as described above, B ∈ Sp and A = A0 +B.

Then, for 0 < ε < 1 and p ≥ 1

(0.9)
∑

λ∈σd(A)

dp+1+ε(λ, e)

d(λ, e) (1 + |λ|)
≤ C · ‖B‖Sp

,

and for 0 ≤ p < 1

(0.10)
∑

λ∈Zf

dp+1+ε(λ, e)

(d(λ, e) (1 + |λ|))(p+1+ε)/2
≤ C · ‖B‖Sp

.

In such generality the above inequality seems to be new even for
the case when A is a selfadjoint perturbation of a periodic selfadjoint
Jacobi matrix A0.

Remark 0.5. The case n = 0, i.e., σ(A0) = [α, β], is not exceptional.
The point is that for e = {α, β}

C1|(λ − α)(λ − β)| ≤ d(λ, e)(1 + |λ|) ≤ C2|(λ − α)(λ − β)|, λ ∈ C,

with absolute constants C1,2, so we come to Theorem 2.3 from [2].

For the Lieb–Thirring inequalities for nonselfadjoint compact pertur-
bations of the discrete Laplacian see also Golinskii–Kupin [7], Hansmann–
Katriel [9]. A few interesting results of the same flavor on Lieb–Thirring
inequalities for selfadjoint Jacobi matrices and Schrödinger operators
are in Hundertmark–Simon [10], Damanik–Killip–Simon [3] and Frank–
Simon [6].

As usual, we write D = {z : |z| < 1} for the unit disk, T = {z : |z| =
1} for the unit circle, and B(w0, r) = {w : |w − w0| < r} for balls in
the complex plane. Sometimes, we label the balls by the variable of
the corresponding complex plane, i.e. Bw(z0, r) (Bλ(z0, r)) stays for a
ball in the w-plane (the λ-plane), respectively.

1. Local version of Borichev–Golinskii–Kupin Theorem

We begin with the result of Borichev–Golinskii–Kupin [2, Theorem
0.2] and its version in [9, Theorem 4].
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Theorem 1.1. Let I = {ζj}j=1,...,k be a finite subset of T, f ∈ A(D),
|f(0)| = 1, and for p′, q′, s ≥ 0

log |f(z)| ≤
K|z|s

dp′(z, T) dq′(z, I)
, z ∈ D.

Then for any 0 < ε < 1

∑

z∈Zf

dp′+1+ε(z, T)

|z|(s−1+ε)+
d(q′−1+ε)+(z, I) ≤ C(I, p′, q′, ε) · K.

Our goal here is to prove a local version of the above result (cf. [4,
Theorem 7]).

Let G ⊂ D̄ be an open circular polygon, 0 ∈ G, with vertices {ui} ∈
T, and sides (arcs) τi = [ui, ui+1], i = 1, 2, . . . , 2N , u2N+1 = u1 (see
Figure 1). The arcs τ2j lie on T, and τ2j−1, which we call the inner
sides of G, lie on some orthocircles, that is, circles orthogonal to T.
Put

∆1 = ∂G∩D =

{

N
⋃

j=1

(u2j−1, u2j)

}

, ∆2 = ∂G∩T =

{

N
⋃

j=1

[u2j, u2j+1]

}

,

so
∂G = ∆1 ∪ ∆2.

Let E = {ζj}j=1,...,k ⊂ ∆2 be a selected finite subset of the unit circle.

We take G̃ ⊂ G to be a properly “shrunk” circular polygon, in such a
way that E ⊂ ∆̃2, see again Figure 1. The notation for G̃ is the same
as for G up to “waves” referring to the first set. So, for instance, the
vertices of G̃ are ũi,

∂G̃ = ∆̃1 ∪ ∆̃2, ∆̃1 = ∂G̃ ∩ D, ∆̃2 = ∂G̃ ∩ T.

It is important that minj d(τ2j−1, τ̃2j−1) = d′ > 0, j = 1, 2, . . . , N .
Consider a conformal map w, w : D → G, normalized by w(0) = 0,

w′(0) > 0. Sometimes, to indicate explicitly the variables, we will write
w : Dz → Gw.

Put D̃ = w−1(G̃) ⊂ Dz and introduce

• preimages of vertices vj = w−1(uj), ṽj = w−1(ũj), j = 1, . . . , 2N ,
• preimages of sides τ̃j = w−1(τj) ⊂ Tz, j = 1, . . . , 2N .
• preimages of selected points I = {ξj = w−1(ζj)}, j = 1, . . . , k.

