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 where the authors obtain Blaschke-type conditions for special classes of analytic functions in the unit disk which satisfy certain growth hypotheses. These results were applied to get Lieb-Thirring inequalities for complex compact perturbations of a selfadjoint operator with a simply connected resolvent set.

. We apply it to obtain a similar condition for an analytic function in a finitely connected domain of a special type. Such condition is by and large the same as a Lieb-Thirring type inequality for complex compact perturbations of a selfadjoint operator with a finite-band spectrum. A particular case of this result is the Lieb-Thirring inequality for a selfadjoint perturbation of the Schatten class of a periodic (or a finite-band) Jacobi matrix. The latter result seems to be new in such generality even in this framework.

Introduction

Let e = {α j , β j } j=1,...,n+1 ⊂ R be a set of distinct points. We suppose that (0.1)

-∞ < α 1 < β 1 < α 2 < β 2 < • • • < α n+1 < β n+1 < +∞.
Let also (0.

2) e = n+1 j=1 e j , e j = [α j , β j ],

and Ω := C\e. For a function f analytic in Ω, f ∈ A(Ω), Z f stands for the set of the zeros counting the multiplicities. By d(λ, M ) we denote the distance between a point λ and a set M . Our main functional theoretic result looks as follows.

Theorem 0.1. Let f ∈ A(Ω), |f (∞)| = 1, and, for p, q ≥ 0 (0.3) log |f (λ)| ≤ K 1 d p (λ, e) d q (λ, e) .

Then for any 0 < ε < 1 (0.4)

λ∈Z f d p+1+ε (λ, e) d a(p,q,ε) (λ, e) (1 + |λ|) b(p,q,ε) ≤ C • K 1 ,
where

a(p, q, ε) = (p + 2q -1 + ε) + -(p + 1 + ε) 2 , b(p, q, ε) = (p + q -1 + ε) + - (p + 2q -1 + ε) + + p + 1 + ε 2 .
As usual, x + = max{x, 0}. Here and in the sequel C = C(e, p, q, ε) stands for a generic positive constant which depends on indicated parameters. Of course, inequality (0.4) looks somewhat cumbersome, and it can be simplified in specific situations. Here are two examples.

Corollary 0.2. Let f ∈ A(Ω), |f (∞)| = 1, and, for p, q ≥ 0, p+q ≥ 1

log |f (λ)| ≤ K 1 d p (λ, e) d q (λ, e) .
Then for any 0 < ε < 1 (0.5)

λ∈Z f d p+1+ε (λ, e) d q-1 (λ, e) 1 + |λ| ≤ C • K 1 .
The case q = 0 is important for applications.

Corollary 0.3. Let f ∈ A(Ω), |f (∞)| = 1, and 
(0.6) log |f (λ)| ≤ K 1 d p (λ, e)
, p ≥ 0.

Then for any 0 < ε < 1 (0.7)

λ∈Z f d p+1+ε (λ, e) d(λ, e)(1 + |λ|) ≤ C • K 1 ,
as long as p ≥ 1, and

(0.8) λ∈Z f d p+1+ε (λ, e) (d(λ, e) (1 + |λ|)) (p+1+ε)/2 ≤ C • K 1 for p < 1.
All operators appearing in the present paper act on a separable Hilbert space H. Consider a (bounded) selfadjoint operator A 0 defined on H. We suppose it to be finite-band, i.e., for its spectrum

σ(A 0 ) = σ ess (A 0 ) = e,
where e looks like in (0.2). A typical example here is a double infinite periodic Jacobi matrix. Let B ∈ S p , the Schatten class of operators, p ≥ 1. We do not suppose B to be selfadjoint. By the Weyl theorem, see, e.g., [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF], the essential spectrum σ ess (A), A = A 0 + B, coincides with σ ess (A 0 ).

We want to have some information on the distribution of the discrete spectrum σ d (A) := σ(A)\σ ess (A), which consists of eigenvalues of finite algebraic multiplicity. It is clear that the points from σ d (A) can only accumulate to e. Here is the quantitative version of this intuition.

Theorem 0.4. Let A 0 be as described above, B ∈ S p and A = A 0 + B. Then, for 0 < ε < 1 and p ≥ 1 (0.9)

λ∈σ d (A) d p+1+ε (λ, e) d(λ, e) (1 + |λ|) ≤ C • B Sp ,
and for 0 ≤ p < 1 (0.10)

λ∈Z f d p+1+ε (λ, e) (d(λ, e) (1 + |λ|)) (p+1+ε)/2 ≤ C • B Sp .
In such generality the above inequality seems to be new even for the case when A is a selfadjoint perturbation of a periodic selfadjoint Jacobi matrix A 0 .

