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Abstract

The plant pathogenic bacterium Dickeya dadantii has recently been shown to be able to kill the aphid Acyrthosiphon pisum.
While the factors required to cause plant disease are now well characterized, those required for insect pathogeny remain
mostly unknown. To identify these factors, we analyzed the transcriptome of the bacteria isolated from infected aphids.
More than 150 genes were upregulated and 300 downregulated more than 5-fold at 3 days post infection. No homologue
to known toxin genes could be identified in the upregulated genes. The upregulated genes reflect the response of the
bacteria to the conditions encountered inside aphids. While only a few genes involved in the response to oxidative stress
were induced, a strong defense against antimicrobial peptides (AMP) was induced. Expression of a great number of efflux
proteins and transporters was increased. Besides the genes involved in LPS modification by addition of 4-aminoarabinose
(the arnBCADTEF operon) and phosphoethanolamine (pmrC, eptB) usually induced in Gram negative bacteria in response to
AMPs, dltBAC and pbpG genes, which confer Gram positive bacteria resistance to AMPs by adding alanine to teichoic acids,
were also induced. Both types of modification confer D. dadantii resistance to the AMP polymyxin. A. pisum harbors
symbiotic bacteria and it is thought that it has a very limited immune system to maintain these populations and do not
synthesize AMPs. The arnB mutant was less pathogenic to A. pisum, which suggests that, in contrast to what has been
supposed, aphids do synthesize AMP.
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Introduction

Dickeya dadantii are plant pathogenic enterobacteria that provoke

the soft rot disease in a wide range of plants. The factors required

for its pathogeny are numerous, involving principally the

production and the secretion of enzymes responsible for the

degradation of plant cell wall components [1,2]. Regulation of

their expression has been studied in detail. The regulators of the

virulence factors identified are either specific to D. dadantii and

other plant pathogenic enterobacteria, such as KdgR, PecS and

PecT, or are identical to those that can be found in animal and

human pathogenic enterobacteria such as Escherichia coli and

Salmonella enterica [3]. These regulators include H-NS, CRP, Fur,

GacS-GacA and PhoP-PhoQ [4,5,6,7]. The PhoP-PhoQ two

component regulatory system controls virulence and Mg2+

homeostasis in many bacterial species. Its role has been well

studied in S. enterica serovar typhimurium. In these bacteria, this

system is involved in the regulation of Mg2+ uptake systems,

survival in macrophages and resistance to antimicrobial peptides

(AMP) [8]. This resistance occurs through the modification of

LPS. Several enzymes, encoded by pagP, pagO, pmrC, pmrG, lpxO,

pmrHFIJKLM, modify LPS, mostly by adding or modifying

palmitate, phosphoethanolamine or 4-aminoarabinose to mask

negative charges that allow interaction with cationic AMP [9].

Activation of these genes occurs either directly by PhoP-PhoQ or

by PmrA-PmrB, a two component system that can be activated by

PhoP through PmrD, a protein stabilizing PmrA in a phosphor-

ylated state. Thus, the genes controlled by PmrA-B are induced

both by the signals activating PmrB (macrophage phagosome, high

Fe3+, low pH) and those activating PhoQ (low Mg2+, antimicrobial

peptides, macrophage phagosome, low pH) [9]. However, the

genes regulated by PhoP and the signal sensed by PhoQ may vary

from one bacterium to the other [10]. For exemple, Edwarsiella

tarda PhoQ is also able to sense temperature, Pseudomonas aeruginosa

PhoQ does not respond to AMP, and Sodalis glossinidius PhoQ

responds neither to Mg2+ nor to AMP [11,12,13]. An analysis of

the transcriptome of a D. dadantii phoQ mutant showed that many

genes are controlled by this regulator. The increased expression of

ferric uptake systems and the decreased expression of pectate lyase

genes let suppose that phoQ could control the bacterial virulence

[14]. Llama-Palacios et al. [7] showed that the D. dadantii phoP and

phoQ mutants have a reduced virulence and an increased sensitivity
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to the plant AMP thionin. A transcriptomic analysis of the

response of D. dadantii to this AMP found 36 overexpressed genes.

These induced genes are involved in regulation, transport and

modification of the bacterial membrane [15].

D. dadantii is not only a plant pathogen but it can also infect

animals. Presence of four insecticidal toxin-like genes in its

genome, cytABCD [16], led to check for a possible pathogenicity

towards different insects. It was found able to kill the pea aphid

Acyrtosiphon pisum but not other insects tested [17]. Ingestion of as

few as 100 bacteria can kill the aphid in 3–4 days. Bacteria cross

the gut and after one day they are present in the gut in high

number but also in the fat bodies and in the embryos. Their

number increases of about one log each day and when it exceedes

107 bacteria/insect, the insect dies [18]. A mutant devoid of Cyt

toxin genes is still pathogenic but kills the aphid more slowly, in 5

to 6 days. cyt genes are controlled by regulators of plant

pathogenicity: they are activated by PecS and repressed by H-

NS and VfmE. Mutants in other regulators, GacA, OmpR and

PhoP, that do not control the cyt genes, have a reduced insect

virulence. This let suppose that other factors are required for a full

virulence to aphids [19]. However, no other known insect toxin

gene was detected in the genome of D. dadantii.

Very few data are available on the expression pattern of genes of

bacteria infecting insects. A transcriptome analysis listed the

Yersinia pestis genes induced in flea, but Y. pestis colonizes only the

flea gut [20]. Thus, this study gives a limited pattern of the

bacterial response to conditions encountered in insects. A SCOTS

analysis of Photorhabdus temperata and Xenorhabdus koppenhoeferi genes

expressed in Rhizotrogus majalis identified genes mostly involved in

virulence, stress response and metabolism [21]. A Transposon Site

Hybridization assay identified Francisella novicida genes required to

infect Drosophila melanogaster [22]. Moreover, in all these studies,

infection was done by injection, which is not the most likely path to

infection. To identify new factors involved in the virulence of D.

dadantii towards A. pisum, we analyzed the transcriptome of D.

dadantii infecting the insect. We show here that genes involved in

resistance to AMP, efflux and motility are among the most

induced genes while genes involved in plant pathogeny are

repressed. Mutation of AMP resistance genes decreased bacterial

virulence in insects which is a strong indication that, in contrast

with current knowledge, aphids are producing this kind of

molecules.