Clearly, I is contained in the closure of D̃.
For short, we write w = w(z). Here is a couple of elementary prop-

erties of w:

• d(z, Tz) = 1− |z| ≤ 1− |w| = d(w, Tw) by the Schwarz lemma.
• By [11, Corollary 1.4], d(w, ∂G) ≍ |w′(z)| (1−|z|) = |w′(z)| d(z, T).

Since z ∈ D̃ if and only if w ∈ G̃, and |w′(z)| ≍ 1 for z ∈ D̃,
then

(1.1) d(w, ∂G) ≍ d(z, T), z ∈ D̃.
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Figure 1. The domains G, G̃ and the map w.

Here and in what follows the equivalence relation A ≍ B means that
c1 ≤ A/B ≤ c2 for generic positive constants ci which depend only on
G and E. Similarly,

(1.2) d(w, E) ≍ d(z, I), z ∈ D.

Indeed, for z ∈ D̃, w ∈ G̃, we have |w′(z)|, |z′(w)| ≍ 1. For z ∈ D\D̃
both sides in (1.2) are equivalent to 1.

Let now f ∈ A(G), |f(0)| = 1, and assume that for some p′, q′, s ≥ 0

(1.3) log |f(w)| ≤
K|w|s

dp′(w, T) dq′(w, E)
, w ∈ G.

Consider a function F (z) = f(w(z)) ∈ A(Dz). By using the first
property of w, equivalence |w| ≍ |z|, and (1.2), we obtain

log |F (z)| ≤
K|z|s

dp′(z, T) dq′(z, I)
, z ∈ D.

Theorem 1.1 now implies

∑

z∈ZF

dp′+1+ε(z, T)

|z|(s−1+ε)+
d(q′−1+ε)+(z, I) ≤ C · K

for any 0 < ε < 1, and, by far,

∑

z∈D̃∩ZF

dp′+1+ε(z, T)

|z|(s−1+ε)+
d(q′−1+ε)+(z, I) ≤ C · K.

Of course, Zf = w(ZF ), so by (1.1) and (1.2)

∑

w∈G̃∩ZF

dp′+1+ε(w, ∂G)

|w|(s−1+ε)+
d(q′−1+ε)+(w, E) ≤ C · K.
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Let us show that d(w, ∂G) ≥ C d(w, Tw), as long as w ∈ G̃. In-
deed, if d(w, ∂G) = d(w, ∆2), then d(w, ∂G) ≥ d(w, Tw). Otherwise,
d(w, ∂G) = d(w, ∆1), so d(w, ∂G) ≥ d′ and

d(w, Tw) = 1 − |w| ≤ 1 ≤
d(w, ∂G)

d′ ,

as claimed. Hence

(1.4)
∑

w∈G̃∩ZF

dp′+1+ε(w, Tw)

|w|(s−1+ε)+
d(q′−1+ε)+(w, E) ≤ C · K.

That is, we have proven

Theorem 1.2. Let f ∈ A(G), |f(0)| = 1, and for p′, q′, s ≥ 0

log |f(w)| ≤
K|w|s

dp′(w, T) dq′(w, E)
, w ∈ G.

Then, (1.4) holds for any 0 < ε < 1.

It goes without saying that the similar counterpart of Theorem 0.3
from [2] is also valid in the present setting.

2. Uniformization, Fuchsian groups, and all that

In this section we are aimed at proving Theorem 0.1 with the help
of Theorem 1.2.

We start reminding the celebrated uniformization theorem of Klein–
Koebe–Poincaré [1, Ch. III], which is one of the key ingredients of the
proof. The result is valid for arbitrary Riemann surfaces, but we will
formulate it for the so called planar domains, since this is enough for
our purposes. Recall that a discrete group of Möbius transformations
Γ (of D on itself) is called a Fuchsian group. The discreteness means
that any orbit {γ(z)}γ∈Γ is a discrete set in the relative topology of D.

Let Ω ⊂ C̄ be a domain with the boundary containing more than
two points, and λ0 ∈ Ω. The uniformization theorem says that there
exists a covering map λ : D → Ω, which is unique provided the normal-
ization conditions λ(0) = λ0, λ′(0) > 0 are set. Moreover, the map is
automorphic with respect to a certain Fuchsian group Γ, i.e., λ ◦ γ = λ
for any γ ∈ Γ. Symbolically, we write

Ω ≃ D/Γ,

where two points z, w ∈ D are equivalent with respect to Γ if and only
if there is a γ ∈ Γ such that w = γ(z). For further terminology on the
subject, we refer to [1, Ch. III], [5]; see also Simon [13] for a recent
presentation.