Remark 0.5. The case n = 0, i.e., σ(A 0 ) = [α, β], is not exceptional. The point is that for e = {α, β}

C 1 |(λ -α)(λ -β)| ≤ d(λ, e)(1 + |λ|) ≤ C 2 |(λ -α)(λ -β)|, λ ∈ C,
with absolute constants C 1,2 , so we come to Theorem 2.3 from [START_REF] Borichev | A Blaschke-type condition and its application to complex Jacobi matrices[END_REF].

For the Lieb-Thirring inequalities for nonselfadjoint compact perturbations of the discrete Laplacian see also Golinskii-Kupin [START_REF] Golinskii | Lieb-Thirring bounds for complex Jacobi matrices[END_REF], Hansmann-Katriel [START_REF] Hansmann | Inequalities for the eigenvalues of non-selfadjoint Jacobi operators[END_REF]. A few interesting results of the same flavor on Lieb-Thirring inequalities for selfadjoint Jacobi matrices and Schrödinger operators are in Hundertmark-Simon [START_REF] Hundertmark | Eigenvalue bounds in the gaps of Schrdinger operators and Jacobi matrices[END_REF], Damanik-Killip-Simon [START_REF] Damanik | Perturbations of orthogonal polynomials with periodic recursion coefficients[END_REF] and Frank-Simon [START_REF] Frank | Critical Lieb-Thirring bounds in gaps and the generalized Nevai conjecture for finite gap Jacobi matrices[END_REF].

As usual, we write D = {z : |z| < 1} for the unit disk, T = {z : |z| = 1} for the unit circle, and B(w 0 , r) = {w : |w -w 0 | < r} for balls in the complex plane. Sometimes, we label the balls by the variable of the corresponding complex plane, i.e. B w (z 0 , r) (B λ (z 0 , r)) stays for a ball in the w-plane (the λ-plane), respectively.

Local version of Borichev-Golinskii-Kupin Theorem

We begin with the result of Borichev-Golinskii-Kupin [2, Theorem 0.2] and its version in [START_REF] Hansmann | Inequalities for the eigenvalues of non-selfadjoint Jacobi operators[END_REF]Theorem 4].

Theorem 1.1. Let I = {ζ j } j=1,...,k be a finite subset of T, f ∈ A(D), |f (0)| = 1, and for p ′ , q ′ , s ≥ 0 log |f (z)| ≤ K|z| s d p ′ (z, T) d q ′ (z, I) , z ∈ D.
Then for any 0 < ε < 1

z∈Z f d p ′ +1+ε (z, T) |z| (s-1+ε) + d (q ′ -1+ε) + (z, I) ≤ C(I, p ′ , q ′ , ε) • K.
Our goal here is to prove a local version of the above result (cf. [4, Theorem 7]).

Let G ⊂ D be an open circular polygon, 0 ∈ G, with vertices {u i } ∈ T, and sides (arcs) 1). The arcs τ 2j lie on T, and τ 2j-1 , which we call the inner sides of G, lie on some orthocircles, that is, circles orthogonal to T. Put

τ i = [u i , u i+1 ], i = 1, 2, . . . , 2N , u 2N +1 = u 1 (see Figure
∆ 1 = ∂G∩D = N j=1 (u 2j-1 , u 2j ) , ∆ 2 = ∂G∩T = N j=1 [u 2j , u 2j+1 ] , so ∂G = ∆ 1 ∪ ∆ 2 . Let E = {ζ j } j=1,...,k ⊂ ∆ 2 be
a selected finite subset of the unit circle. We take G ⊂ G to be a properly "shrunk" circular polygon, in such a way that E ⊂ ∆2 , see again Figure 1. The notation for G is the same as for G up to "waves" referring to the first set. So, for instance, the vertices of G are ũi ,

∂ G = ∆1 ∪ ∆2 , ∆1 = ∂ G ∩ D, ∆2 = ∂ G ∩ T. It is important that min j d(τ 2j-1 , τ2j-1 ) = d ′ > 0, j = 1, 2, . . . , N .
Consider a conformal map w, w : D → G, normalized by w(0) = 0, w ′ (0) > 0. Sometimes, to indicate explicitly the variables, we will write w :

D z → G w . Put D = w -1 ( G) ⊂ D z and introduce • preimages of vertices v j = w -1 (u j ), ṽj = w -1 (ũ j ), j = 1, . . . , 2N , • preimages of sides τj = w -1 (τ j ) ⊂ T z , j = 1, . . . , 2N . • preimages of selected points I = {ξ j = w -1 (ζ j )}, j = 1, . . . , k. Clearly, I is contained in the closure of D.
For short, we write w = w(z). Here is a couple of elementary properties of w: Let now f ∈ A(G), |f (0)| = 1, and assume that for some p ′ , q ′ , s ≥ 0