Results

Identification of D. Dadantii Genes with Modified
Expression in A. Pisum

In order to identify genes that are important for growth inside

the pea aphid and that may be required for virulence, we used

CDS pangenomic microarrays to compare the transcriptome of D.

dadantii grown in AP3 medium with that of the bacteria isolated

from A. pisum three days after infection. AP3 medium, which

contains a high concentration of sucrose, may mimic the phloemic

sap on which aphids feed. Day three post infection was chosen as a

stage where infection is well established. At this stage, aphids may

contain up to 106 bacteria which are present in all the insect

organs. For each condition, three independent cultures or

infections were performed and the total bacterial RNA was

extracted, treated and subsequently hybridized to separate arrays.

Major modifications of the transcription pattern were observed

since 164 genes were upregulated more than 5-fold and 328 genes

were downregulated more than 5-fold with P values adjusted for

multiple testing (FDR) of ,0.002. The whole-genome GSEA

(Gene Set Enrichment Analysis) analysis is reported in Table S1,

and shows that the most affected bacterial gene classes by the

insect infection process were membrane associated genes (GO cell

compartment), both in up or down-regulated classes, RNA and

ribosomal machinery genes, as well as many enzyme and sugar

transporters (GO molecular function) and finally additional classes

such as protein secretion, several biosynthetic processes, cell redox

homeostasis and many central metabolic processes (GO biological

processes). A list of selected induced or repressed genes that are

discussed in the text is given in Table 1 (for the full list, see Table

S2). The gene expression pattern obtained by microarray data

results was confirmed by qRT-PCR on nine genes. Six up

regulated (arnB, sotA, sotB, pmrC, GenID 19611 and GenID 15786)

and three down regulated genes (pelE, kdgM and kdgN) were tested

and gave a strong correlation with microarray results (Fig. S1).

Plant Virulence Genes are Repressed in Aphids
Our previous results showed that the regulators controlling cyt

genes are identical to those regulating plant virulence factors, but

that they act in an opposite way [19]. The microarray analysis

confirms these observations on a wider basis since many genes

involved in pectin degradation, which are induced in plant

infection, are repressed. The genes of the two oligogalacturonate-

specific porins [23,24] are among the most repressed (kdgM, -92-

fold change; kdgN, 255-fold change). Genes of some secreted

enzymes involved in pectin degradation were also down regulated

(pelE, paeX, pehN) (Table 1), as were genes involved in the transport

and catabolism of pectin breakdown products (exuT, uxaB, uxaA,

kduD, kdgA). The complete catabolic pathway of galactan, another

component of plant cell walls, is also strongly repressed (252-fold

change for the gene of the porin GanL). Expression of the Out

type II secretion system (T2SS), that secretes mostly pectinases is

also reduced (outC, 26.5-fold change). In contrast, expression of

the second T2SS, Stt, which secretes the pectin lyase PnlH is

slightly increased (sttI, 5.3-fold change).

D. Dadantii Genes Induced in Aphids
The most induced genes in this transcriptome analysis probably

correspond to those which are the most needed to infect and

survive in aphids. It is remarkable to note that many of these genes

encode exporters (Table 1). GenID 15786-7-8, with 68-, 48- and

64-fold change, respectively, encode a tripartite multidrug

resistance system whose best homologues are found in plant

pathogenic or plant-associated bacteria (Pseudomonas sp., Xantho-

monas sp.) and also in insect pathogens (P. entomophila, Arsenophonus

nasoniae) or some insect symbionts (Baumannia cicadellinicola). This

transporter confers to D. dadantii resistance to phytoalexins and

protamine [25]. Expression of four genes encoding transporters of

the MFS family is also induced: GenID 19611 (37-fold change),

GenID 18887 (24-fold change), sotA (14-fold change) and sotB (20-

fold change). If the specificity of the two first exporters is not

known, SotA and SotB have been shown to be able to export sugar

and sugar derivatives that can be toxic to the bacteria [26]. The

gene of the efflux protein PecM is induced 24-fold. pecM belongs to

the pecS regulon and it has been proposed that it could efflux

indigoidine, a blue pigment synthesized by the product of the

indABC genes, which also belong to the pecS regulon. Surprisingly,

the indABC genes are only weekly induced and other pecS-

controlled genes are not induced, suggesting that PecM could be

controlled by another regulator and efflux other types of molecules

[27]. Induction of all these exporters shows that D. dadantii

encounters hostile conditions in aphid and has to efflux many

noxious compounds.

Expression of motility genes is strongly modified in the aphid. D.

dadantii possesses 45 methyl-accepting chemotaxis proteins (MCP)

D. dadantii Gene Expression in Acyrthosiphon pisum
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Table 1. A subset of D. dadantii genes whose expression varies in aphid.

Gene product category and ID Gene name Fold changea P-value Description

Upregulated genes

AMP response

15458 pmrC 90.8 ,0.002 Phosphoethanolamine transferase

16248 arnB 64.0 ,0.002 UDP-4-amino-4-deoxy-L-arabinose alpha-ketoglutarate aminotransferase

16247 arnC 36.1 ,0.002 Undecaprenyl-phosphate 4-amino-4-deoxy-L-arabinose transferase

18941 pbpG 12.7 ,0.002 D-alanyl-D-alanine carboxypeptidase

19383 dltB 32.0 0.02 D-alanyl transfer protein

19382 dltA 20.1 0.02 D-alanine-activating enzyme

19381 dltC 8.9 0.03 D-alanine carrier protein

16330 eptB 6.5 0.02 Phosphoethanolamine transferase

Efflux system, transporter

15786 68.6 ,0.002 Inner membrane component of multidrug resistance system

15787 48.2 ,0.002 Membrane fusion component of multidrug resistance system

19611 37.7 ,0.002 Transport protein (MFS family)

18887 24.4 ,0.002 Transport protein (MFS family)

16087 pecM 24.1 ,0.002 Transport protein

20022 sotB 20.7 ,0.002 Transport protein (MFS family)

20031 sotA 14.4 ,0.002 Transport protein (MFS family)