We will focus upon the special case Ω = C̄\e, described in (0.1). The
standard normalization now is

(2.1) λ(0) = ∞, lim
w→0

wλ(w) = κ(e) > 0.
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The properties of the Fuchsian group Γ in this situation are well-
studied, see [13, Chapter 9.6]. In particular, Γ is a free nonabelian
group with n generators {γj}

n
j=1. The fundamental domain F (more

precisely, its interior F int) is a circular polygon in D, its topological
boundary in D consists of n orthocircles in C+ and their complex con-
jugates, and there is a finite distance in D between the different ortho-
circles, see Figure 2. We label the vertices of F by E = λ−1(e) = {wj}.

The following relations for the covering map are crucial in the sequel.

Lemma 2.1. Let w ∈ F , closure in D, and λ = λ(w). Then

(2.2) d(λ, e) ≍
d2(w, E)

|w|

and

(2.3) d(λ, e) ≍
d(w, Tw) d(w, E)

|w|
.

Proof. In the case w ∈ B(0, r) both (2.2) and (2.3) are obvious, since

d(λ, e) ≍ d(λ, e) ≍ |λ| ≍
1

|w|
, d(w, Tw) ≍ d(w, E) ≍ 1

by (2.1). So we assume |w| ≥ r.
Put

Bj := Bw(wj, r) ∩ F int, B :=
⋃

Bj,

with small enough r = r(e), so Bj are disjoint. The argument is based
on the properties of the covering map (cf., e.g., [13, Theorem 9.6.4]):

(1) λ can be extended analytically to a certain domain, which con-

tains F int;
(2) λ is one-one in F int, and λ′(w) = 0 if and only if w = wj;
(3) for w ∈ Bj, we have

(2.4) λ(w) = λ(wj) + Cj(w − wj)
2 + O((w − wj)

3),

and Cj 6= 0.

By (2.4), we have for w ∈ Bj

d(λ, e) = |λ(w) − λ(wj)| ≍ |w − wj|
2 = d(w, E)2 ≍

d(w, E)2

|w|
,

so (2.2) is true on B. For w ∈ F int\(B ∪ B(0, r))

d(λ, e) ≍ d(w, E) ≍ |w| ≍ 1,

and the proof of (2.2) is complete.
To prove (2.3) for |w| ≥ r we begin with its simple half

(2.5) d(λ, e) ≤ C d(w, E) d(w, Tw).
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Figure 2. Uniformization of the domain Ω and the map λ.

For w ∈ Bj take ζ ∈ TF = T∩F so that |w − ζ| = d(w, TF). By (2.4)

|λ(ζ) − λ(w)| ≤ max
z∈[w,ζ]

|λ′(z)| |ζ − w| ≤ C|w − wj| |ζ − w|

= C d(w, E) d(w, TF).

Since |λ(ζ) − λ(w)| ≥ d(λ, e) and d(w, Tw) ≍ d(w, TF), (2.5) holds for
w ∈ Bj. The similar argument applies in the case

w ∈ F int \(B ∪ B(0, r)), where |λ′| ≍ 1, so (2.5) is proved.
Suppose next, that d(λ, e) ≥ C d(λ, e). Then by (2.2) for |w| ≥ r

d(λ, e) ≥ C d2(w, E) ≥ C d(w, E) d(w, Tw),

which is opposite to (2.5), so (2.3) is true. Hence it remains to consider
the case

(2.6) d(λ, e) ≤ δ d(λ, e),

δ is small enough.
We apply a version of [11, Corollary 1.4], which reads

(2.7) d(g, ∂Ω2) ≍ |g′(w)| d(w, ∂Ω1),

g : Ω1 → Ω2 is a conformal map of bounded domains Ωj. Let Ω2 =
B(0, R) ∩ C− be a large semidisk, such that e ⊂ ∂Ω2, g = λ restricted
on the preimage of the later set (the part of F int in the upper half plane
away from the origin). The part of (2.6) in C− is a union T = ∪Tj of
small isosceles triangles Tj with bases ej. It is clear from the properties
of the covering map that

d(λ, ∂Ω2) = d(λ, e), λ ∈ T,

d(w, ∂Ω1) ≍ d(w, Tw), |λ′(w)| ≍ d(w, E), w ∈ λ(−1)(T ),

so by (2.7)
d(λ, e) ≍ d(w, E) · d(w, Tw).
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The proof is complete. �

Proof of Theorem 0.1. Let λ = λ(w) : Dw → Ωλ be the covering map
with normalization (2.1), Γ the corresponding Fuchsian group with

generators {γj}
n
j=1, E = λ−1(e) the vertices of F . Put γ2n+1−k := γ

(−1)
k ,

k = 1, . . . , n.
Let f ∈ A(Ω) satisfy (0.3). It is clear that |f(∞)| = 1. We put

F (w) := f(λ(w)). Then F ∈ A(D) and automorphic with respect to
Γ. By Lemma 2.1

(2.8) log |F (w)| ≤
K1|w|p+q

dp(w, T) dp+2q(w, E)
, w ∈ F .