• d(z, T z ) = 1 -|z| ≤ 1 -|w| = d(
(1.3) log |f (w)| ≤ K|w| s d p ′ (w, T) d q ′ (w, E) , w ∈ G.
Consider a function F (z) = f (w(z)) ∈ A(D z ). By using the first property of w, equivalence |w| ≍ |z|, and (1.2), we obtain

log |F (z)| ≤ K|z| s d p ′ (z, T) d q ′ (z, I) , z ∈ D. Theorem 1.1 now implies z∈Z F d p ′ +1+ε (z, T) |z| (s-1+ε) + d (q ′ -1+ε) + (z, I) ≤ C • K
for any 0 < ε < 1, and, by far,

z∈ D∩Z F d p ′ +1+ε (z, T) |z| (s-1+ε) + d (q ′ -1+ε) + (z, I) ≤ C • K.
Of course, Z f = w(Z F ), so by (1.1) and (1.2) 

w∈ G∩Z F d p ′ +1+ε (w, ∂G) |w| (s-1+ε) + d (q ′ -1+ε) + (w, E) ≤ C • K.
w∈ G∩Z F d p ′ +1+ε (w, T w ) |w| (s-1+ε) + d (q ′ -1+ε) + (w, E) ≤ C • K.
That is, we have proven

Theorem 1.2. Let f ∈ A(G), |f = 1, and for p ′ , q ′ , s ≥ 0 log |f (w)| ≤ K|w| s d p ′ (w, T) d q ′ (w, E) , w ∈ G.
Then, (1.4) holds for any 0 < ε < 1.

It goes without saying that the similar counterpart of Theorem 0.3 from [START_REF] Borichev | A Blaschke-type condition and its application to complex Jacobi matrices[END_REF] is also valid in the present setting.

Uniformization, Fuchsian groups, and all that

In this section we are aimed at proving Theorem 0.1 with the help of Theorem 1.2.

We start reminding the celebrated uniformization theorem of Klein-Koebe-Poincaré [1, Ch. III], which is one of the key ingredients of the proof. The result is valid for arbitrary Riemann surfaces, but we will formulate it for the so called planar domains, since this is enough for our purposes. Recall that a discrete group of Möbius transformations Γ (of D on itself) is called a Fuchsian group. The discreteness means that any orbit {γ(z)} γ∈Γ is a discrete set in the relative topology of D.

Let Ω ⊂ C be a domain with the boundary containing more than two points, and λ 0 ∈ Ω. The uniformization theorem says that there exists a covering map λ : D → Ω, which is unique provided the normalization conditions λ(0) = λ 0 , λ ′ (0) > 0 are set. Moreover, the map is automorphic with respect to a certain Fuchsian group Γ, i.e., λ • γ = λ for any γ ∈ Γ. Symbolically, we write Ω ≃ D/Γ, where two points z, w ∈ D are equivalent with respect to Γ if and only if there is a γ ∈ Γ such that w = γ(z). For further terminology on the subject, we refer to [1, Ch. III], [START_REF] Ford | Automorphic functions[END_REF]; see also Simon [START_REF] Simon | Szegő's theorem and its descendants[END_REF] for a recent presentation.

We will focus upon the special case Ω = C\e, described in (0.1). The standard normalization now is

(2.1) λ(0) = ∞, lim w→0 wλ(w) = κ(e) > 0.
The properties of the Fuchsian group Γ in this situation are wellstudied, see [START_REF] Simon | Szegő's theorem and its descendants[END_REF]Chapter 9.6]. In particular, Γ is a free nonabelian group with n generators {γ j } n j=1 . The fundamental domain F (more precisely, its interior F int ) is a circular polygon in D, its topological boundary in D consists of n orthocircles in C + their complex conjugates, and there is a finite distance in D between the different orthocircles, see Figure 2. We label the vertices of F by E = λ -1 (e) = {w j }.

The following relations for the covering map are crucial in the sequel. Proof. In the case w ∈ B(0, r) both (2.2) and (2.3) are obvious, since

d(λ, e) ≍ d(λ, e) ≍ |λ| ≍ 1 |w| , d(w, T w ) ≍ d(w, E) ≍ 1 by (2.1). So we assume |w| ≥ r. Put B j := B w (w j , r) ∩ F int , B := B j ,
with small enough r = r(e), so B j are disjoint. The argument is based on the properties of the covering map (cf., e.g., [13, Theorem 9.6.4]):

(1) λ can be extended analytically to a certain domain, which contains F int ; (2) λ is one-one in F int , and λ ′ (w) = 0 if and only if w = w j ;

(3) for w ∈ B j , we have

(2.4) λ(w) = λ(w j ) + C j (w -w j ) 2 + O((w -w j ) 3 ),
and

C j = 0. By (2.4), we have for w ∈ B j d(λ, e) = |λ(w) -λ(w j )| ≍ |w -w j | 2 = d(w, E) 2 ≍ d(w, E) 2 |w| , so (2.2) is true on B. For w ∈ F int \(B ∪ B(0, r)) d(λ, e) ≍ d(w, E) ≍ |w| ≍ 1,
and the proof of (2.2) is complete.