15661 11.9 ,0.002 Drug resistance efflux pump

15662 10.1 ,0.002 Drug resistance efflux pump

18175 10.2 0.003 ABC transport system

18174 5.6 0.01 ABC transport system

Motility

19858 43.4 ,0.002 Methyl-accepting chemotaxis protein

19855 30.7 ,0.002 Methyl-accepting chemotaxis protein

17672 8.3 ,0.002 Methyl-accepting chemotaxis protein

15600 8.1 ,0.002 Methyl-accepting chemotaxis protein

17668 7.5 ,0.002 Methyl-accepting chemotaxis protein

17665 7.3 ,0.002 Methyl-accepting chemotaxis protein

18761 motA 14.9 ,0.002 Flagellar motor protein

18760 motB 10.9 ,0.002 Flagellar motor protein

Stress response

14750 asr 26.0 ,0.002 Acid shock protein

20273 narI 21.8 ,0.002 Nitrate reductase. Anaerobiosis

18171 iscR 11.9 ,0.002 FeS cluster assembly, transcription factor

15559 rsxA 10.1 ,0.002 SoxR reducing complex

15558 rsxB 9.2 ,0.002 SoxR reducing complex

17401 nirB 5,4 ,0.002 Nitrite reductase. Anaerobiosis

Regulator

15788 61.2 ,0.002 Transcription regulator

16073 vfmE 9.6 0.007 Virulence regulator

Downregulated genes

Pectin catabolism

19629 kdgM 292.2 ,0.002 Oligogalacturonate porin

15523 kdgN 255.0 ,0.002 Oligogalacturonate porin

19632 paeX 247.0 ,0.002 Pectin acetylesterase

19646 pelE 230.9 ,0.002 Pectate lyase E

18695 exuT 221.4 ,0.002 Galacturonate transporter

18698 uxaB 218.1 ,0.002 Galacturonate catabolism

D. dadantii Gene Expression in Acyrthosiphon pisum
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which are often organized in clusters. Expression of some of these

genes was increased. For example, in the four MCP gene cluster

GenID 19858-GenID 19855-GenID 19852-Gen ID19851, ex-

pression of the two first increased 43-fold and 30-fold respectively,

while that of the two last genes was unmodified (Table 1).

Similarly, in the four MCP gene cluster GenID 17665-GenID

17668-GenID 17672-GenID 17674, expression of the three first

genes increased 7-fold to 8-fold, while that of the last gene was

unmodified. Expression of the genes of two components of the

flagellar motor MotA and MotB increased 15-fold and 11-fold,

respectively (Table 1). Colonization of the insect body occurs very

quickly, within one day after infection [18]. Induction of these

MCP and motility proteins could help the bacteria to quickly

reach all the part of the insect body.

Osmotic Regulation of Cyt Toxin Genes
We have shown that the Cyt toxins are required only for

infection by ingestion and that they can be detected in the gut but

not in other organs, suggesting that they are not produced

throughout all the infection process [18]. Moreover, their synthesis

is induced in high osmolarity environment. These observations

explain why cyt gene expression is surprisingly diminished in our

results (Table 1). For the reference condition, bacteria were grown

in the sucrose rich (20%) AP3 medium which strongly induces cyt

gene expression. Bacteria collected in the aphids reside mainly

outside of the gut, in the fat body or other organs of the insect in

which osmolarity is low [18]. This difference of osmolarity

between the two conditions could explain why cyt genes are

globally less expressed in the aphids in our experiment. This is also

the reason why some of the most repressed genes in this analysis

are those involved in sucrose transport and metabolism such as the

Table 1. Cont.

Gene product category and ID Gene name Fold changea P-value Description

20789 pehN 29.5 ,0.002 Polygalacturonase N

19699 uxaA 28.7 ,0.002 Galacturonate catabolism

19960 kdgA 26.7 ,0.002 Galacturonate catabolism

18229 outC 26.5 ,0.002 Pectate lyase secretion

47127 kduD 25.4 0.002 Pectin catabolism

Galactan catabolism

18200 ganL 253.2 ,0.002 Galactan porin

18192 ganE 241.5 ,0.002 Galactan transport

18377 mglB 238.4 ,0.002 Galactose transport

18193 ganF 227.8 ,0.002 Galactan transport

18195 ganG 224.2 ,0.002 Galactan transport

18378 mglA 220.4 ,0.002 Galactose transport

18379 mglC 219.0 ,0.002 Galactose transport

18196 ganA 217.2 ,0.002 Endogalactanase

18198 ganB 27.3 ,0.002 Exogalactanase

osmoregulation

19710 betI 272.5 ,0.002 Betaine synthesis

16548 scrY 253.2 ,0.002 Sucrose porin

19708 betA 252.2 ,0.002 Betaine synthesis

19709 betB 231.5 ,0.002 Betaine synthesis

16547 scrA 231.0 ,0.002 Sucrose metabolism

19635 222.0 ,0.002 Osmotically induced lipoprotein

Toxin

16662 cytD 23.5 ,0.002 Insecticidal toxin

16663 cytC 22.0 ,0.002 Insecticidal toxin

16664 cytB 22.8 ,0.002 Insecticidal toxin

16665 cytA 21.6 ,0.002 Insecticidal toxin

stress

16995 raiA 292.6 ,0.002 Cold shock protein

16379 uspA 225.8 ,0.002 Universal stress protein

16377 uspB 29.5 ,0.002 Universal stress protein

19170 cpxR 212.4 ,0.002 Transcriptional regulator

19171 cpxP 212.3 ,0.002 Stress resistance protein

aPositive values represent genes upregulated in aphids, whereas negative values represent genes downregulated.
doi:10.1371/journal.pone.0054118.t001
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sucrose porin gene scrY (-53-fold change), or in osmoprotectant

synthesis and transport (betA, -52-fold change and proX, -23-fold

change) (Table 1). We thus checked whether the strong induction

or repression observed for certain genes could result from an

osmotic regulation. arnB and dltB expression (see below) were

repressed only three-fold and 1.3-fold respectively by growth in

10% sucrose (data not shown). kdgM and kdgN expression is not

regulated by osmolarity [23,24]. Thus, osmoregulation seems to

control only a limited subset of the genes induced or repressed in

our transcriptomic analysis.

Response to Antimicrobial Peptides
Some of the most induced genes in this study are those

homologous to genes conferring resistance to AMP in other

enterobacteria by modifying LPS. A high induction (91-fold

change) was observed for pmrC, a gene encoding the protein that

adds phosphoethanolamine to lipid A (Table 1). pmrC is the first

gene of an operon containing also pmrA and pmrB, which encode a

two component regulation system that regulates genes in response

to AMP in S. enterica. pmrA and B are induced about 3-fold.

Proteins involved in the synthesis and addition to LPS of 4-

aminoarabinose are encoded by the arnBCADTEF operon (also

called pmrHFIJKLM or pbgP-E) which is strongly induced in D.

dadantii infecting aphids (64-fold change for arnB). Modification of

LPS by 4-aminoarabinose allows S. enterica to resist to AMP and it

has been shown that this modification is required for full virulence

of P. luminescens towards the greater wax moth, Galleria mellonella

[28]. A last set of genes potentially involved in resistance to AMP

can be noticed: dltD (or pbpG) (12-fold change) and the dltBAC

operon (32-fold change) (Table 1). Homologues of these genes are

found in Gram positive bacteria where their products modify

teichoic acids by adding alanyl residues. Teichoic acids are cell

wall glycopolymers which are not found in Gram negative

bacteria. Their modification by alanylation masks their negative

charges and confers to the bacteria resistance to AMPs [29]; [30].