The special structure of Γ and F enables one to ”inflate” the domain
F int slightly to get another polygon G, so that

F ⊂ G ⊂ F
⋃

(

2n
⋃

j=1

γj(F)

)

, γn+k(F) = γk(F), k = 1, . . . , n.

The distance between the corresponding inner sides of G and F int is
strictly positive.

It is not hard to see that bound (2.8) actually holds in the bigger
polygon G. Indeed, let Gj ⊂ G\F int be an “annular segment” between
the corresponding inner sides of G and F int, so G\F int = ∪2n

j=1Gj. We

have to check (2.8) on each Gj. For w ∈ Gj there is a unique z ∈ F int

so that w = γj(z). Since

d(w, T) = d(γj(z), γj(T)) ≍ d(z, T),

d(z, E) = d(γ−1
j (w), E) ≍ d(w, γj(E)) ≥ C d(w, E),

where we used in an essential way that the number of generators is
finite, we see that for w ∈ Gj

log |F (w)| = log |F (z)| ≤
K1|z|

p+q

dp(z, T) dp+2q(z, E)

≤
CK1|w|p+q

dp(w, T) dp+2q(w, E)
,

the first equality being exactly the automorphic property of F . Theo-
rem 1.2 with s = p + q then yields

(2.9)
∑

w∈G̃∩ZF

dp+1+ε(w, Tw)

|w|(p+q−1+ε)+
d(p+2q−1+ε)+(w, E) ≤ C · K1

for 0 < ε < 1, where G̃ is another polygon with F int ⊂ G̃ ⊂ G. The
more so, the same inequality holds for w ∈ F int ∩ ZF .

It remains only to go back to f ∈ A(Ω) and its zero set Zf . Note
that although each point from Zf has infinitely many preimages in

D, we can restrict ourselves with those in F int. It follows easily from
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the properties of the covering map (see the proof of Lemma 2.1) that
1 + |λ| ≍ 1

|w|
. Hence, (2.2) yields

d(w, E) ≍

(

d(λ, e)

1 + |λ|

)1/2

,

and, with the help of (2.3)

d(w, Tw) ≍
d(λ, e)

(d(λ, e) (1 + |λ|))1/2
.

Substitution of the above relations in (2.9) gives (0.4), and the proof
of Theorem 0.1 is complete. 2

3. Applications to complex perturbations of a

finite-band selfadjoint operator

Consider a bounded finite-band selfadjoint operator A0, defined on
H. Let A = A0 + B, B ∈ Sp, with p ≥ 1, B is not supposed to be
selfadjoint.

The Schatten classes Sp form a nested family of operator ideals, that
is,

(1) if p < q, then Sp ⊂ Sq and ‖ · ‖Sq
≤ ‖ · ‖Sp

;
(2) if P is a bounded operator, and Q ∈ Sp, then PQ, QP ∈ Sp

and ‖PQ‖Sp
, ‖QP‖Sp

≤ ‖P‖‖Q‖Sp
.

More information on the classes Sp can be found in monographs [8] and
[12].

Given p ≥ 1 put ⌈p⌉ := min{j ∈ N : j ≥ p}. The following object
known as a regularized perturbation determinant

gp(λ) := det ⌈p⌉(A − λ)(A0 − λ)−1

is well defined, gp ∈ A(Ω), Ω = C\σ(A0). The basic property of gp

relates its zero set and the discrete spectrum of A:
λ ∈ Zgp

with order k if and only if λ ∈ σd(A) with algebraic multi-
plicity k.

Furthermore, for λ ∈ Ω the bound

log |gp(λ)| ≤ Cp ‖(A0 − λ)−1‖p ‖B‖p
Sp

holds, see, e.g., [12]. For the selfadjoint and finite-band operator A0

the latter turns into

log |gp(λ)| ≤ Cp

‖B‖p
Sp

dp(λ, e)
,

which is exactly (0.6).
Theorem 0.4 thus follows by a straightforward application of Corol-

lary 0.3.
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