To prove (2.3) for |w| ≥ r we begin with its simple half , w ∈ F.

The special structure of Γ and F enables one to "inflate" the domain F int slightly to get another polygon G, so that

F ⊂ G ⊂ F 2n j=1 γ j (F) , γ n+k (F) = γ k (F), k = 1, . . . , n.
The distance between the corresponding inner sides of G and F int is strictly positive.

It is not hard to see that bound (2.8) actually holds in the bigger polygon G. Indeed, let G j ⊂ G\F int be an "annular segment" between the corresponding inner sides of G and F int , so G\F int = ∪ 2n j=1 G j . We have to check (2.8) on each G j . For w ∈ G j there is a unique z ∈ F int so that w = γ j (z). Since the first equality being exactly the automorphic property of F . Theorem 1.2 with s = p + q then yields (2.9)

w∈ G∩Z F d p+1+ε (w, T w ) |w| (p+q-1+ε) + d (p+2q-1+ε) + (w, E) ≤ C • K 1 for 0 < ε < 1, where G is another polygon with F int ⊂ G ⊂ G. The more so, the same inequality holds for w ∈ F int ∩ Z F . It remains only to go back to f ∈ A(Ω) and its zero set Z f . Note that although each point from Z f has infinitely many preimages in D, we can restrict ourselves with those in F int . It follows easily from

  w, T w ) by the Schwarz lemma. • By [11, Corollary 1.4], d(w, ∂G) ≍ |w ′ (z)| (1-|z|) = |w ′ (z)| d(z, T). Since z ∈ D if and only if w ∈ G, and |w ′ (z)| ≍ 1 for z ∈ D, then (1.1) d(w, ∂G) ≍ d(z, T), z ∈ D.
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 1 Figure 1. The domains G, G and the map w.

  Let us show that d(w, ∂G) ≥ C d(w, T w ), as long as w ∈ G. Indeed, if d(w, ∂G) = d(w, ∆ 2 ), then d(w, ∂G) ≥ d(w, T w ). Otherwise, d(w, ∂G) = d(w, ∆ 1 ), so d(w, ∂G) ≥ d ′ and d(w, T w ) = 1 -|w| ≤ 1 ≤ d(w, ∂G)

Lemma 2 . 1 .

 21 Let w ∈ F, closure in D, and λ = λ(w). Then (2.2) d(λ, e) ≍ d 2 (w, E) |w| and (2.3) d(λ, e) ≍ d(w, T w ) d(w, E) |w| .
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 2 .5) d(λ, e) ≤ C d(w, E) d(w, T w ).

Figure 2 .

 2 Figure 2. Uniformization of the domain Ω and the map λ.

  d(w, T) = d(γ j (z), γ j (T)) ≍ d(z, T), d(z, E) = d(γ -1 j (w), E) ≍ d(w, γ j (E)) ≥ C d(w,E), where we used in an essential way that the number of generators is finite, we see that forw ∈ G j log |F (w)| = log |F (z)| ≤ K 1 |z| p+q d p (z, T) d p+2q (z, E) ≤ CK 1 |w| p+q d p (w, T) d p+2q (w, E) ,
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, and, with the help of (2.3)

Substitution of the above relations in (2.9) gives (0.4), and the proof of Theorem 0.1 is complete. 2

Applications to complex perturbations of a finite-band selfadjoint operator

Consider a bounded finite-band selfadjoint operator A 0 , defined on

The Schatten classes S p form a nested family of operator ideals, that is,

(1) if p < q, then S p ⊂ S q and • Sq ≤ • Sp ;

(2) if P is a bounded operator, and Q ∈ S p , then P Q, QP ∈ S p and P Q Sp , QP Sp ≤ P Q Sp . More information on the classes S p can be found in monographs [START_REF] Gohberg | Introduction to the theory of linear nonselfadjoint operators[END_REF] and [START_REF] Simon | Trace ideals and their applications[END_REF].

Given p ≥ 1 put ⌈p⌉ := min{j ∈ N : j ≥ p}. The following object known as a regularized perturbation determinant

is well defined, g p ∈ A(Ω), Ω = C\σ(A 0 ). The basic property of g p relates its zero set and the discrete spectrum of A: λ ∈ Z gp with order k if and only if λ ∈ σ d (A) with algebraic multiplicity k.

Furthermore, for λ ∈ Ω the bound

Sp holds, see, e.g., [START_REF] Simon | Trace ideals and their applications[END_REF]. For the selfadjoint and finite-band operator A 0 the latter turns into

which is exactly (0.6). Theorem 0.4 thus follows by a straightforward application of Corollary 0.3.