In Gram negative bacteria dltABC and dltD genes are present in the

phytopathogenic bacteria Dickeya sp, Pectobacterium sp. and in the

entomopathogenic bacteria P. luminescens. However, the substrate

potentially modified in these bacteria remains to be identified.

Induction of genes responsible for the resistance to AMPs in D.

dadantii infecting aphids is surprising. The genes coding for AMPs

usually produced by insects were not identified in the A. pisum

genome and no AMP synthesized by the pea aphid has been

detected by biochemical methods [31]. To determine if unknown

AMP inducing this response could be synthesized by A. pisum, we

tested whether the genes induced in aphids are indeed induced by

known AMPs and whether PhoP and PmrA are involved in this

regulation. We analyzed the resistance to AMPs of arnB and dltB

mutants and examined their role during aphid infection.

Regulation of AMP Resistance Genes
Resistance to AMP has been extensively studied in S. enterica.

We first looked for the presence and induction in D. dadantii of

homologues of genes which have been shown to play a role in

Figure 1. Regulation of arnB. The arnB-uidA fusion of strain A5256 was assayed in the presence of increasing concentrations of polymyxin (A),
protamine (B), and Mg2+ (C). Effect of phoP and pmrA mutations on arnB-uidA regulation by Mg2+ (D) and protamine (E) was assayed. Cultures were
performed in LB medium for A, C and D and in M63 medium for B and E since protamine precipitates in LB medium. Activities are the mean value
from at least four separate experiments and are expressed in mmoles of p-nitrophenol produced per minute and per milligram of bacterial dry weight
6 standard deviation.
doi:10.1371/journal.pone.0054118.g001
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AMP resistance in S. enterica. The two component regulators PhoP-

PhoQ and PmrA-PmrB are present in D. dadantii but PmrD, which

links both systems and allows PmrA-regulated genes to be

regulated by PhoP is absent. In addition to pmrC and to the arnB

operon, the eptB gene, which codes for another phosphoethano-

lamine adding enzyme, is present and induced 6-fold (Table 1).

The oxygenase encoding lpxO and the palmitoyl transferase

encoding pagP are present in D. dadantii but are not induced in

aphid and pagL is absent. Thus, most of the genes involved in LPS

modification in response to AMP in S. enterica have a homologue in

D. dadantii but all are not induced in an aphid infection.

Presence of AMP and growth in low Mg2+ medium are

conditions inducing the PhoP-regulated genes in S. enterica and E.

coli, including arnB-F. Regulation of D. dadantii arnB in these

conditions was analyzed using a GUS reporter fusion. We tested

two commonly used AMPs, polymyxin B and protamine. arnB was

induced in the presence of both compounds (Fig. 1A and 1B). LB

is a medium of low Mg2+ concentration [32,33]. Addition of a high

Mg2+ concentration (10 mM) in this medium repressed arnB

expression five-fold (Fig. 1C). This repression is much lower than

that described in S. enterica. To test whether the effect of

polymyxin, protamine and Mg2+ on arnB occurs through PhoP

or PmrA, the arnB-uidA fusion was assayed in these backgrounds.

While its expression was unchanged in the pmrA mutant, it was

reduced by one third in the phoP mutant, indicating that PhoP is

an activator of arnB (Fig. 1D and 1E). In both backgrounds,

Figure 2. Regulation of sstE and outC. The sttE-uidA and outC-uidA fusions of strain A4206 and A1919, respectively, were assayed in the presence
of 5 mg/ml of polymyxin or 10 mg/ml Mg2+ in the wt, phoP and pmrA backgrounds. Activities are the mean value from at least four separate
experiments and are expressed in mmoles of p-nitrophenol produced per minute and per milligram of bacterial dry weight 6 standard deviation.
doi:10.1371/journal.pone.0054118.g002

Figure 3. Survival of various mutants to polymyxin. Wild type and various mutants in genes involved in resistance to AMP (phoP, pmrA, dltB,
arnB) were incubated in the presence of 1 mg ml21 polymyxin for 1 h. Samples were diluted and plated on LB agar plates to assess bacterial viability.
Survival values are relative to the original inoculum. Data correspond to mean values of three independent experiments.
doi:10.1371/journal.pone.0054118.g003
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repression by 10 mM Mg2+ was conserved, showing that neither

PhoP nor PmrA are involved in this regulation (Fig. 1D). While

induction by polymyxin was conserved in the phoP and pmrA

mutant (data not shown), induction by protamine was abolished in

the phoP background (Fig. 1E). This result indicates that regulation

of arnB by AMPs involves two systems. One of them, the PhoP-

PhoQ system, is sensing presence of protamine but is blind to

polymyxin.

Some of the Genes Induced in Aphid are Induced by
AMP

To know whether induction or repression of genes observed

when D. dadantii is infecting A. pisum could be due to the presence

of AMPs, we analyzed the effect of protamine and polymyxin on

the expression of four upregulated genes (dltB, sotA, sotB, and sttE)

and of three downregulated ones (outC, kdgM and kdgN). None of

these genes was differencially expressed in the presence of 100 mg

ml21 protamine (data not shown). In contrast, while the expression

of sotA, sotB, kdgM and kdgN was not significantly affected by

polymyxin, that of outC was reduced by 40% and that of sttE was

increased by 3-fold, respectively, in the presence of that AMP

(Fig. 2A and 2B, Table S3). Thus, not all genes induced in aphids

are induced by polymyxin and a putative AMP produced by

aphids could be a signal that modifies the expression of some of

them.

The regulation of sttE and outC was studied in more details.

Expression of none of these genes was controlled by Mg2+

concentration (Fig. 2A and 2B). Expression of sttE was not

modified in a phoP or a pmrA background and in both cases

polymyxin induction was conserved (Fig. 2A). The level of outC

was identical in the pmrA background to that in the wt strain but

was reduced three-fold in the phoP background, indicating that

PhoP is an activator of outC. In both phoP and pmrA mutants,

repression of outC by polymyxin was conserved (Fig. 2B). This

confirms that PhoP and PmrA do not respond to polymyxin and

that a gene regulated by PhoP is still sensitive to polymyxin in the

absence of PhoP. In summary, regulation of genes involved in

response to AMP is very different in D. dadantii from that described

in S. enterica since neither polymyxin nor Mg2+ sensing occur

through PhoP and PmrA and at least two regulators respond to

different AMPs.

arnB and dltB are Involved in Resistance to AMP
To investigate whether arnB, dltB, phoP and pmrA are involved in

resistance to AMP, a survival test to exposure to 1 mg ml21

polymyxin was performed. The pmrA mutant was almost as

resistant as the wt strain (Fig. 3). Thus PmrA-PmrB seems to play a

limited role in resistance to AMP in D. dadantii. The phoP mutant

showed more than 99% mortality after one hour exposure to

polymyxin, showing that although PhoQ does not respond to that

AMP, the PhoP-PhoQ system is involved in the regulation of genes

required to resist to it. The dltB mutation had a strong effect on

survival of the bacteria, leading to a 99% mortality. The most

dramatic effect was observed with the arnB mutant with less than

0.1% of surviving bacteria after one hour (Fig. 3). This shows that

LPS modification by the products of the arnBCADTEF operon is a

main element of the resistance of D. dadantii to polymyxin and that

absence of this modification leads to an increased bacterial

susceptibility to this type of compounds. However, the dltB mutant

survival was decreased, showing that, although its effect is limited

when modification of LPS by 4-aminoarabinose can occur,

alanylation of an unknown substrate by the dlt gene products is

an important factor of resistance to AMP. No significant variation

in the survival rate in the presence of polymyxin was observed

when bacteria were grown in a LB medium containing 10 mM

Mg2+ (data not shown).

The arnB, the dltB and the arnB dltB mutants were then tested for

their virulence in aphids. A comparison of the LT50s showed a

slower mortality of aphids was observed with the arnB mutants but

not with the dltB mutants (P = 0.042 for the wt versus arnB and

P = 0.0671 for the wt versus arnB dltB double mutant comparisons,

Log-rank non-parametric survival test), indicating a decreased

ability of the arnB mutants to develop into the insect (Fig. 4). Thus,

modification of LPS by the arn gene products is required for full

virulence of the bacteria probably because it is involved in the

resistance to AMPs produced by aphids.

Figure 4. Survival of pea aphids after oral infection by wt and mutants of D. dadantii 3937. Survival is shown for aphids treated with wt
bacteria (red), arnB (green), dltB (blue), and dltB arnB (brown) mutants. Results were obtained with 2630 third instar aphid nymphs per treatment,
including a diet-treated control (no mortality, not shown). The experiment was repeated twice with very similar results (p,0.06 in all comparisons of
wt with arnB mutants). Median survival times (LT50s) were calculated with a Weibull fit (inlet), and give the following series [95% confidence
intervals]: wt, 2.92 [2.18–3.92]; arnB, 4.74 [3.42–6.55]; dltB 3.58 [2.62–4.88] and arnB-dltB double mutant, 4.46 [3.23–6.18].
doi:10.1371/journal.pone.0054118.g004
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Inducible Peptides in Infected Pea Aphid
To try to identify the aphid AMPs, extracts from whole aphids,

digestive tracts and hemolymph from control and Dickeya-

challenged insects were separated by chromatography. All extracts

gave very similar chromatographic traces at 280 nm (not shown)

or 214 nm (Table S4 and Fig. S2). MALDI-ToF analysis of gut

and haemolymph extract fractions did not show peptide peaks

above 4500 Da, and few of them did differentiate the Dickeya-

challenged modality (Table S4). Therefore, we focused our LC-

MS analysis on the only samples that did show reproducible

induced peaks in the bacteria-challenged samples (Figure S2), the

digestive tract HPLC fractions (Table S4). Only one small peptide

differentially induced in the Dickeya-challenged gut was found,

namely the 13 amino acid C-terminal peptide from the

ACYPI003154 gene product, a 14-3-3 family protein with

conserved protein-protein interacting domains. This peptide,

QDNDEPQEATGDN, has a net negative charge of -5 and could

be an anionic AMP. This peptide was synthesized and its activity

was tested against various bacteria. It had no antimicrobial activity

against D. dadantii, E. coli and Bacillus subtilis. It was neither able to

induce the expression of a D. dadantii arnB-uidA or dltB-uidA fusion

(data not shown).

Discussion

D. dadantii has the abilities to be both a plant and an insect

pathogen. While the mechanisms of virulence towards plants are

now well understood, factors required for the development of

bacteria in aphids and to kill them are unknown. Cyt toxins seem

to play only an accessory role in this process since a mutant devoid

of toxin genes can still kill aphids. An analysis of the transcriptome

of D. dadantii infecting aphids was performed to better understand

the mechanisms of pathogenicity of bacteria towards insects. This

technique was preferred to IVET or TraSH techniques used in

other studies since it allows a global analysis of the genes induced

and repressed which is not restricted to virulence factors required

for survival in insects and allows to detect redundant factors that

could be missed by other methods [21,22]. The results showed a

very important modification of the pattern of gene expression.

However, no characterized toxin gene was found among the

induced genes. New putative toxins are perhaps to be identified

among the induced proteins of unknown function. Other factors

required for pathogenesis may not have been detected because

they are expressed early in the infection. Another possibility is that

no additional toxin is required for D. dadantii to kill aphids or that

toxins are expressed only during the early stage of infection. The

high number of bacteria found in all the insect organs could be

sufficient to provoke the death by bacteremia, as observed for

Pseudomonas aeruginosa PA14 infecting D. melanogaster [34]. Genes

induced in aphid body would just favor multiplication of the

bacteria.

Insects are used as alternative models to identify virulence

factors required for infection of more complex organisms, plant or

animals, since a factor is often active in different models

[22,35,36]. D. dadantii pathogenicity towards insect and plant

seems to require a totally different set of genes since all the known

plant virulence factors are strongly repressed or at least not

affected in A. pisum. This opposition had already been observed for

cyt gene regulation [19]. This reinforces the hypothesis that this

bacterium may be faced with these two types of ecosystems and it

has adaptive mechanisms to cope with a rapidly changing

environment (e.g. ingestion by an insect). Such a dramatic change

in gene expression profile has been observed for Candidatus

Phytoplasma asteris OY-M grown in planta or in its insect host

[37].

The transcriptome also reflects the response of the bacteria to

the insect innate immune system. It consists of encapsulation,

phagocytosis, melanisation and antimicrobial peptides and lyso-

zyme synthesis [38]. For the two first factors, no known specific

bacterial response has been identified. Melanisation catalyzed by

the polyphenoloxidases produces reactive oxygene species which

damage DNA. Bacteria respond to this stress by destroying

reactive oxygene and reparing DNA. In F. novicida infecting D.

melanogaster a large set of DNA repair and detoxification genes are

induced [22]. In our experiment a very limited number of genes

potentially involved in these processes are overexpressed (mutM,

iscR, rsxA, rsxB), which could indicate that oxidative stress felt by

bacteria is low. The low level of polyphenoloxidase activity

measured in aphids with systemic infection by bacteria confirms

that this pathway is of limited importance to fight bacterial

infections [38].

Among the most induced genes, a number are involved in efflux

and in a typical response to AMP. This let suppose that synthesis

of this type of molecules could be the main response of A. pisum to

bacterial infection. Whether A. pisum does produce AMP was up to

date unknown, in spite of explicit searches. Genes coding for

classical insect AMP were not found in the A. pisum genome and

biochemical tests to identify them were unsuccessful [31,38,39].

However, induction of genes involved in AMP resistance typical of

Gram negative (arnB) and Gram positive (dltB) bacteria strongly

suggests that aphids do produce AMP. The reduced virulence to

aphids of the arnB mutant probably results from its increased

sensitivity to AMPs. Efflux transporters expel from the bacteria all

kind of toxic molecules. Interestingly, the mutant in one of the

efflux system induced in this study, GenID 15786-7-8, is more

sensitive to protamine. Given the broad spectrum of this type of

exporters, involvement of some of them in AMP efflux is possible.

AMPs are very diverse in sequence and structure but most of

them are positively charged, allowing their interaction with the

bacterial envelope. Modifications of LPS to mask the negative

charges that allow interaction with AMP are one of the main

responses to these compounds in many Gram negative bacteria.

This response is generally induced by growth in Mg2+-limiting

conditions or in the presence of AMP. Sensing these conditions

occurs most often through PhoP-PhoQ and PmrA-PmrB. The

wiring between the signals (Mg2+ and AMP), the regulators (PhoP

and PmrA) and their targets may vary from species to species [32];

[10]. Our data show that the sensing capacities of PhoP-PhoQ and

the PhoP-regulated genes in D. dadantii are different from what has

been previously described in other bacteria. Growth in low Mg2+-

medium is an inducing condition for the LPS-modifying gene arnB.

However induction is low and is independent of the regulation of

arnB by PhoP (Fig. 1C). The induction observed suggests that

another Mg2+ sensing regulator controls arnB expression (Fig. 1C).

Presence of an acidic patch in the sensor PhoQ is required for

sensing Mg2+ in S. enterica and E. tarda [11,40]. This acidic patch is

not conserved in D. dadantii (SSEDKPT versus EDDDDAE in S.

enterica PhoQ) which explains the blindness of PhoQ to Mg2+. A

similar blindness of PhoQ due to an absence of acidic patch has

been shown in S. glossinidius, an endosymbiont of the tse-tse fly

[13]. This has been correlated to the adaptation of the bacteria to

a steady environment where Mg2+ sensing is no longer required. A

low Mg2+ concentration is supposed to mimic the conditions

encountered in phagosomes by intracellular pathogens. As a plant

pathogen, it is always found outside cells where divalent cation

concentration (Mg2+, Ca2+) is high. Thus, a link between low Mg2+

and response to AMP may not be required for this bacteria.
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A recent transcriptome analysis of D. dadantii treated with

thionin, a plant AMP, identified 36 induced genes, most of them

being regulated by phoP [15]. Very few of them are common with

those upregulated in our analysis: the arnB operon genes, the vfmE

regulator and an ABC tranporter (GenID 18174 and 18175).

Thus, D. dadantii PhoP-PhoQ is able to sense certain AMPs since

induction of arnB expression by protamine and thionine is

abolished in a phoP mutant (Fig. 1E and [15]). However, all

AMPs are not sensed by PhoP-PhoQ since induction by

polymyxin of arnB and outC (Fig. 2 A and 2B) is conserved in a

phoP background. This suggests existence of another AMP sensing

system. In P. aeruginosa, arnB, which is induced by polymyxin, is not

regulated by PhoP-PhoQ but by an other two-component system

ParR-ParS [41], that has no homologue in D. dadantii. Polymyxin

is inducing or repressing several genes that are induced or

repressed in our transcriptomic analysis (dltB, sttE, outC). They

could all be regulated by a polymyxin-sensing regulator that could

also sense a yet unknown AMP synthesized by aphids.

A. pisum AMPs could not be identified by homology-based

methods, indicating that they are probably limited in number and

under rapid diversifying evolution. In our attempts to identify such

an AMP by a biological method, we unambiguously characterized

only one small peptide that was differentially present in bacteria-

infected tissue extracts. This peptide is the C-terminal end of a 14-

3-3 protein, a member of a well-known family of protein-protein

interactants, with recent reported involvement in insect immunity,

including control of AMP secretion [42,43]. Although this peptide

has the characteristics of an anionic AMP, it has no activity on D.

dadantii or other tested bacteria. The mode of action of this type of

AMPs is less known [44] but it could be active on Buchnera

aphidicola, the aphid endosymbiont, which has an atypical

membrane that does not contain LPS [45]. Alternatively, this

peptide might be part of a signal transduction pathway of infected

aphid gut, and thus falls outside the scope of the present study.

Analysis of induced genes allowed to detect other signals sensed

by the bacteria when they infect A. pisum. In contrast to E. coli or S.

enterica, PmrA does not control the D. dadantii arnB operon. pmrA

inactivation modifies only weakly the resistance of the bacteria to

polymyxin. However, it activates some genes which are induced in

aphids but not by polymyxin and it allows their induction by Fe3+

(data not shown). Thus, in D. dadantii, pmrA does not seem involved

in the response to AMP and it is not known if Fe3+ is the only

signal it can sense. Induction of the synthesis of the nitrate and

nitrite dehydrogenases (NarI and NirB) probably results from

anaerobic conditions in some aphid compartments. Our work

allowed for the first time to decipher the global gene expression of

a bacterium during an insect infection and showed that induction

of genes in insects could be the result of many different signals,

including several AMPs, the PmrA signal, anaerobiosis, sensed by

a complex set of regulators.

Methods

Bacterial Strains and Growth Conditions
Bacterial strains, phages, plasmids and oligonucleotides used in

this study are described in Table S5. D. dadantii and E. coli cells

were grown at 28 and 37uC respectively unless otherwise stated in

LB medium or M63 minimal medium supplemented with a

carbon source (0.2%, w/v). When required antibiotics were added

at the following concentration: ampicillin, 100 mg l21, kanamycin

and chloramphenicol, 25 mg l21, tetracycline, 20 mg l21. For

aphid ingestion tests, bacteria were resuspended in AP3 medium

[46]. Media were solidified with 1.5% (w/v) Difco agar. All

mutations were in the wt background for insect tests and in the

A350 background for enzymatic assays. Transduction with phage

WEC2 was performed according to Résibois et al. [47].

Strain Construction
To construct strain A5256 that contains an arnB-uidA fusion, a

1.8 kb DNA fragment containing arnB was amplified with primers

arnB+ (ggatggatgaatgtttgcggctg) and arnB-

(cgcggccgaattgtcgctgctg). The resulting DNA fragment was insert-

ed into the pGEM-T plasmid (Promega). A uidA-kanR cassette was

prepared from plasmid pUIDK1 [48] by digestion with EcoRI and

inserted into the unique MunI site of arnB. To construct strain

A5248 that contains a pmrA-CmR insertion, a 1.9 kb DNA

fragment containing pmrA was amplified with primers pmrA+
(ggaatatcaggcgccgcttg) and pmrA- (atatggtgtatgcccggcgg). The

resulting DNA fragment was inserted into the pGEM-T plasmid

(Promega). A V-CmR cassette was prepared from plasmid pHP45-

VCm [49] by digestion with BamHI and inserted between the two

BamHI sites of pmrA. To construct strain A5394 and A5399 that

contain a dltB-uidA fusion and a dltB-CmR insertion respectively, a

1.7 kb DNA fragment containing dltB was amplified with primers

dltB+ (aaagtgctgcgacattctgg) and dltB- (cgcgggcttgagtaatgccg). The

resulting DNA fragment was inserted into the pGEM-T plasmid

(Promega). A uidA-kanR cassette was prepared from plasmid

pUIDK3 by digestion with XmaI and inserted into the unique

BspEI site of dltB. A CmR cassette was prepared from plasmid

CKC15 [4] by digestion with XmaI and inserted into the unique

BspEI site of dltB. All the resulting constructs were inserted into the

D. dadantii chromosome by recombination in low phosphate

medium [50]. Recombinations were checked by PCR.

Aphid Strains and Infection Experiments
The aphid clone used was LL01, an alfalfa collected clone long-

established in the lab and grown on broad beans (Vicia faba cv.

Aquadulce). Inoculations by ingestion were performed as de-

scribed in Grenier et al. [17]. Forty third instar aphid nymphs, fed

on broad beans, were maintained for 24 h on an AP3 diet,

containing bacteria at 106 bacteria ml21 before being placed back

onto bean leaves at 20uC ( = day 1). To evaluate the survival rate

of infected pea aphids the number of survivors was counted every

day for 7 days. For each strain, two independent biological

replicates were tested.

RNA Preparation
To extract RNA from D. dadantii 3937 grown AP3 medium,

bacteria grown for 24 h (OD600.2) were harvested by centrifu-

gation and total RNA were extracted using TRIzolH reagent

(Invitrogen) according to the manufacturer recommendations. To

extract D. dadantii 3937 RNA from infected aphids, bacterial

inoculation by ingestion was performed as described in [17]. For

each assay, 40 third instar aphid nymphs, fed on broad beans,

were maintained for 24 h on an AP3 diet containing 106 bacteria

ml21, before being placed back onto the beans at 20uC. After 3

days of infection aphids were crushed in two microcentrifuge tubes

(2620 aphids), with a sterilized pestle, in 250 ml of RNAprotect

Bacteria Reagent (Qiagen). 250 ml of cold DEPC-treated water

were then added. The suspension (< 1 ml) was centrifuged at

10000 g for 10 min at 4uC on a discontinuous 10% to 50% (w/w)

sucrose gradient in Tris-HCl 10 mM pH 8.0, 1 mM EDTA in

order to eliminate mitochondria, host nuclei and cellular

fragments. Bacterial cells, localized in a green band, were collected

with a glass pipette (V < 1.5 ml) and pooled. Total RNA were

then extracted using TRIzolH reagent (Invitrogen) following the

manufacturer recommendations.

D. dadantii Gene Expression in Acyrthosiphon pisum

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e54118



Bacterial RNA from all samples was treated with DNase I of the

TURBO DNAfreeTM kit (Ambion) following the manufacturer

instructions. Absence of genomic DNA contamination was

checked by PCR with two primer pairs cytA-up - cytB-down

and cytC-up - cytD-down [19]. Purified RNA was quantified on the

basis of its absorption at 260 nm using an ND 100 Nanodrop

spectrophotometer and visualized on an agarose gel to check

quality. Enrichment for mRNA was required to increase the signal

intensity on the microarray and reach the NimbleGenH sample

requirements. A step of RNA amplification was performed with

the MicrobEnrichTM kit (Ambion) following the manufacturer

recommendations. In order to ensure that this additional step had

no influence on the relative gene expression pattern, a part of

purified RNA from all samples was stored at 280uC for later

confirmation by RT-qPCR. Amplified RNA was finally quantified

using Nanodrop spectrophotometer and visualized on an agarose

gel to check quality before being sent to NimbleGen for

hybridization on D. dadantii microarrays.

Microarray Design
The microarrays used in this study were custom designed and

produced by NimbleGen Systems, Inc. (Madison, WI), based on

the annotated sequence (version number 6) of D. dadantii (available

at https://asap.ahabs.wisc.edu/asap/logon.php), which com-

prised 4753 coding sequences (CDS). The microarrays consisted

of 70-mer oligonucleotides with 5 perfect match probes per CDS,

in three blocks on the array. For microarray analyses, cDNA was

synthesized, labeled, and hybridized by NimbleGen Systems, Inc.

For each condition, three independent biological replicates were

tested. The experimental design of array, and all raw and

processed data, were deposited as a GEO archive (accession

number GSE42585).

Data Analysis and Statistical Procedures
All statistical tests, including aphid survival analyses (non

parametric and parametric models, of which a Weibull adjustment

was found to best describe the insect survival trend), were

performed with JMP software (V 9.0.3, SAS Inc Cary 27513-

2414 USA). Aphid EST analysis was performed with the

MacVector software, including the assembler module (V 12.6,

MacVector Cary NC 27519 USA). The two aphid gut libraries

ID0AFF (control) and ID0AAG (Dickeya-treated) [51] were

assembled altogether with MacVector, blasted against V2.1 A.

pisum genome assembly (mRNAs), and all hits were discarded, in

order to retrieve all small and non-conventional gene models not

present in the V2.1 genome assembly. The 527 contigs retrieved

were then filtered-off for contaminating Buchnera proteins, trans-

lated and the resulting partial ORFs used for additional target

analysis in the LC MS-MS analyses. Micro-arrays were analyzed

using the expression module from the CLC-Bio Main Workbench

V6 package. Quality control was checked by data analysis and

principal component and group cluster analysis, which easily

grouped biological conditions, biological replicates and technical

replicates in this order. Normalized data (scaling, median) were

analyzed by K-means hierarchical clustering of genes (5 clusters)

and by gene set enrichment analysis, GSEA [52] on GO

classifications.

Quantitative Real-time PCR Control
After microarray data results, qRT-PCR were performed on

several genes to confirm the relative gene expression pattern. Same

RNA samples used for RNA amplification and next array

hybridization were used for these experiments. RT was performed

using SuperScript II reverse transcriptase (Invitrogen) with 500 ng

of total RNA and 25 ng of random hexamer primers, according to

the manufacturer’s protocol (first strand cDNA synthesis). One

microliter of the RT reaction mixture was added as a template to

the Qbiogen Sybr Green mix for PCR with gene-specific primers.

Primers used in this work are listed in Table S6. The thermal

cycling reactions were performed using a LightCycler (Roche)

according to the following conditions: an initial step at 95uC for

10 min, followed by 40 cycles at 95uC for 15 s, 55uC for 15 s, and

72uC for 20 s. Two housekeeping genes, rpoA and ffh, were used as

standards to obtain normalized target gene expression ratios as

described in a previous study of D. dadantii transcriptome [53]. The

qPCR efficiency was 1.80 and 1.96 for rpoA and ffh, respectively.

The statistical program used to analyze the data was the Relative

Expression Software Tool (REST 2009 V2.0.13) [54]. The

specificity of the PCR primers was verified with a melting curve

analysis using the LightCyclerH 480 Software (Roche).

Peptide Extraction and Chromatographic Analysis
Aphids were extracted as young day 2–5 parthenogenetic

females, using either a flash-hemolymph extraction technique [31],

or a gut dissection following the same TFA 0.1% extraction

procedure [51]. Phenyl-thiourea was used for SDS-PAGE

hemolymph purity controls, but omitted when HPLC was used

subsequently. Aphid acid extracts (whole-body WB, haemolymph

HY or digestive tract DT) were then separated using a Dionex

UPLC System Ultimate 3000 and a Waters XBridge BEH130

C18 column (2.16150 mm, 5 mm particle size, 130-Å porosity) at

40uC, with a precolumn. Absorbance was monitored at 214 and

280 nm. The solvent system was 0.1% TFA in water (Solvent A)

and 0.09% TFA in 70% acetonitrile/water (Solvent B) with a flow

rate of 0.4 ml min21 and the gradient is shown on figures.

Fractions were collected every 30 sec in ELISA plates and dried

using a Speed-Vac concentrator.

Peptide Identification by Mass Spectrometry
Plate-collected UPLC fractions were dissolved in 10 ml H2O/

acetonitrile 99/1 acidified by 0.1% of TFA. The analysis was

performed on a nanoACQUITY Ultra-Performance-LC (UPLC,

Waters, Milford, MA). 4mL of each sample were loaded on a

2060.18 mm, 5 mm Symmetry C18 precolumn (Waters Corp.),

and the peptides were separated on a ACQUITY UPLCH
BEH130 C18 column (Waters Corp.), 75 mm6200 mm, 1.7 mm

particle size. The solvent system consisted of 0.1% formic acid in

water (solvent A) and 0.1% formic acid in acetonitrile (solvent B).

Trapping was performed during 3 min at 5 mL min21 with 99% of

solvent A and 1% of solvent B. Elution was performed at a flow

rate of 300 nL min21, using 1–40% gradient (solvent B) over

35 min at 50uC followed by 65% (solvent B) over 5 min. The MS

and MS/MS analyzes were performed on the SYNAPTTM, an

hybrid quadrupole orthogonal acceleration time-of-flight tandem

mass spectrometer (Waters, Milford, MA) equipped with a Z-spray

ion source and a lock mass system. The capillary voltage was set at

3.5 kV and the cone voltage at 35 V. Mass calibration of the TOF

was achieved using phosphoric acid (H3PO4) on the [50;1800] m/

z range in positive mode. Online correction of this calibration was

achieved using lock-mass on product ions derived from the [Glu1]-

fibrinopeptide B (GFP). The ion (M+2H)2+ at m/z 785.8426 is

used to calibrate MS data and the fragment ion (M+H)+ at m/z

684.3469 is used to calibrate MS/MS data during the analysis. For

tandem MS experiments, the system was operated with automatic

switching between MS and MS/MS modes (MS 0.5 s/scan on m/

z range [250;1500] and MS/MS 0.7 s/scan on m/z range

[50;1800]). The 3 most abundant peptides (intensity threshold 60

count s21), preferably doubly and triply charged ions, were
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selected on each MS spectrum for further isolation and CID

fragmentation. Fragmentation was performed using argon as the

collision gas. The complete system was fully controlled by

MassLynx 4.1 (SCN 712, Waters, Milford, MA). Raw data

collected during nanoLC-MS/MS analyses were processed and

converted with ProteinLynx Browser 2.4 (Waters, Milford, MA)

into.pkl peak list format. Normal background substraction type

was used for both MS and MS/MS with 5% threshold and

polynomial correction of order 5, and deisotoping was performed.

The MS/MS data were analyzed using the MASCOT 2.4

algorithm (Matrix Science) to search against the aphid proteome

database (v 2.1), concatenated with additional translation of

normal/infected digestive tract EST contigs [51], locally assem-

bled with Vector 12.6 (Mac Vector Inc. Cary NC 27519 USA).

Enzymatic Assays
b-glucuronidase assays were performed on toluenized extracts of

cells grown to exponential phase by the method of Bardonnet et al.

[48] using p-nitrophenyl-b-D-glucuronate as substrate.

Antimicrobial Peptide Resistance Assays
Stationary phase grown cultures of D. dadantii strains were

diluted 103-fold in LB medium. 1 ml of dilution was placed in an

1.5 ml Eppendorf tube and AMP was added. After 1 hour of

incubation at room temperature, bacteria were diluted and plated

on LB plates. Colonies were counted after 2 days of growth at

28uC.
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Figure S1 Validation of microarray results by qRT-
PCR. (A) Expression ratios of D. dadantii genes during aphid

infection versus growth in liquid medium measured by qRT-PCR.

Expression of each gene was normalized to the expression of the

two housekeeping genes rpoA and ffh. A positive expression ratio

indicates upregulated genes during aphid infection, and a negative

expression ratio indicates downregulated genes during aphid

infection. Standard error ranges were calculated from the data

from three independent biological replicates. (B) Comparison of

gene expression measurements by microarray approach and real-

time qRT PCR. The correlation coefficient (R2) is given.
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Figure S2 HPLC traces at 214 nm of haemolymph and
digestive tract acidic extracts from the pea aphid
challenged or not by Dickeya dadantii. The horizontal bar

shows the collected (differential) fractions.
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